1
|
Wu CH, Tsai YC, Tsai TH, Kuo KL, Su YF, Chang CH, Lin CL. Valproic Acid Reduces Vasospasm through Modulation of Akt Phosphorylation and Attenuates Neuronal Apoptosis in Subarachnoid Hemorrhage Rats. Int J Mol Sci 2021; 22:ijms22115975. [PMID: 34205883 PMCID: PMC8198375 DOI: 10.3390/ijms22115975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating emergent event associated with high mortality and morbidity. Survivors usually experience functional neurological sequelae caused by vasospasm-related delayed ischemia. In this study, male Sprague-Dawley rats were randomly assigned to five groups: sham (non-SAH) group, SAH group, and three groups with SAH treated with different doses of valproic acid (VPA) (10, 20, 40 mg/kg, once-daily, for 7 days). The severity of vasospasm was determined by the ratio of cross-sectional areas to intima-media thickness of the basilar arteries (BA) on the seventh day after SAH. The BA showed decreased expression of phospho-Akt proteins. The dentate gyrus showed increased expression of cleaved caspase-3 and Bax proteins and decreased expression of Bcl-2, phospho-ERK 1/2, phospho-Akt and acetyl-histone H3 proteins. The incidence of SAH-induced vasospasm was significantly lower in the SAH group treated with VPA 40 mg/kg (p < 0.001). Moreover, all groups treated with VPA showed reversal of the above-mentioned protein expression in BA and the dentate gyrus. Treatment with VPA upregulated histone H3 acetylation and conferred anti-vasospastic and neuro-protective effects by enhancing Akt and/or ERK phosphorylation. This study demonstrated that VPA could alleviate delayed cerebral vasospasm induced neuro-apoptosis after SAH.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Keng-Liang Kuo
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
2
|
Akkaya E, Evran Ş, Çalış F, Çevik S, Hanımoğlu H, Seyithanoğlu MH, Katar S, Karataş E, Koçyiğit A, Sağlam MY, Hatiboğlu MA, Kaynar MY. Effects of Intrathecal Verapamil on Cerebral Vasospasm in Experimental Rat Study. World Neurosurg 2019; 127:e1104-e1111. [DOI: 10.1016/j.wneu.2019.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
|
3
|
Li G, Wang Q, Lin T, Liu C. Effect of thrombin injection on cerebral vascular in rats with subarachnoid hemorrhage. J Int Med Res 2019; 47:2819-2831. [PMID: 31179838 PMCID: PMC6683912 DOI: 10.1177/0300060519851353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the effect of thrombin (TM) injection via the cerebellomedullary cistern on cerebral vessels in rats with subarachnoid hemorrhage (SAH). Methods Eighteen rats were randomly divided into three groups. In the A1 group, physiological saline was injected via the cerebellomedullary cistern; in the A2 group, 3 U of TM was injected into the subarachnoid space; and in the A3 group, SAH models were established and 3 U of TM was injected with the first injection of whole blood. Three days later, basilar artery specimens were collected for pathological examination. Results The basilar arterial lumen cross-sectional area was significantly smaller in the A2 versus the A1 group, and proteinase-activated receptor (PAR)-1 and tumor necrosis factor (TNF)-α average optical densities were significantly higher (all P < 0.05). Basilar arterial lumen cross-sectional areas were significantly smaller in the A3 than the A2 group and average TNF-α optical densities were significantly lower (both P < 0.05), while those of PAR-1 did not differ significantly. Conclusions There was no significant difference in the extent of cerebral vasospasm between SAH and non-SAH model groups following TM injection into the subarachnoid space, so TM was considered to be an independent factor affecting cerebral vasospasm.
Collapse
Affiliation(s)
- Gang Li
- 1 Department of Neurosurgery, The Third People's Hospital of Hainan Province, SanYa, Hainan Province, China
| | - Qingsong Wang
- 2 Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan Province, China
| | - Tingting Lin
- 2 Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan Province, China
| | - Chengye Liu
- 1 Department of Neurosurgery, The Third People's Hospital of Hainan Province, SanYa, Hainan Province, China
| |
Collapse
|
4
|
Yang L, Lai WT, Wu YS, Zhang JA, Zhou XH, Yan J, Fang C, Zeng EM, Tang B, Peng CL, Zhao Y, Hong T. Simple and efficient rat model for studying delayed cerebral ischemia after subarachnoid hemorrhage. J Neurosci Methods 2018; 304:146-153. [DOI: 10.1016/j.jneumeth.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
|
5
|
Leclerc JL, Garcia JM, Diller MA, Carpenter AM, Kamat PK, Hoh BL, Doré S. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Front Mol Neurosci 2018; 11:71. [PMID: 29623028 PMCID: PMC5875105 DOI: 10.3389/fnmol.2018.00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joshua M Garcia
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Anne-Marie Carpenter
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Li Z, Huang Q, Liu P, Li P, Ma L, Lu J. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:096008. [PMID: 26358821 DOI: 10.1117/1.jbo.20.9.096008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during functional activation induced by somatosensory stimulation might not be seriously impaired in the somatosensory cortex of rats with SAH. Therefore, our findings might help to understand the clinical phenomenon that DIND might not occur even when CVS was found in SAH patients.
Collapse
Affiliation(s)
- Zhiguo Li
- Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Qin Huang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luo yu Road, Wuhan 430074, China
| | - Peng Liu
- Wuhan General Hospital of Guangzhou Military Command, Department of Neurosurgery, 627 Wuluo Road, Wuhan 430070, China
| | - Pengcheng Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luo yu Road, Wuhan 430074, China
| | - Lianting Ma
- Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, ChinacWuhan General Hospital of Guangzhou Military Command, Department of Neurosurgery, 627 Wuluo Road, Wuhan 430070, China
| | - Jinling Lu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luo yu Road, Wuhan 430074, China
| |
Collapse
|
7
|
Lin BF, Kuo CY, Wen LL, Chen CM, Chang YF, Wong CS, Cherng CH, Chuang MY, Wu ZF. Rosiglitazone attenuates cerebral vasospasm and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage. Neurocrit Care 2015; 21:316-31. [PMID: 25022803 DOI: 10.1007/s12028-014-0010-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glutamate and oxidative stress play important roles after subarachnoid hemorrhage (SAH). The ability to modulate glutamate transporter 1 (GLT-1) and the antioxidative effect of rosiglitazone have been demonstrated. We investigated the neuroprotective effect of rosiglitazone after SAH. METHODS SAH was induced by double blood injection. The rats were randomly divided into sham, SAH + vehicle, and SAH + rosiglitazone groups and treated with dimethyl sulfoxide, dimethyl sulfoxide, and 6 mg/kg of rosiglitazone, respectively, at 2 and 12 h after SAH induction and then daily for 6 days. Cerebrospinal fluid dialysates were collected 30 min before SAH induction and then daily for 7 days for glutamate measurement. Mortality, body weight, and neurological scores were also measured daily. On day 7 after SAH, the wall thickness and the perimeter of the basilar artery (BA), neuron variability, GLT-1 levels, glial fibrillary acidic protein (GFAP) expression and activity, and malondialdehyde, superoxide dismutase, and catalase activities were also evaluated. RESULTS Rosiglitazone improved survival (relative risk = 0.325) and neurological functions and reduced neuronal degeneration (5.7 ± 0.8 vs. 10.0 ± 0.9; P < 0.001) compared with the SAH + vehicle group. Rosiglitazone also lowered glutamate levels by 43.5-fold and upregulated GLT-1 expression by 1.5-fold and astrocyte activity by 1.8-fold compared with the SAH + vehicle group. The increase in BA wall thickness was significantly attenuated by rosiglitazone, whereas the perimeter of the BA was increased. In addition, rosiglitazone abated the 1.9-fold increase in malondialdehyde levels and the 1.6-fold increase in catalase activity after SAH. CONCLUSION Rosiglitazone reduced SAH mortality, neurological deficits, body weight loss, GFAP loss, and cerebral vasospasm by preventing the neurotoxicity induced by glutamate and oxidative stress.
Collapse
Affiliation(s)
- Bo-Feng Lin
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, #325, Section 2 Chenggung Road, Neihu 114, Taipei, Taiwan, ROC,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Höllig A, Weinandy A, Nolte K, Clusmann H, Rossaint R, Coburn M. Experimental subarachnoid hemorrhage in rats: comparison of two endovascular perforation techniques with respect to success rate, confounding pathologies and early hippocampal tissue lesion pattern. PLoS One 2015; 10:e0123398. [PMID: 25867893 PMCID: PMC4395040 DOI: 10.1371/journal.pone.0123398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 11/30/2022] Open
Abstract
Recently aside from the “classic” endovascular monofilament perforation technique to induce experimental subarachnoid hemorrhage (SAH) a modification using a tungsten wire advanced through a guide tube has been described. We aim to assess both techniques for their success rate (induction of SAH without confounding pathologies) as primary endpoint. Further, the early tissue lesion pattern as evidence for early brain injury will be analyzed as secondary endpoint. Sprague Dawley rats (n=39) were randomly assigned to receive either Sham surgery (n=4), SAH using the “classic” technique (n=18) or using a modified technique (n=17). Course of intracranial pressure (ICP) and regional cerebral blood flow (rCBF) was analyzed; subsequent pathologies were documented either 6 or 24 h after SAH. Hippocampal tissue samples were analyzed via immunohistochemistry and western blotting. SAH-induction, regardless of confounding pathologies, was independent from type of technique (p=0.679). There was no significant difference concerning case fatality rate (classic: 40%; modified: 20%; p=0.213). Successful induction of SAH without collateral ICH or SDH was possible in 40% with the classic and in 86.7% with the modified technique (p=0.008). Peak ICP levels differed significantly between the two groups (classic: 94 +/- 23 mmHg; modified: 68 +/- 19 mmHg; p=0.003). Evidence of early cellular stress response and activation of apoptotic pathways 6 h after SAH was demonstrated. The extent of stress response is not dependent on type of technique. Both tested techniques successfully produce SAH including activation of an early stress response and apoptotic pathways in the hippocampal tissue. However, the induction of SAH with less confounding pathologies was more frequently achieved with the modified tungsten wire technique.
Collapse
Affiliation(s)
- Anke Höllig
- Department of Neurosurgery, University RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University RWTH Aachen, Aachen, Germany
| | - Agnieszka Weinandy
- Department of Neurosurgery, University RWTH Aachen, Aachen, Germany
- Department of Neuropathology, University RWTH Aachen, Aachen, Germany
| | - Kay Nolte
- Department of Neuropathology, University RWTH Aachen, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, University RWTH Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University RWTH Aachen, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University RWTH Aachen, Aachen, Germany
- * E-mail:
| |
Collapse
|
9
|
Experimental Subarachnoid Hemorrhage: Double Cisterna Magna Injection Rat Model—Assessment of Delayed Pathological Effects of Cerebral Vasospasm. Transl Stroke Res 2015; 6:242-51. [DOI: 10.1007/s12975-015-0392-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
|
10
|
Güresir E, Schuss P, Borger V, Vatter H. Rat cisterna magna double-injection model of subarachnoid hemorrhage - background, advantages/limitations, technical considerations, modifications, and outcome measures. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:325-9. [PMID: 25366646 DOI: 10.1007/978-3-319-04981-6_56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pathophysiological changes following aneurysmal subarachnoid hemorrhage (SAH) are commonly divided into early consequences (developing shortly after the bleeding) and delayed consequences of the bleeding. The development of delayed injury mechanisms, e.g., reduced cerebral blood flow (CBF) caused by cerebral vasospasm (CVS) or development of delayed ischemic neurological deficits (DIND), seem mainly to depend on the amount and duration of the subarachnoid blood clot. CVS may progress to cerebral ischemia and infarction, and therefore lead to delayed neurological deterioration. The rat double-hemorrhage model reproduces the time course of the delayed pathophysiological consequences of CVS, which imitates the clinical setting more precisely than other rodent models. Furthermore, this model is adjustable via various technical considerations or modifications. Therefore, the double-hemorrhage model is predisposed to be used to mimic the delayed effects of SAH and to investigate the use of drugs on morphological ischemic, functional, and vasospastic effects.
Collapse
Affiliation(s)
- Erdem Güresir
- Department of Neurosurgery, University-Hospital Bonn, Sigmund-Freud-Strasse, 53127, Bonn, Germany,
| | | | | | | |
Collapse
|
11
|
Hu N, Wu Y, Chen BZ, Han JF, Zhou MT. Protective effect of stellate ganglion block on delayed cerebral vasospasm in an experimental rat model of subarachnoid hemorrhage. Brain Res 2014; 1585:63-71. [DOI: 10.1016/j.brainres.2014.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/27/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
|
12
|
Nishino A, Umegaki M, Fujinaka T, Yoshimine T. Cilostazol attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurol Res 2013; 32:873-8. [DOI: 10.1179/016164109x12608733393791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 2013; 31:568-81. [DOI: 10.1179/174313209x382412] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Tian XH, Wang ZG, Meng H, Wang YH, Feng W, Wei F, Huang ZC, Lin XN, Ren L. Tat peptide-decorated gelatin-siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm. Int J Nanomedicine 2013; 8:865-76. [PMID: 23576867 PMCID: PMC3617792 DOI: 10.2147/ijn.s39951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Gene transfer using a nanoparticle vector is a promising new approach for the safe delivery of therapeutic genes in human disease. The Tat peptide-decorated gelatin-siloxane (Tat-GS) nanoparticle has been demonstrated to be biocompatible as a vector, and to have enhanced gene transfection efficiency compared with the commercial reagent. This study investigated whether intracisternal administration of Tat-GS nanoparticles carrying the calcitonin gene-related peptide (CGRP) gene can attenuate cerebral vasospasm and improve neurological outcomes in a rat model of subarachnoid hemorrhage. Method A series of gelatin-siloxane nanoparticles with controlled size and surface charge was synthesized by a two-step sol-gel process, and then modified with the Tat peptide. The efficiency of Tat-GS nanoparticle-mediated gene transfer of pLXSN-CGRP was investigated in vitro using brain capillary endothelial cells and in vivo using a double-hemorrhage rat model. For in vivo analysis, we delivered Tat-GS nanoparticles encapsulating pLXSN-CGRP intracisternally using a double-hemorrhage rat model. Results In vitro, Tat-GS nanoparticles encapsulating pLXSN-CGRP showed 1.71 times higher sustained CGRP expression in endothelial cells than gelatin-siloxane nanoparticles encapsulating pLXSN-CGRP, and 6.92 times higher CGRP expression than naked pLXSN-CGRP. However, there were no significant differences in pLXSN-CGRP entrapment efficiency and cellular uptake between the Tat-GS nanoparticles and gelatin-siloxane nanoparticles. On day 7 of the in vivo experiment, the data indicated better neurological outcomes and reduced vasospasm in the subarachnoid hemorrhage group that received Tat-GS nanoparticles encapsulating pLXSN-CGRP than in the group receiving Tat-GS nanoparticles encapsulating pLXSN alone because of enhanced vasodilatory CGRP expression in cerebrospinal fluid. Conclusion Overexpression of CGRP attenuated vasospasm and improved neurological outcomes in an experimental rat model of subarachnoid hemorrhage. Tat-GS nanoparticle-mediated CGRP gene delivery could be an innovative strategy for treatment of cerebral vasospasm after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Xin-Hua Tian
- Department of Neurosurgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boyko M, Azab AN, Kuts R, Gruenbaum BF, Gruenbaum SE, Melamed I, Brotfain E, Shapira Y, Cesnulis E, Zlotnik A. The neuro-behavioral profile in rats after subarachnoid hemorrhage. Brain Res 2012; 1491:109-16. [PMID: 23123210 DOI: 10.1016/j.brainres.2012.10.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 10/30/2012] [Indexed: 11/16/2022]
Abstract
Despite significant advancements in the understanding of the pathophysiological mechanisms of subarachnoid hemorrhage (SAH), little is known about the emotional consequences. The primary goal of this study was to describe the locomotor and behavioral patterns in rats following both a single-injection and double-injection model of SAH. In 48 rats, SAH was induced by injecting 0.3 ml of autologous arterial blood into the cisterna magnum (single-hemorrhagic model). In 24 of these rats, post-SAH vasospasm was induced by a repeated injection of blood into the cisterna magnum 24h later (double-hemorrhagic model). In 24 additional rats, 0.3 ml of saline was injected into the cisterna magnum (sham group). Neurological performance was assessed at 24, 48 h, 1, 2 and 3 weeks after SAH. Four behavioral tests were performed for 3 weeks after SAH for the duration of 6 consequent days, in the following order: open field test, sucrose preference test, elevated plus maze test and forced swimming test. Following both, a single and double-hemorrhagic models of SAH, rats were found to have significant behavioral abnormalities on the open field test, sucrose preference test, elevated plus maze test, and forced swimming test. A more prominent disability was found in rats that underwent the double-hemorrhagic model of SAH than rats that underwent the single-hemorrhagic model. Both a single and double injection model of rats SAH are associated with significant behavioral disturbances including locomotor abnormalities, depressive behavior and increased anxiety, even as early as 3 weeks after SAH.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion, University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A new percutaneous model of Subarachnoid Haemorrhage in rats. J Neurosci Methods 2012; 211:88-93. [PMID: 22921487 DOI: 10.1016/j.jneumeth.2012.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Describe the results obtained with a new percutaneous, intracisternal model of Subarachnoid Haemorrhage (SAH) in Wistar rats by a single injection of non-heparinised, autologous blood. METHODS Once anaesthetized the rat was fixed prone in a stereotaxic frame. After identifying the projection of the occipital bone, the needle of the stereotaxic frame aspirated towards the foramen magnum until it punctured through the atlanto-occipital membrane and obtained cerebrospinal fluid. Autologous blood (100 μl) was withdrawn from the tail and injected intracisternally. This procedure was repeated in the sham group, injecting 100 μl of isotonic saline. On the fifth day post-intervention, the rats were anaesthetized and the brain was exposed. After a lethal injection of ketamine the brain was explanted and fixed in paraformaldehyde. Gross and microscopic inspection of the slices revealed the existence or non-existence of pathological findings. RESULTS A total of 26 rats were operated on (13 in the SAH group/13 in the sham group). The average time between obtaining the blood and the start of the intracisternal injection was 10 (±1.2)s. The mortality rate was 16.12%. Intra- and extraparenchymal ischemic-haemorrhagic lesions were found in three animals (23.07%)--all from the SAH group--with ischemic neuronal cell injury detected in two of the three. CONCLUSIONS The new murine model of SAH is easy to perform, with low mortality, minimally invasive, which makes it interesting for future studies on vasospasm-related delayed SAH complications.
Collapse
|
17
|
Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Brotfain E, Shapira Y, Zlotnik A. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics 2012; 9:649-57. [PMID: 22711471 PMCID: PMC3441925 DOI: 10.1007/s13311-012-0129-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Israel Melamed
- Department of Neurosurgery, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Benjamin Fredrick Gruenbaum
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Shaun Evan Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Sharon Ohayon
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Akiva Leibowitz
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Evgeny Brotfain
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Yoram Shapira
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, 84005 Israel
| |
Collapse
|
18
|
Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97:14-37. [PMID: 22414893 PMCID: PMC3327829 DOI: 10.1016/j.pneurobio.2012.02.003] [Citation(s) in RCA: 473] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 h and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients' outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- The Departments of Neurosurgery and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
19
|
Güresir E, Vasiliadis N, Dias S, Raab P, Seifert V, Vatter H. The effect of common carotid artery occlusion on delayed brain tissue damage in the rat double subarachnoid hemorrhage model. Acta Neurochir (Wien) 2012; 154:11-9. [PMID: 21986833 DOI: 10.1007/s00701-011-1191-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Delayed ischemic brain tissue damage in the time course of cerebral vasospasm in the rat double-subarachnoid hemorrhage (SAH) model has been described before. However, in order to enhance hemodynamic insufficiency during cerebral vasospasm (CVS), we performed-in a modification to the standard double-hemorrhage model-an additional unilateral common carotid artery occlusion (CCAO), expecting aggravation of brain-tissue damage in areas particularly sensitive to hypoxia. METHODS CVS was induced by injection of 0.25 ml autologous blood twice in the cisterna magna of Sprague-Dawley rats with and without unilateral CCAO. The animals were examined on days 2, 3, 4 and 5, and compared with the sham-operated control group without SAH. The functional deficits were graded between 0 and 3. Perfusion weighted imaging (PWI) at 3 Tesla magnetic resonance (MR) tomography was performed to assess cerebral blood flow (CBF). The brains were fixed, stained and evaluated for histological changes. RESULTS On day 5, the neurological state was significantly worse in rats with SAH. The relative CBF/muscle blood ratio was significantly decreased by SAH and lowest in rats with CCAO and SAH (4.5 ± 1.1 vs 2.7 ± 0.6) compared with sham (7.9 ± 1.5; p < 0.001). Basilar artery (BA) diameter was 79 ± 5 μm (SAH) vs 147 ± 4 μm (sham, p < 0.001). Neuronal cell count in the hippocampal areas CA1-CA4 was significantly reduced by SAH on day 5 (p < 0.001) and lowest in rats with SAH and CCAO. CONCLUSIONS CCAO leads to an aggravation of CVS-related delayed brain tissue damage in the modified rat double-SAH model.
Collapse
Affiliation(s)
- Erdem Güresir
- Department of Neurosurgery, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Dusick JR, Evans BC, Laiwalla A, Krahl S, Gonzalez NR. A minimally-invasive rat model of subarachnoid hemorrhage and delayed ischemic injury. Surg Neurol Int 2011; 2:99. [PMID: 21811705 PMCID: PMC3144598 DOI: 10.4103/2152-7806.83023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/28/2011] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Double-injection models of subarachnoid hemorrhage (SAH) in rats are the most effective in producing vasospasm, delayed neurological deficits and infarctions. However, they require two large surgeries to expose the femoral artery and the atlanto-occipital membrane. We have developed a minimally-invasive modification that prevents confounding effects of surgical procedures, leakage of blood from the subarachnoid space and minimizes risk of infection. METHODS Rats are anesthetized and the ventral tail artery is exposed through a small (5 mm), midline incision, 0.2 mL of blood is taken from the artery and gentle pressure is applied for hemostasis. The rat is flipped prone, and with the head flexed to 90 degrees in a stereotactic frame, a 27G angiocath is advanced in a vertical trajectory, level with the external auditory canals. Upon puncturing the atlanto-occipital membrane, the needle is slowly advanced and observed for cerebrospinal fluid (CSF). A syringe withdraws 0.1 mL of CSF and the blood is injected into the subarachnoid space. The procedure is repeated 24 hours later by re-opening the tail incision. At 8 days, the rats are euthanized and their brains harvested, sectioned, and incubated with triphenyltetrazolium chloride (TTC). RESULTS Rats develop neurological deficits consistent with vasospasm and infarction as previously described in double-injection models. Cortical and deep infarctions were demonstrated by TTC staining and on histopathology. CONCLUSIONS A minimally invasive, double-injection rat model of SAH and vasospasm is feasible and produces neurological deficits and infarction. This model can be used to study neuroprotective treatments for vasospasm and delayed neurological deficits following SAH, reducing the confounding effects of surgical interventions.
Collapse
Affiliation(s)
- Joshua R Dusick
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Zhang J, Chen G, Zhou D, Wang Z. Expression of CD137 in the cerebral artery after experimental subarachnoid hemorrhage in rats: a pilot study. Brain Res 2011; 1386:200-8. [PMID: 21352817 DOI: 10.1016/j.brainres.2011.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Inflammation and immunity play a crucial role in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). CD137 is recognized as an independent costimulatory molecule of T cells and activator of monocytes. A growing body of evidence indicates that CD137 is vital for inflammation and immunity. Therefore, this study aimed to investigate the expression of CD137 in the basilar artery in a rat SAH model and to clarify the potential role of CD137 in cerebral vasospasm. A total of 107 rats were randomly divided into four groups: control group; day 3, day 5, and day 7 groups. Day 3, day 5, and day 7 groups were all SAH groups. The animals in SAH groups were subjected to injection of autologous blood into cisterna magna twice on day 0 and day 2 and were sacrificed on days 3, 5, and 7, respectively. Cross-sectional area of basilar artery was measured and the CD137 expression was assessed by quantitative real-time PCR, Western blot and immunohistochemistry. The cross-sectional area of basilar artery was found to be 57,944±5581μm(2) in control group, 26,100±2639μm(2) in day 3, 19,723±2412μm(2) in day 5, and 28,800±2980μm(2) in day 7 group, respectively. The basilar artery exhibited vasospasm after SAH and became more severe on day 5. The elevated mRNA and protein of CD137 were detected after SAH and peaked on day 5. CD137 is increasingly expressed in a parallel time course to the development of cerebral vasospasm in a rat experimental model of SAH. These findings indicate the possible role of CD137 in the pathogenesis of cerebral vasospasm after SAH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, PR China
| | | | | | | |
Collapse
|
22
|
Nystoriak MA, O'Connor KP, Sonkusare SK, Brayden JE, Nelson MT, Wellman GC. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol Heart Circ Physiol 2011; 300:H803-12. [PMID: 21148767 PMCID: PMC3064296 DOI: 10.1152/ajpheart.00760.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/03/2010] [Indexed: 11/22/2022]
Abstract
Intracerebral (parenchymal) arterioles are morphologically and physiologically unique compared with pial arteries and arterioles. The ability of subarachnoid hemorrhage (SAH) to induce vasospasm in large-diameter pial arteries has been extensively studied, although the contribution of this phenomenon to patient outcome is controversial. Currently, little is known regarding the impact of SAH on parenchymal arterioles, which are critical for regulation of local and global cerebral blood flow. Here diameter, smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)), and membrane potential measurements were used to assess the function of intact brain parenchymal arterioles isolated from unoperated (control), sham-operated, and SAH model rats. At low intravascular pressure (5 mmHg), membrane potential and [Ca(2+)](i) were not different in arterioles from control, sham-operated, and SAH animals. However, raising intravascular pressure caused significantly greater membrane potential depolarization, elevation in [Ca(2+)](i), and constriction in SAH arterioles. This SAH-induced increase in [Ca(2+)](i) and tone occurred in the absence of the vascular endothelium and was abolished by the L-type voltage-dependent calcium channel (VDCC) inhibitor nimodipine. Arteriolar [Ca(2+)](i) and tone were not different between groups when smooth muscle membrane potential was adjusted to the same value. Protein and mRNA levels of the L-type VDCC Ca(V)1.2 were similar in parenchymal arterioles isolated from control and SAH animals, suggesting that SAH did not cause VDCC upregulation. We conclude that enhanced parenchymal arteriolar tone after SAH is driven by smooth muscle membrane potential depolarization, leading to increased L-type VDCC-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology, University of Vermont, College of Medicine, Burlington, Vermont 05405-0068, USA
| | | | | | | | | | | |
Collapse
|
23
|
Marbacher S, Fandino J, Kitchen ND. Standard intracranialin vivoanimal models of delayed cerebral vasospasm. Br J Neurosurg 2010; 24:415-34. [DOI: 10.3109/02688691003746274] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Histological evidence of delayed ischemic brain tissue damage in the rat double-hemorrhage model. J Neurol Sci 2010; 293:18-22. [DOI: 10.1016/j.jns.2010.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 03/24/2010] [Indexed: 11/17/2022]
|
25
|
Lee JY, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery 2009; 65:331-43; discussion 343. [PMID: 19625913 DOI: 10.1227/01.neu.0000345649.78556.26] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate acute pathophysiological changes after subarachnoid hemorrhage (SAH) in rats and compare endovascular perforation and double blood injection models for studies of early brain injury after SAH. METHODS Rat SAH was induced by endovascular perforation of the internal carotid artery (n = 41) or double injection of autologous blood into the cisterna magna (n = 23). Effects of SAH on arterial blood pressure, intracranial pressure, cerebral artery dimensions, and cerebral blood flow were measured. Neuronal death was assessed 24 hours after SAH. RESULTS SAH was more severe in the endovascular perforation model (4-fold greater hemoglobin content on the basal brain surface), and mortality was greater (47%) than in the blood injection model (0%). Intracranial pressure increases were faster and greater in the perforation model. Correspondingly, cerebral blood flow reductions were greater after perforation than in the blood injection model, particularly in middle cerebral artery-supplied regions (32 +/- 16 versus 65 +/- 18 mL/100 g/min, P < 0.01). Diffuse neuronal death occurred in all rats in the perforation model but more seldom after blood injection. Anterior cerebral artery diameter and cross sectional area were significantly decreased on day 1 after SAH induction (52 +/- 21% and 22 +/- 16% of control values; P < 0.001) in the perforation model but not after blood injection. CONCLUSION The perforation model produced more severe pathophysiological changes than the double blood injection, and it mimics human SAH in having an injured blood vessel and direct hemorrhagic brain lesion under arterial blood pressure. Therefore, endovascular perforation seems more suitable for study of acute SAH sequelae. However, further model refinement is required to reduce the high mortality rate.
Collapse
Affiliation(s)
- Jin-Yul Lee
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | |
Collapse
|
26
|
Vural M, Cosan TE, Ozbek Z, Cosan D, Sahin F, Burukoglu D. Digoxin may provide protection against vasospasm in subarachnoid haemorrhage. Acta Neurochir (Wien) 2009; 151:1135-41. [PMID: 19436949 DOI: 10.1007/s00701-009-0391-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 04/21/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vasospasm is a significant reason for poor clinical outcome in subarachnoid haemorrhage (SAH). One of the possible causes of vasospasm is attributed to the inhibition of Na(+)/K(+)-ATPase and increased intracellular calcium. Although digoxin, a cardiac glycoside (CG), inhibits the Na(+)/K(+)-ATPase, diverse and contradictory biological actions of CGs have also been reported. This study aimed to investigate the effect of digoxin on an experimental vasospasm after subarachnoid haemorrhage (SAH) in rats. METHODS The rats used in the study were divided into normal, saline, SAH, and drug groups. A double-haemorrhage method was applied for the SAH groups. Normal saline or blood samples were injected into the cisterna magna. No surgical procedures were performed on the normal group. For the drug groups, daily digoxin was administered intraperitoneally after saline or blood injections. On days 3 and 7 after injections, the brains and basilar artery sections of all the groups were prepared for light-microscopic examination. The wall thickness and luminal area of the basilar artery were calculated by using medical imaging software. RESULTS Increased wall thickness and reduced vessel luminal area were conspicuously significant in the SAH groups which did not receive digoxin. In SAH groups after digoxin administration, the vessel wall thickness decreased, and no significant change was found in vessel wall thickness when compared with the normal and saline groups. The vessel luminal area was not reduced in SAH after digoxin administration. CONCLUSIONS These results suggest that digoxin administration in experimental SAH may have a beneficial effect on the protection against vasospasm. If further investigations support our results, the present study may offer a new insight into the treatment of SAH.
Collapse
Affiliation(s)
- Murat Vural
- Department of Neurosurgery, Medical Faculty, Eskisehir Osmangazi University, Dede Mah. Alp Konutlari, Alp-4, D-Blok, Daire-2, Eskisehir, Turkey
| | | | | | | | | | | |
Collapse
|
27
|
Hishikawa T, Ono S, Ogawa T, Tokunaga K, Sugiu K, Date I. Effects of deferoxamine-activated hypoxia-inducible factor-1 on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery 2008; 62:232-40; discussion 240-1. [PMID: 18300912 DOI: 10.1227/01.neu.0000311082.88766.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Hypoxia-inducible factor (HIF)-1 is a transcription factor that regulates the expression of various neuroprotective genes. The goal of this study was to clarify the relationship between HIF-1 expression and subarachnoid hemorrhage (SAH) and to characterize the effects of deferoxamine (DFO)-induced increases in HIF-1 protein levels on the brainstem and the basilar artery (BA) after experimental SAH. METHODS Rat single- and double-hemorrhage models (injected on Days 0 and 2) of SAH were used. We assessed the time courses for HIF-1 protein levels in the brainstems and the BA diameters within 10 minutes and 6 hours on Days 1 and 2 in the single-SAH model, and also on Day 7 in the double-SAH model. After induction of double hemorrhage in rats, DFO was injected intraperitoneally. We then evaluated HIF-1 protein expression and brainstem activity, BA diameter, and brainstem blood flow. RESULTS After the rats experienced SAH, HIF-1 protein expression was significantly greater at 10 minutes in the single-injection model and at 7 days in the double-injection model than at similar time points in the control group, and these increases correlated with degrees of cerebral vasospasm. DFO injection resulted in significant increases in HIF-1 protein expression and activity in the brainstems of rats with SAH, compared with the rats with SAH that were given placebos, and the rats without SAH in the double-hemorrhage model. Cerebral vasospasm and reduction of brainstem blood flow were significantly attenuated in the rats that were administered DFO. CONCLUSION These results show that a DFO-induced increase in HIF-1 protein level and activity exerts significant attenuation of BA vasospasm and reduction of brainstem blood flow in the rat model of SAH. DFO may be a promising agent for treating clinical SAH.
Collapse
Affiliation(s)
- Tomohito Hishikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Lee JY, Huang DL, Keep R, Sagher O. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. J Neurosci Methods 2008; 168:358-66. [DOI: 10.1016/j.jneumeth.2007.10.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/27/2007] [Accepted: 10/30/2007] [Indexed: 11/27/2022]
|
29
|
Zhou ML, Shi JX, Zhu JQ, Hang CH, Mao L, Chen KF, Yin HX. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods 2007; 159:318-24. [PMID: 16942802 DOI: 10.1016/j.jneumeth.2006.07.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 07/19/2006] [Accepted: 07/22/2006] [Indexed: 10/24/2022]
Abstract
Injection of blood into the cisterna magna is one of the most frequently used methods to produce subarachnoid hemorrhage (SAH) models in animals. Although the two-hemorrhage model of vasospasm is frequently used in canine and rat models, most studies with rabbits only use the one-hemorrhage model. In the present study, we accomplished a side-by-side comparison between one- and two-hemorrhage models in rabbits. A total of 38 rabbits were randomly divided into three groups, i.e. control group (n = 5), one (n = 15)- and two (n = 18)-hemorrhage model groups. The degree of cerebral vasospasm, the time course of cerebral vasospasm, the clinical behavior, and the residual amount of subarachnoid blood clots were measured on days 3, 5 and 7 after the establishment of the models. Compared with one-hemorrhage model, the time course of vasospasm in the two-hemorrhage model was more coincident with that observed in humans, produced more severe vasospasm after SAH, and had an acceptable low mortality. In conclusion, the two-hemorrhage model in rabbits is more appropriate than the one-hemorrhage model for the research on SAH or cerebral vasospasm, and thus can be used for the investigation of the mechanisms of and therapeutic approaches for cerebral vasospasm.
Collapse
Affiliation(s)
- Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 2006; 28:399-414. [PMID: 16759443 DOI: 10.1179/016164106x115008] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Increasing body of experimental and clinical data indicates that early brain injury after initial bleeding largely contributes to unfavorable outcome after subarachnoid hemorrhage (SAH). This review presents molecular mechanisms underlying brain injury at its early stages after SAH. METHODS PubMed was searched using term 'subarachnoid hemorrhage' and key words referring to molecular and cellular pathomechanisms of SAH-induced early brain injury. RESULTS The authors reviewed intracranial phenomena and molecular agents that contribute to the early development of pathological sequelae of SAH in cerebral and vascular tissues, including cerebral ischemia and its interactions with injurious blood components, blood-brain barrier disruption, brain edema and apoptosis. DISCUSSION It is believed that detailed knowledge of molecular signaling pathways after SAH will serve to improve therapeutic interventions. The most promising approach is the protection of neurovascular unit including anti-apoptosis therapy.
Collapse
|
31
|
Vatter H, Weidauer S, Konczalla J, Dettmann E, Zimmermann M, Raabe A, Preibisch C, Zanella FE, Seifert V. Time Course in the Development of Cerebral Vasospasm after Experimental Subarachnoid Hemorrhage: Clinical and Neuroradiological Assessment of the Rat Double Hemorrhage Model. Neurosurgery 2006; 58:1190-7; discussion 1190-7. [PMID: 16723899 DOI: 10.1227/01.neu.0000199346.74649.66] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The "double hemorrhage" model in the rat is frequently used to simulate delayed cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH) in humans. However, an exact neurological and angiographic characterization of the CVS is not available for this model so far and is provided in the present investigation. Additionally, perfusion weighted imaging (PWI) at 3 tesla magnetic resonance (MR) tomography was implemented to assess the reduction in cerebral blood flow (CBF). METHODS In a prospective, randomized setting CVS was induced by injection of 0.2 ml autologous blood twice in the cisterna magna of 45 male Sprague-Dawley rats. The surviving animals were examined on Days 2, 3, 5, 7 and 9 and compared to a sham operated control group (n = 9). Rats were neurologically graded between 0 and 3, followed by MRI and selective digital subtraction angiography (DSA). The relative CBF was set in relation to the perfusion of the masseter muscle. RESULTS The neurological state was significantly worsened on Day 2 (Grade 3), 3 (Grade 3), and 5 (Grade 2) (medians). The relative CBF/muscle BF ratio (2.5 +/- 0.8 (SAH) versus 9.2 +/- 1.3 (sham) (mean +/- SEM) and the basilar artery (BA) diameter (0.15 +/- 0.02 mm (SAH) versus 0.32 +/- 0.01 mm (sham) were significantly decreased on Day 5. Correlation between relative CBF/muscle BF ratio and BA diameter was 0.70. CONCLUSION A valid and reproducible CVS simulation was proven by neurological score, DSA, and PWI on Day 5. Furthermore, our data demonstrate the practicability and validity of MR PWI for the monitoring of CVS in a rat SAH model.
Collapse
Affiliation(s)
- Hartmut Vatter
- Department of Neurosurgery, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin CL, Shih HC, Dumont AS, Kassell NF, Lieu AS, Su YF, Hwong SL, Hsu C. The effect of 17β-estradiol in attenuating experimental subarachnoid hemorrhage–induced cerebral vasospasm. J Neurosurg 2006; 104:298-304. [PMID: 16509505 DOI: 10.3171/jns.2006.104.2.298] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Sex differences in the outcome of aneurysmal subarachnoid hemorrhage (SAH) are controversial, and the potential influence of estradiol on vasodilation is unclear. In the present study the authors evaluate the effect and possible mechanism of 17β-estradiol (E2) on SAH-induced vasospasm in a two-hemorrhage rodent model of SAH.
Methods
A 30-mm Silastic tube filled with E2 in corn oil (0.3 mg/ml) was subcutaneously implanted in male rats. Serum levels of E2 were measured on Days 0, 1, 2, 3, 4, and 7 postimplantation. The degree of vasospasm was determined by averaging the cross-sectional areas of the basilar artery (BA) 7 days after the first SAH. Expressions of endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) in the BA were also evaluated.
Serum levels of E2 in the E2-treated rats were at physiological levels (56–92 pg/ml) and were significantly higher than those in the control and vehicle-treated groups. Treatment with E2 significantly (p < 0.01) attenuated SAH-induced vasospasm. Induction of iNOS messenger (m)RNA and protein in the BA by SAH was significantly diminished by the E2 treatment but not by vehicle treatment. The SAH-induced suppression of eNOS mRNA and protein was relieved by E2 treatment.
Conclusions
These results suggest that continuous treatment with E2 at physiological levels prevents cerebral vasospasm following SAH. The beneficial effect of E2 may be in part related to the prevention of augmentation of iNOS expression and the preservation of normal eNOS expression after SAH. Treatment with E2 holds therapeutic promise in the treatment of cerebral vasospasm following SAH and merits further investigation.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Aladag MA, Turkoz Y, Ozcan C, Sahna E, Parlakpinar H, Akpolat N, Cigremis Y. Caffeic acid phenethyl ester (CAPE) attenuates cerebral vasospasm after experimental subarachnoidal haemorrhage by increasing brain nitric oxide levels. Int J Dev Neurosci 2006; 24:9-14. [PMID: 16427758 DOI: 10.1016/j.ijdevneu.2005.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cerebral vasospasm, a medical complication of aneurysmal subarachnoid hemorrhage (SAH), is associated with high morbidity and mortality rates, even after the aneurysm has been secured surgically or endovascularly. Evidence accumulated during the last decade suggest that scavenging a vasodilator, nitric oxide (NO), by superoxide anions (O(2)(-)), and activating a strong vasoconstructor, protein kinase C (PKC), are the two most important mechanisms in the pathogenesis of vasospasm. Our aim in this study was to determine whether caffeic acid phenethyl ester (CAPE), a non-toxic oxygen free radical scavenger, prevents vasospasm in an experimental rat model of SAH. METHODS Twenty eight rats (225-250 g) were divided into four groups equally: group 1, control group; group 2, SAH group; group 3, SAH plus placebo group; and group 4, SAH plus CAPE group. We used double haemorrhage method for SAH groups. Starting 6h after SAH, 10 micromol/kg CAPE or an equal volume of 0.9% saline were administered by intraperitoneal injection twice daily for 5 days to SAH plus CAPE and SAH plus placebo groups, respectively. CAPE or 0.9% saline injections were continued up to 5th day after SAH. Rats were sacrificed on the 5th day. Brain sections at the level of the pons were examined by light microscopy. Measurements were made for the cross-sectional areas of the lumen and the vessel wall (intimae plus media) of basilar artery by a micrometer. The levels of malondialdehyde (MDA), reduced glutathione (GSH), and nitric oxide (NO) were measured in rat brain tissue. RESULTS Administration of CAPE significantly attenuated the vasoconstriction of the basilar artery. There were marked narrowing in the lumens of and thickening in the walls of basilar arteries in the SAH, and the SAH plus placebo compared with CAPE group (p < 0.001). We also observed that CAPE administration significantly decreased the tissue level of MDA, while significantly increased the tissue levels of GSH, NO in the SAH plus CAPE group compared to only SAH group, p < 0.05. CONCLUSIONS Our results indicate that CAPE is effective in attenuating delayed cerebral vasoconstriction following experimental SAH. Our findings also suggest that the elevation of lipid peroxidation and reduction of NO bioavailability, resulting from the generation and the interaction of free radicals, have a significant role in the pathogenesis of vasospasm after SAH.
Collapse
Affiliation(s)
- M Arif Aladag
- Department of Neurosurgery, Inonu University School of Medicine, Medical Faculty, Malatya 44135, Turkey.
| | | | | | | | | | | | | |
Collapse
|
34
|
Takeuchi K, Renic M, Bohman QC, Harder DR, Miyata N, Roman RJ. Reversal of delayed vasospasm by an inhibitor of the synthesis of 20-HETE. Am J Physiol Heart Circ Physiol 2005; 289:H2203-11. [PMID: 15964920 DOI: 10.1152/ajpheart.00556.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study characterized the time course of changes in cerebral blood flow (CBF) and vascular diameter in a dual-hemorrhage model of subarachnoid hemorrhage (SAH) in rats and examined whether acute blockade of the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) with N-(3-chloro-4-morpholin-4-yl)phenyl-N'-hydroxyimido formamide (TS-011) can reverse delayed vasospasm in this model. Rats received an intracisternal injection of blood (0.4 ml) on day 0 and a second injection 2 days later. CBF was sequentially measured using laser-Doppler flowmetry, and the diameters of the cerebral arteries were determined after filling the cerebral vasculature with a casting compound. CBF fell to 67% of control after the first intracisternal injection of blood but returned to a value near control 24 h later. CBF again fell to 63% of control after a second intracisternal injection of blood and remained 30% below control for 5 days. The fall in CBF after the second intracisternal injection of blood was associated with a sustained 30% reduction in the diameters of the middle cerebral, posterior communicating, and basilar arteries. Acute blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg i.v.), 5 days after the second SAH, increased the diameters of the cerebral arteries, and CBF returned to control. These results indicate that the rats develop delayed vasospasm after induction of the dual-hemorrhage model of SAH and that blockade of the synthesis of 20-HETE fully reverses cerebral vasospasm in this model. They also implicate 20-HETE in the development and maintenance of delayed cerebral vasospasm.
Collapse
Affiliation(s)
- Kazuhiko Takeuchi
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
35
|
Li Y, Zhou C, Calvert JW, Colohan ART, Zhang JH. Multiple effects of hyperbaric oxygen on the expression of HIF-1 alpha and apoptotic genes in a global ischemia-hypotension rat model. Exp Neurol 2005; 191:198-210. [PMID: 15589527 DOI: 10.1016/j.expneurol.2004.08.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/20/2004] [Accepted: 08/31/2004] [Indexed: 11/22/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is a transcription factor specifically activated by hypoxia. Activation of proapoptotic caspase-9 and caspase-3 pathways, by binding with tumor suppressor p53, HIF-1alpha could lead to harmful actions such as apoptosis. We examined whether increasing oxygen levels by hyperbaric oxygen (HBO) offers neuroprotection, at least partially by suppression of HIF-1alpha and apoptotic genes. Male SD rats (n = 78) were randomly divided into 13 groups: 1 sham group, 6 groups of global ischemia-hypotension (GI), and 6 groups of HBO treatment after global ischemia-hypotension (GI + HBO). HBO (3 ATA for 2 h) was applied at 1 h after global ischemia-hypotension. Rats were sacrificed at 6, 12, 24, 48, and 96 h and 7 days. Global ischemia-hypotension (10 min ischemia, 30-35 mm Hg) produced a marked increase of HIF-1alpha expressions in the hippocampus and cortex at 6 h and peaked at 48-96 h. The expressions of p53, caspase-9, and caspase-3 were all increased in a similar time course. These molecular changes were accompanied by massive cell loss in the hippocampal regions and to a lesser degree in the cortex, with features of apoptosis. HBO treatment reduced expressions of HIF-1alpha, p53, caspase-9, and caspase-3 and decreased cell death. The protein levels of proapoptotic caspase-8 and antiapoptotic bcl-2 were increased after global ischemia-hypotension and HBO potentiated the expression of caspase-8 and decreased expression of bcl-2. These results indicate that HBO has multiple actions on apoptotic genes even though the overall effect of HBO was decreased HIF-1alpha expression and reduced apoptosis after global ischemia-hypotension.
Collapse
Affiliation(s)
- Yun Li
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | | | | | | | | |
Collapse
|
36
|
Türeyen K, Nazlioğlu HO, Alkan T, Kahveci N, Korfali E. Single or Multiple Small Subarachnoid Hemorrhages by Puncturing a Small Branch of the Rat Basilar Artery Causes Chronic Cerebral Vasospasm. Neurosurgery 2005; 56:382-90; discussion 382-90. [PMID: 15670386 DOI: 10.1227/01.neu.0000148004.61621.d2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 10/06/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study looked at the effects of single and multiple small subarachnoid hemorrhage (SAH) caused by puncturing a small branch of the basilar artery in rats. METHODS Rats were subjected to single SAH (n = 21), multiple SAH (n = 21), sham operation (n = 21), or no procedures (control group, n = 7). SAH was induced in rats by transclival puncture of a small branch of the basilar artery. In the multiple-SAH hemorrhage groups, three small hemorrhages were produced in the same artery at three different times (initial and 24 and 48 h). In the single-SAH groups, one small hemorrhage was produced. Measurements of local cerebral blood flow (LCBF) were made at the initial SAH procedure and at three different time points. Seven animals from each general grouping were killed on Days 4, 10, and 14 (after LCBF was measured). Three different levels of the basilar artery were examined in each animal. Luminal area and arterial wall thickness were measured, and the findings were compared with control and corresponding sham group findings. RESULTS LCBF dropped dramatically (by 40%) immediately after SAH and reached levels near baseline within 15 minutes (n = 42) (P < 0.001). LCBF continued to drop after initial SAH and reached the lowest level on Day 10 (P < 0.001) or Day 14 (P < 0.05). Significant luminal narrowing (P < 0.01) and thickening of the arterial wall (P < 0.01) were observed in both groups. CONCLUSION Single or multiple small SAHs produced by puncturing the basilar artery in the rat cause similar acute and chronic cerebral vasospasm.
Collapse
Affiliation(s)
- Kudret Türeyen
- Department of Neurosurgery, University of Süleyman Demirel, Isparta, Turkey, and Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | | | | | | | | |
Collapse
|
37
|
Satoh M, Tang J, Nanda A, Zhang JH. Heat shock proteins expression in brain stem after subarachnoid hemorrhage in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:477-82. [PMID: 14753490 DOI: 10.1007/978-3-7091-0651-8_98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The pathogenesis of brain damage after subarachnoid hemorrhage (SAH) especially at molecular or gene level remains unclear. We used complimentary deoxyribonucleic acid (cDNA) macroarray technique and compared gene expression in brain stem after experimental SAH in rats. The upregulation of several heat shock proteins (HSPs) demonstrated by cDNA array was further confirmed by Western blotting. The expressions of 9 genes were upregulated 30 minutes or 2 days after SAH. They included four upregulated HSPs: HSP90alpha, HSP60, HSP27, and HSP10. Western blotting demonstrated increases in the HSP27 and HSP10 proteins on Day 2. SAH enhanced the induction of several HSP mRNAs in the brainstems, even though the functions of these HSPs after SAH remain unclear.
Collapse
Affiliation(s)
- M Satoh
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
38
|
Zhou C, Li Y, Nanda A, Zhang JH. HBO suppresses Nogo-A, Ng-R, or RhoA expression in the cerebral cortex after global ischemia. Biochem Biophys Res Commun 2003; 309:368-76. [PMID: 12951059 DOI: 10.1016/j.bbrc.2003.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nogo-A, a myelin-associated neurite outgrowth inhibitory protein, binds with the Ng-R receptor to activate RhoA intracellular signals and inhibit the plasticity after CNS injury. We evaluated the effect of hyperbaric oxygen (HBO) on the expression of Nogo-A, Ng-R, and RhoA after transient global ischemia in a rat 2 vessel occlusion global ischemic model. Male SD rats (n=78) were randomly divided into 13 groups: 1 sham group, 6 groups of global ischemia, and 6 groups of HBO treatment after global ischemia. HBO (3ATA) was applied for 2 hr at 1 hr after global ischemia. Rats were sacrificed at 6, 12, 24, 48, and 96 hr and 7 days. Global ischemia (10 min) produced a marked increase of Nogo-A/B, Nogo-A, Ng-R, and RhoA expression. Immunohistochemistry showed increased Nogo-A/B and Nogo-A located in the myelin sheath of ischemic brain cortex. Ng-R expressed on the surface of neurons and their processes, and RhoA expressed inside the cytoplasm of neurons in ischemic brain. HBO significantly reduced neurological injury, decreased the levels of Nogo-A, Ng-R, and RhoA in ischemic injured cortex (p<0.05).
Collapse
Affiliation(s)
- Changman Zhou
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | | | | | | |
Collapse
|
39
|
Gules I, Satoh M, Nanda A, Zhang JH. Apoptosis, blood-brain barrier, and subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 86:483-7. [PMID: 14753491 DOI: 10.1007/978-3-7091-0651-8_99] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study was undertaken to investigate the role of apoptosis in the integrity of blood-brain barrier (BBB) in subarachnoid hemorrhage (SAH). BBB permeability changes were examined and found increased on day 7 in a double hemorrhage rat model using Evans blue dye. The BBB permeability increase is coincidental to brain microvascular endothelial cell apoptosis (expression of caspase-8 and -9) occurring on Day 7. However, caspase-8 and caspase-9 inhibitors failed to protect the BBB. Considering that treatment did not completely inhibit apoptosis in brain microvascular endothelial cells, higher doses, earlier and/or multiple applications, and, possibly, more potent caspase inhibitors may be needed.
Collapse
Affiliation(s)
- I Gules
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | |
Collapse
|
40
|
Gules I, Satoh M, Clower BR, Nanda A, Zhang JH. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol 2002; 283:H2551-9. [PMID: 12427599 DOI: 10.1152/ajpheart.00616.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A substantial number of rat models have been used to research subarachnoid hemorrhage-induced cerebral vasospasm; however, controversy exists regarding which method of selection is appropriate for this species. This study was designed to provide extensive information about the three most popular subarachnoid hemorrhage rat models: the endovascular puncture model, the single-hemorrhage model, and the double-hemorrhage model. In this study, the basilar artery and posterior communicating artery were chosen for histopathological examination and morphometric analysis. Both the endovascular puncture model and single-hemorrhage model developed significant degrees of vasospasm, which were less severe when compared with the double-hemorrhage model. The endovascular puncture model and double-hemorrhage model both developed more vasospasms in the posterior communicating artery than in the basilar artery. The endovascular puncture model has a markedly high mortality rate and high variability in bleeding volume. Overall, the present study showed that the double-hemorrhage model in rats is a more suitable tool with which to investigate mechanism and therapeutic approaches because it accurately correlates with the time courses for vasospasm in humans.
Collapse
Affiliation(s)
- Ilker Gules
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | | | |
Collapse
|