1
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. Toxicol Sci 2024; 201:263-281. [PMID: 38995845 PMCID: PMC11424889 DOI: 10.1093/toxsci/kfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with an increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 wk of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points-birth, 6, 12, and 36 wk old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of differential modification of cytosines with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late-life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
2
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver: A Focus on Genomic Imprinting by Tissue and Sex. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67003. [PMID: 38833407 PMCID: PMC11166413 DOI: 10.1289/ehp14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS Female mice were exposed to human relevant doses of either Pb (32 ppm ) via drinking water or DEHP (5 mg / kg-day ) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamara R. Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Ostberg H, Boehm Vock L, Bloch-Qazi MC. Advanced maternal age has negative multigenerational impacts during Drosophila melanogaster embryogenesis. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100068. [PMID: 38161993 PMCID: PMC10757284 DOI: 10.1016/j.cris.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 01/03/2024]
Abstract
Increasing maternal age is commonly accompanied by decreased fitness in offspring. In Drosophila melanogaster, maternal senescence negatively affects multiple facets of offspring phenotype and fitness. These maternal effects are particularly large on embryonic viability. Identifying which embryonic stages are disrupted can indicate mechanisms of maternal effect senescence. Some maternal effects can also carry-over to subsequent generations. We examined potential multi- and transgenerational effects maternal senescence on embryonic development in two laboratory strains of D. melanogaster. We categorized the developmental stages of embryos from every combination of old and young mother, grandmother and great grandmother. We then modelled embryonic survival across the stages and compared these models among the multigenerational maternal age groups in order to identify which developmental processes were most sensitive to the effects of maternal effect senescence. Maternal effect senescence has negative multigenerational effects on multiple embryonic stages, indicating that maternal provisioning and, possibly epigenetics, but not mutation accumulation, contribute to decreased offspring survival. This study shows the large, early and multi-faceted nature of maternal effects senescence in an insect population.
Collapse
Affiliation(s)
- Halie Ostberg
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
| | - Laura Boehm Vock
- Department of Mathematics and Computer Science, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
- Department of Mathematics, Statistics, and Computer Science, Saint Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Margaret C. Bloch-Qazi
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
| |
Collapse
|
4
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
6
|
Le Goff A, Louvel S, Boullier H, Allard P. Toxicoepigenetics for Risk Assessment: Bridging the Gap Between Basic and Regulatory Science. Epigenet Insights 2022; 15:25168657221113149. [PMID: 35860623 PMCID: PMC9290111 DOI: 10.1177/25168657221113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Toxicoepigenetics examines the health effects of environmental exposure associated with, or mediated by, changes in the epigenome. Despite high expectations, toxicoepigenomic data and methods have yet to become significantly utilized in chemical risk assessment. This article draws on a social science framework to highlight hitherto overlooked structural barriers to the incorporation of toxicoepigenetics in risk assessment and to propose ways forward. The present barriers stem not only from the lack of maturity of the field but also from differences in constraints and standards between the data produced by toxicoepigenetics and the regulatory science data that risk assessment processes require. Criteria and strategies that frame the validation of knowledge used for regulatory purposes limit the application of basic research in toxicoepigenetics toward risk assessment. First, the need in regulatory toxicology for standardized methods that form a consensus between regulatory agencies, basic research, and the industry conflicts with the wealth of heterogeneous data in toxicoepigenetics. Second, molecular epigenetic data do not readily translate into typical toxicological endpoints. Third, toxicoepigenetics investigates new forms of toxicity, in particular low-dose and long-term effects, that do not align well with the traditional framework of regulatory toxicology. We propose that increasing the usefulness of epigenetic data for risk assessment will require deliberate efforts on the part of the toxicoepigenetics community in 4 areas: fostering the understanding of epigenetics among risk assessors, developing knowledge infrastructure to demonstrate applicability, facilitating the normalization and exchange of data, and opening the field to other stakeholders.
Collapse
Affiliation(s)
- Anne Le Goff
- The Institute for Society and Genetics and The EpiCenter, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Séverine Louvel
- Université Grenoble Alpes, CNRS, Sciences Po Grenoble, PACTE, Grenoble, France and Institut Universitaire de France, Paris, France
| | - Henri Boullier
- Centre National de la Recherche Scientifique, IRISSO, Université Paris-Dauphine—PSL, Paris, France
| | - Patrick Allard
- The Institute for Society and Genetics and The EpiCenter, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
7
|
Ma X, Wang X, Zheng G, Tan G, Zhou F, Wei W, Tian D, Yu H. Critical Role of Gut Microbiota and Epigenetic Factors in the Pathogenesis of Behçet's Disease. Front Cell Dev Biol 2021; 9:719235. [PMID: 34676209 PMCID: PMC8525702 DOI: 10.3389/fcell.2021.719235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/16/2021] [Indexed: 01/08/2023] Open
Abstract
Behçet’s disease (BD) is a chronic refractory multisystem autoinflammatory disease, characterized by typical clinical features of non-specific vasculitis, oral and genital ulcers, uveitis, as well as skin lesions. The exact etiopathogenesis of BD remains unknown, existing studies have indicated that genetics and environmental factors contribute to the increased development of BD. Recently, several studies have shown that external environmental factors can affect the process of epigenetic modification, and abnormalities of epigenetic factors have been confirmed to be involved in the occurrence of BD. At the same time, abnormalities of gut microbiota (GM) in the body, have also been confirmed to participate in the pathogenesis of BD by regulating the balance of Th17/Tregs. This article reviews the pathogenesis of BD and summarizes numerous clinical studies, focusing on the mechanism of GM and epigenetic factors impacting on BD, and providing new ideas for further elucidating the pathogenesis of BD.
Collapse
Affiliation(s)
- Xiaomin Ma
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Guangbing Zheng
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Guiqin Tan
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Fangyu Zhou
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Wenwen Wei
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Dan Tian
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Hongsong Yu
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| |
Collapse
|
8
|
De Berardis D, De Filippis S, Masi G, Vicari S, Zuddas A. A Neurodevelopment Approach for a Transitional Model of Early Onset Schizophrenia. Brain Sci 2021; 11:brainsci11020275. [PMID: 33672396 PMCID: PMC7926620 DOI: 10.3390/brainsci11020275] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
In the last decades, the conceptualization of schizophrenia has dramatically changed, moving from a neurodegenerative process occurring in early adult life to a neurodevelopmental disorder starting be-fore birth, showing a variety of premorbid and prodromal symptoms and, in relatively few cases, evolving in the full-blown psychotic syndrome. High rates of co-occurring different neurodevelopmental disorders such as Autism spectrum disorder and ADHD, predating the onset of SCZ, and neurobio-logical underpinning with significant similarities, support the notion of a pan-developmental disturbance consisting of impairments in neuromotor, receptive language, social and cognitive development. Con-sidering that many SCZ risk factors may be similar to symptoms of other neurodevelopmental psychi-atric disorders, transition processes from child & adolescent to adult systems of care should include both high risk people as well as subject with other neurodevelopmental psychiatric disorders with different levels of severity. This descriptive mini-review discuss the need of innovative clinical approaches, re-considering specific diagnostic categories, stimulating a careful analysis of risk factors and promoting the appropriate use of new and safer medications.
Collapse
Affiliation(s)
- Domenico De Berardis
- Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini,” National Health Service (NHS), 64100 ASL 4 Teramo, Italy
- Department of Neurosciences and Imaging, University “G. D’Annunzio”, 66100 Chieti, Italy
- Correspondence:
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, 100045 Rome, Italy;
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, 56128 Pisa, Italy;
| | - Stefano Vicari
- Department of Life Sciences and Publich Health, Catholic University, 00135 Rome, Italy;
- Child & Adolescent Psychiatry, Bambino Gesù Children’s Hospital, 00168 Rome, Italy
| | - Alessandro Zuddas
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari and “A Cao” Paediatric Hospital, “G Brotzu” Hospital Trust, 109134 Cagliari, Italy;
| |
Collapse
|