1
|
Crabtree JR, Mulenga CM, Tran K, Feinberg K, Santerre JP, Borschel GH. Biohacking Nerve Repair: Novel Biomaterials, Local Drug Delivery, Electrical Stimulation, and Allografts to Aid Surgical Repair. Bioengineering (Basel) 2024; 11:776. [PMID: 39199733 PMCID: PMC11352148 DOI: 10.3390/bioengineering11080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The regenerative capacity of the peripheral nervous system is limited, and peripheral nerve injuries often result in incomplete healing and poor outcomes even after repair. Transection injuries that induce a nerve gap necessitate microsurgical intervention; however, even the current gold standard of repair, autologous nerve graft, frequently results in poor functional recovery. Several interventions have been developed to augment the surgical repair of peripheral nerves, and the application of functional biomaterials, local delivery of bioactive substances, electrical stimulation, and allografts are among the most promising approaches to enhance innate healing across a nerve gap. Biocompatible polymers with optimized degradation rates, topographic features, and other functions provided by their composition have been incorporated into novel nerve conduits (NCs). Many of these allow for the delivery of drugs, neurotrophic factors, and whole cells locally to nerve repair sites, mitigating adverse effects that limit their systemic use. The electrical stimulation of repaired nerves in the perioperative period has shown benefits to healing and recovery in human trials, and novel biomaterials to enhance these effects show promise in preclinical models. The use of acellular nerve allografts (ANAs) circumvents the morbidity of donor nerve harvest necessitated by the use of autografts, and improvements in tissue-processing techniques may allow for more readily available and cost-effective options. Each of these interventions aid in neural regeneration after repair when applied independently, and their differing forms, benefits, and methods of application present ample opportunity for synergistic effects when applied in combination.
Collapse
Affiliation(s)
- Jordan R. Crabtree
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khoa Tran
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Konstantin Feinberg
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - J. Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON M5S 3G9, Canada
| | - Gregory H. Borschel
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Er-Rouassi H, Bakour M, Touzani S, Vilas-Boas M, Falcão S, Vidal C, Lyoussi B. Beneficial Effect of Bee Venom and Its Major Components on Facial Nerve Injury Induced in Mice. Biomolecules 2023; 13:680. [PMID: 37189427 PMCID: PMC10135545 DOI: 10.3390/biom13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Peripheral nerve injury (PNI) is a health problem that affects many people worldwide. This study is the first to evaluate the potential effect of bee venom (BV) and its major components in a model of PNI in the mouse. For that, the BV used in this study was analyzed using UHPLC. All animals underwent a distal section-suture of facial nerve branches, and they were randomly divided into five groups. Group 1: injured facial nerve branches without any treatment. Group 2: the facial nerve branches were injured, and the normal saline was injected similarly as in the BV-treated group. Group 3: injured facial nerve branches with local injections of BV solution. Group 4: injured facial nerve branches with local injections of a mixture of PLA2 and melittin. Group 5: injured facial nerve branches with local injection of betamethasone. The treatment was performed three times a week for 4 weeks. The animals were submitted to functional analysis (observation of whisker movement and quantification of nasal deviation). The vibrissae muscle re-innervation was evaluated by retrograde labeling of facial motoneurons in all experimental groups. UHPLC data showed 76.90 ± 0.13%, 11.73 ± 0.13%, and 2.01 ± 0.01%, respectively, for melittin, phospholipase A2, and apamin in the studied BV sample. The obtained results showed that BV treatment was more potent than the mixture of PLA2 and melittin or betamethasone in behavioral recovery. The whisker movement occurred faster in BV-treated mice than in the other groups, with a complete disappearance of nasal deviation two weeks after surgery. Morphologically, a normal fluorogold labeling of the facial motoneurons was restored 4 weeks after surgery in the BV-treated group, but no such restoration was ever observed in other groups. Our findings indicate the potential of the use of BV injections to enhance appropriate functional and neuronal outcomes after PNI.
Collapse
Affiliation(s)
- Hafsa Er-Rouassi
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Soumaya Touzani
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Soraia Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Catherine Vidal
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
5
|
Ceran F, Pilanci O, Ozel A, Ilbay G, Karabacak R, Kanter M, Ilbay K, Kuvat SV. Use of acellular dermal matrix in peripheral nerve reconstruction: an experimental study on rat sciatic nerve defect. J Plast Surg Hand Surg 2023; 57:445-452. [PMID: 36476277 DOI: 10.1080/2000656x.2022.2152824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with nerve tissue defects, the use of autologous nerve grafts is the standard method of treatment. Alternatives to autologous, nerve grafts have attracted the attention of reconstructive surgeons. In this study, the results of nerve repairs using acellular dermal matrix (ADM) in an experimental rat sciatic nerve defect model are presented. METHODS Thirty-six Sprague-Dawley rats were randomized into 5 groups: Group 1: control group, Group 2: negative control group (n = 6), Group 3: autologous nerve graft group (n = 10), Group 4: donor site entubulated with ADM group (n = 10); and Group 5: nerve graft entubulated with ADM group (n = 10). The animals in each group were evaluated for electrophysiologic functions, gastrocnemius muscle weight and histomorphology on the 3rd and 6th month. RESULTS The compound muscle action potential was observed to be distinctly lower in Groups 3, 4 and 5 in comparison to the control group. In Group 4, the gastrocnemius ratio (GCR) values on the 6th month were statistically significantly lower than the GCR values in Group 3 and Group 5, The histological scores and myelinated axonal counts in Group 5 were statistically significantly higher than the values in Group 3 and Group 4. CONCLUSION The results of this study showed that wrapping ADM around nerve grafts resulted in better outcomes with respect to nerve healing.
Collapse
Affiliation(s)
- Fatih Ceran
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medicalpark Hospital, Batman, Turkey
| | - Ozgur Pilanci
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Asuman Ozel
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Gul Ilbay
- Faculty of Medicine, Department of Physiology, Kocaeli University, Kocaeli, Turkey
| | - Rukiye Karabacak
- Faculty of Medicine, Department of Histology, Medeniyet University, Istanbul, Turkey
| | - Mehmet Kanter
- Faculty of Medicine, Department of Histology, Medeniyet University, Istanbul, Turkey
| | - Konuralp Ilbay
- Faculty of Medicine, Department of Neurosurgery, Kocaeli University, Kocaeli, Turkey
| | - Samet Vasfi Kuvat
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Liu Q, Deng X, Hou Z, Xu L, Zhang Y. Selective Repair of Motor Branches in the Femoral Nerve by Transferring the Motor Branches of Obturator Nerve: An Anatomical Feasibility Study. Ann Plast Surg 2023; 90:67-70. [PMID: 36534103 DOI: 10.1097/sap.0000000000003327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anterior branch of the obturator nerve transfer has been proven as an effective method for femoral nerve injuries, but the patient still has difficulty in rising and squatting, up and downstairs. Here, we presented a novel neurotization procedure of selectively repairing 3 motor branches of the femoral nerve by transferring motor branches of the obturator nerve in the thigh level and assessing its anatomical feasibility. METHODS Eight adult cadavers (16 thighs) were dissected. The nerve overlap distance between the gracilis branch and the rectus femoris (RF) branch, the adductor longus (AL) branch and the vastus medialis (VM) branch, as well as the adductor magnus (AM) branch and the vastus intermedius (VI) branch were measured. Also, the axon counts of the donor and recipient nerve were evaluated by histological evaluation. RESULTS In all specimens, nerve overlap of at least 2.1 cm was observed in all 16 dissected thighs between the donor and recipient nerve branches, and the repair appeared to be without tension. There is no significant difference in the axon counts between gracilis branch (598 ± 83) and the RF branch (709 ± 151). The axon counts of the AL branch (601 ± 93) was about half of axon counts of the VM branch (1423 ± 189), and the axon counts of AM branch (761 ± 110) was also about half of the VI branch (1649 ± 281). CONCLUSIONS This novel technique of the combined nerve transfers below the inguinal ligament, specifically the gracilis branch to the RF branch, the AL branch to the VM branch, and the AM branch to the VI branch, is anatomically feasible. It provides a promising alternative in the repair of femoral nerve injuries and an anatomical basis for the clinical application of motor branches of the obturator nerve transfer to repair the motor portion of the injured femoral nerve.
Collapse
Affiliation(s)
- Qing Liu
- From the Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaobing Deng
- Department of Hand Surgery, Jiayou Shuguang Orthopaedic Hospital, Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Zhiping Hou
- From the Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
7
|
Ardouin L, Lecoq FA, Verstreken F, Vanmierlo B, Erhard L, Locquet V, Barnouin L, Bosc J, Obert L. Nerve regeneration conduit from inverted human umbilical cord vessel in the treatment of proper palmar digital nerve sections. HAND SURGERY & REHABILITATION 2022; 41:675-680. [PMID: 36210047 DOI: 10.1016/j.hansur.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Treatment of digital nerve injuries, particularly in case of a gap, is challenging. Recovery of finger sensitivity is often incomplete and can impair personal and occupational activity. The need for better nerve regeneration has given rise to alternative treatments such as nerve conduits. This study aimed to evaluate the safety and efficacy of a conduit of freeze-dried inverted human umbilical cord vessel for regeneration in digital nerve section. Twenty-three patients with a mean nerve gap of 6.11 mm (range 2-30 mm and static 2-point discrimination (s2PD) > 15 mm underwent surgical repair of digital nerve section using a nerve regeneration conduit. The primary endpoint was recovery of sensitivity after conduit implantation. Secondary endpoints comprised progression of pain, functional symptoms, pressure threshold, hand-specific symptoms and disabilities, and restored innervation. Mean follow-up was 10.1 ± 4.1 months (range 1-14 months). Sensitivity recovered progressively in the months following implantation. There was a mean decrease of 8.54 mm in s2PD between baseline and last follow-up (p < 0.001). Complete innervation recovered in 83.3% of cases at last follow-up. Pressure threshold and hand-related quality of life improved significantly and symptoms due to nerve sectioning (pain, cold intolerance, hypoesthesia, hyperesthesia) resolved almost completely. There were no safety issues related to the nerve conduit. These results indicate that freeze-dried inverted human umbilical vessels can be a safe and effective option as conduit for digital nerve regeneration.
Collapse
Affiliation(s)
- L Ardouin
- Institut de la Main Nantes-Atlantique, Elsan Santé Atlantique, AV Claude Bernard, 44800 Saint Herblain, France
| | - F-A Lecoq
- Institut de la Main Nantes-Atlantique, Elsan Santé Atlantique, AV Claude Bernard, 44800 Saint Herblain, France
| | - F Verstreken
- AZ Monica, Florent Pauwelslei 1, 2100 Antwerp, Belgium
| | - B Vanmierlo
- AZ Delta, Deltalaan 1, 8800 Roeselare, Belgium
| | - L Erhard
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Av. Condorcet, 69100 Villeurbanne, France
| | - V Locquet
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Av. Condorcet, 69100 Villeurbanne, France
| | - L Barnouin
- Tissue Bank of France (TBF), 6 rue d'Italie, 69780 Mions, France.
| | - J Bosc
- Tissue Bank of France (TBF), 6 rue d'Italie, 69780 Mions, France
| | - L Obert
- CHU de Besançon Hôpital Jean Minjoz, 3 Bd. Alexandre Fleming, 25000 Besançon, France
| |
Collapse
|
8
|
Multichannel nerve conduit based on chitosan derivates for peripheral nerve regeneration and Schwann cell survival. Carbohydr Polym 2022; 301:120327. [DOI: 10.1016/j.carbpol.2022.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
9
|
Roca FG, Santos LG, Roig MM, Medina LM, Martínez-Ramos C, Pradas MM. Novel Tissue-Engineered Multimodular Hyaluronic Acid-Polylactic Acid Conduits for the Regeneration of Sciatic Nerve Defect. Biomedicines 2022; 10:biomedicines10050963. [PMID: 35625700 PMCID: PMC9138968 DOI: 10.3390/biomedicines10050963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The gold standard for the treatment of peripheral nerve injuries, the autograft, presents several drawbacks, and engineered constructs are currently suitable only for short gaps or small diameter nerves. Here, we study a novel tissue-engineered multimodular nerve guidance conduit for the treatment of large nerve damages based in a polylactic acid (PLA) microfibrillar structure inserted inside several co-linear hyaluronic acid (HA) conduits. The highly aligned PLA microfibers provide a topographical cue that guides axonal growth, and the HA conduits play the role of an epineurium and retain the pre-seeded auxiliary cells. The multimodular design increases the flexibility of the device. Its performance for the regeneration of a critical-size (15 mm) rabbit sciatic nerve defect was studied and, after six months, very good nerve regeneration was observed. The multimodular approach contributed to a better vascularization through the micrometrical gaps between HA conduits, and the pre-seeded Schwann cells increased axonal growth. Six months after surgery, a cross-sectional available area occupied by myelinated nerve fibers above 65% at the central and distal portions was obtained when the multimodular device with pre-seeded Schwann cells was employed. The results validate the multi-module approach for the regeneration of large nerve defects and open new possibilities for surgical solutions in this field.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Luis Gil Santos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Manuel Mata Roig
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Lara Milian Medina
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Unitat Predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-963-877000
| |
Collapse
|
10
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
11
|
Siemionow M, Strojny MM, Kozlowska K, Brodowska S, Grau-Kazmierczak W, Cwykiel J. Application of Human Epineural Conduit Supported with Human Mesenchymal Stem Cells as a Novel Therapy for Enhancement of Nerve Gap Regeneration. Stem Cell Rev Rep 2021; 18:642-659. [PMID: 34787795 PMCID: PMC8930890 DOI: 10.1007/s12015-021-10301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
Various therapeutic methods have been suggested to enhance nerve regeneration. In this study, we propose a novel approach for enhancement of nerve gap regeneration by applying human epineural conduit (hEC) supported with human mesenchymal stem cells (hMSC), as an alternative to autograft repair. Restoration of 20 mm sciatic nerve defect with hEC created from human sciatic nerve supported with hMSC was tested in 4 experimental groups (n = 6 each) in the athymic nude rat model (Crl:NIH-Foxn1rnu): 1 - No repair control, 2 - Autograft control, 3 - Matched diameter hEC filled with 1 mL saline, 4 - Matched diameter hEC supported with 3 × 106 hMSC. Assessments included: functional tests: toe-spread and pinprick, regeneration assessment by immunofluorescence staining: HLA-1, HLA-DR, NGF, GFAP, Laminin B, S-100, VEGF, vWF and PKH26 labeling; histomorphometric analysis of myelin thickness, axonal density, fiber diameter and myelinated nerve fibers percentage; Gastrocnemius Muscle Index (GMI) and muscle fiber area ratio. Best sensory and motor function recovery, as well as GMI and muscle fiber area ratio, were observed in the autograft group, and were comparable to the hEC with hMSC group (p = 0.038). Significant improvements of myelin thickness (p = 0.003), fiber diameter (p = 0.0296), and percentage of myelinated fibers (p < 0.0001) were detected in hEC group supported with hMSC compared to hEC with saline controls. At 12-weeks after nerve gap repair, hEC combined with hMSC revealed increased expression of neurotrophic and proangiogenic factors, which corresponded with improvement of function comparable with the autograft control. Application of our novel hEC supported with hMSC provides a potential alternative to the autograft nerve repair.
Collapse
Affiliation(s)
- Maria Siemionow
- Poznan University of Medical Sciences, Poznan, Poland. .,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
| | - Marcin Michal Strojny
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katarzyna Kozlowska
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
13
|
Ramburrun P, Kumar P, Ndobe E, Choonara YE. Gellan-Xanthan Hydrogel Conduits with Intraluminal Electrospun Nanofibers as Physical, Chemical and Therapeutic Cues for Peripheral Nerve Repair. Int J Mol Sci 2021; 22:ijms222111555. [PMID: 34768986 PMCID: PMC8583980 DOI: 10.3390/ijms222111555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Optimal levels of functional recovery in peripheral nerve injuries remain elusive due to the architectural complexity of the neuronal environment. Commercial nerve repair conduits lack essential guidance cues for the regenerating axons. In this study, the regenerative potential of a biosimulated nerve repair system providing three types of regenerative cues was evaluated in a 10 mm sciatic nerve-gap model over 4 weeks. A thermo-ionically crosslinked gellan-xanthan hydrogel conduit loaded with electrospun PHBV-magnesium oleate-N-acetyl-cysteine (PHBV-MgOl-NAC) nanofibers was assessed for mechanical properties, nerve growth factor (NGF) release kinetics and PC12 viability. In vivo functional recovery was based on walking track analysis, gastrocnemius muscle mass and histological analysis. As an intraluminal filler, PHBV-MgOl-NAC nanofibers improved matrix resilience, deformation and fracture of the hydrogel conduit. NGF release was sustained over 4 weeks, governed by Fickian diffusion and Case-II relaxational release for the hollow conduit and the nanofiber-loaded conduit, respectively. The intraluminal fibers supported PC12 proliferation by 49% compared to the control, preserved up to 43% muscle mass and gradually improved functional recovery. The combined elements of physical guidance (nanofibrous scaffolding), chemical cues (N-acetyl-cysteine and magnesium oleate) and therapeutic cues (NGF and diclofenac sodium) offers a promising strategy for the regeneration of severed peripheral nerves.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.R.); (P.K.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.R.); (P.K.)
| | - Elias Ndobe
- Department of Plastic and Reconstructive Surgery, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.R.); (P.K.)
- Correspondence: ; Tel.: +27-11-717-2052
| |
Collapse
|
14
|
Higuera GA, Ramos T, Gloria A, Ambrosio L, Di Luca A, Pechkov N, de Wijn JR, van Blitterswijk CA, Moroni L. PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:704185. [PMID: 34595158 PMCID: PMC8476768 DOI: 10.3389/fbioe.2021.704185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The advantages of additive manufactured scaffolds, as custom-shaped structures with a completely interconnected and accessible pore network from the micro- to the macroscale, are nowadays well established in tissue engineering. Pore volume and architecture can be designed in a controlled fashion, resulting in a modulation of scaffold’s mechanical properties and in an optimal nutrient perfusion determinant for cell survival. However, the success of an engineered tissue architecture is often linked to its surface properties as well. The aim of this study was to create a family of polymeric pastes comprised of poly(ethylene oxide therephthalate)/poly(butylene terephthalate) (PEOT/PBT) microspheres and of a second biocompatible polymeric phase acting as a binder. By combining microspheres with additive manufacturing technologies, we produced 3D scaffolds possessing a tailorable surface roughness, which resulted in improved cell adhesion and increased metabolic activity. Furthermore, these scaffolds may offer the potential to act as drug delivery systems to steer tissue regeneration.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Tiago Ramos
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Andrea Di Luca
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Nicholas Pechkov
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Joost R de Wijn
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Yang S, Zhu J, Lu C, Chai Y, Cao Z, Lu J, Zhang Z, Zhao H, Huang YY, Yao S, Kong X, Zhang P, Wang X. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater 2021; 8:529-544. [PMID: 34541418 PMCID: PMC8435993 DOI: 10.1016/j.bioactmat.2021.05.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Nerve guidance conduits with hollow lumen fail to regenerate critical-sized peripheral nerve defects (15 mm in rats and 25 mm in humans), which can be improved by a beneficial intraluminal microenvironment. However, individual cues provided by intraluminal filling materials are inadequate to eliminate the functional gap between regenerated nerves and normal nerves. Herein, an aligned fibrin/functionalized self-assembling peptide (AFG/fSAP) interpenetrating nanofiber hydrogel that exerting synergistic topographical and biochemical cues for peripheral nerve regeneration is constructed via electrospinning and molecular self-assembly. The hydrogel possesses an aligned structure, high water content, appropriate mechanical properties and suitable biodegradation capabilities for nerve repair, which enhances the alignment and neurotrophin secretion of primary Schwann cells (SCs) in vitro, and successfully bridges a 15-mm sciatic nerve gap in rats in vivo. The rats transplanted with the AFG/fSAP hydrogel exhibit satisfactory morphological and functional recovery in myelinated nerve fibers and innervated muscles. The motor function recovery facilitated by the AFG/fSAP hydrogel is comparable with that of autografts. Moreover, the AFG/fSAP hydrogel upregulates the regeneration-associated gene expression and activates the PI3K/Akt and MAPK signaling pathways in the regenerated nerve. Altogether, the AFG/fSAP hydrogel represents a promising approach for peripheral nerve repair through an integration of structural guidance and biochemical stimulation. A novel aligned interpenetrating nanofiber hydrogel is first constructed for peripheral nerve regeneration. The aligned hydrogel presents synergistic topographical and biochemical cues for peripheral nerve regeneration. Nerve conduits filled with the aligned hydrogel can repair the long-distance sciatic nerve defects in 12 weeks. The function recovery facilitated by the aligned hydrogel is comparable with that of autografts. The aligned hydrogel upregulates regeneration-related genes and activates the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China.,Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, 310016, PR China
| | - Changfeng Lu
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Ministry of Education, Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yi Chai
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jiaju Lu
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Yuan Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xiangdong Kong
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Peixun Zhang
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Ministry of Education, Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, 100044, PR China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
16
|
Lizarraga‐Valderrama LR, Ronchi G, Nigmatullin R, Fregnan F, Basnett P, Paxinou A, Geuna S, Roy I. Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioeng Transl Med 2021; 6:e10223. [PMID: 34589600 PMCID: PMC8459605 DOI: 10.1002/btm2.10223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/01/2023] Open
Abstract
Nerve guidance conduits (NGCs) are used as an alternative to the "gold standard" nerve autografting, preventing the need for surgical intervention required to harvest autologous nerves. However, the regeneration outcomes achieved with the current NGCs are only comparable with autografting when the gap is short (less than 10 mm). In the present study, we have developed NGCs made from a blend of polyhydroxyalkanoates, a family of natural resorbable polymers. Hollow NGCs made from a 75:25 poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blend (PHA-NGCs) were manufactured using dip-molding. These PHA-NGCs showed appropriate flexibility for peripheral nerve regeneration. In vitro cell studies performed using RT4-D6P2T rat Schwann cell line confirmed that the material is capable of sustaining cell proliferation and adhesion. PHA-NGCs were then implanted in vivo to repair 10 mm gaps of the median nerve of female Wistar rats for 12 weeks. Functional evaluation of the regenerated nerve using the grasping test showed that PHA-NGCs displayed similar motor recovery as the autograft, starting from week 7. Additionally, nerve cross-sectional area, density and number of myelinated cells, as well as axon diameter, fiber diameter, myelin thickness and g-ratio obtained using the PHA-NGCs were found comparable to an autograft. This preclinical data confirmed that the PHA-NGCs are indeed highly promising candidates for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Lorena R. Lizarraga‐Valderrama
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
- School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Giulia Ronchi
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO)University of TurinTurinItaly
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
- Bristol Composites Institute (ACCIS)University of BristolBristolUK
| | - Federica Fregnan
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO)University of TurinTurinItaly
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
| | - Alexandra Paxinou
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
| | - Stefano Geuna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO)University of TurinTurinItaly
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
17
|
Ruiz IM, Vilariño-Feltrer G, Mnatsakanyan H, Vallés-Lluch A, Monleón Pradas M. Development and evaluation of hyaluronan nanocomposite conduits for neural tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2227-2245. [PMID: 34396936 DOI: 10.1080/09205063.2021.1963930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hyaluronan-based hydrogels are among the most promising neural tissue engineering materials because of their biocompatibility and the immunomodulation capabilities of their degradation byproducts. Despite these features, the problems related to their handling and mechanical properties have not yet been solved. In the present work it is proposed to address these drawbacks through the development of nanohybrid materials in which different nanometric phases (carbon nanotubes, mesoporous silica nanoparticles) are embedded in a crosslinked hyaluronan matrix. These nanohybrid matrices were next processed in the shape of cylindrical conduits aimed at promoting and improving neural stem cell differentiation and regeneration in neural tracts. These constructs could be of use specifically for peripheral nerve regeneration. Results of the study show that the inclusion of the different phases improved physico-chemical features of the gel such as its relative electrical permittivity, water intake and elastic modulus, giving hints on how the nanometric phase interacts with hyaluronan in the composite as well as for their potential in combined therapeutic approaches. Regarding the in vitro biological behavior of the hybrid tubular scaffolds, an improved early cell adhesion and survival of Schwann cells in their lumen was found, as compared to conduits made of pure hyaluronan gels. Furthermore, the differentiation and survival of neural precursors was not compromised, despite alleged safety concerns.
Collapse
Affiliation(s)
- Ismael Mullor Ruiz
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, València, Spain.,Department of Bioengineering, Imperial College London, Royal School of Mines, London, UK
| | | | - Hayk Mnatsakanyan
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, València, Spain
| | - Ana Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, València, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, València, Spain
| | - Manuel Monleón Pradas
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, València, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, València, Spain
| |
Collapse
|
18
|
Zhang Q, Zhang Z, Liang Q, Shi Q, Zhu M, Lee C. All in One, Self-Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004727. [PMID: 34194933 PMCID: PMC8224437 DOI: 10.1002/advs.202004727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Indexed: 05/21/2023]
Abstract
Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all-in-one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L-shaped APTN is demonstrated for the application of single-electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low-cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human-machine interface, and robotics applications.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of Singapore5 Engineering Drive 1Singapore117608Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of Singapore5 Engineering Drive 1Singapore117608Singapore
- National University of Singapore Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
| | - Qijie Liang
- Department of PhysicsNational University of Singapore2 Science Drive 3Singapore117551Singapore
| | - Qiongfeng Shi
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of Singapore5 Engineering Drive 1Singapore117608Singapore
- National University of Singapore Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
- Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid ElectronicsNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
| | - Minglu Zhu
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of Singapore5 Engineering Drive 1Singapore117608Singapore
- National University of Singapore Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
- Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid ElectronicsNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of Singapore5 Engineering Drive 1Singapore117608Singapore
- National University of Singapore Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
- Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid ElectronicsNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- NUS Graduate School for Integrative Science and Engineering (NGS)National University of SingaporeSingapore117456Singapore
| |
Collapse
|
19
|
Li A, Pereira C, Hill EE, Vukcevich O, Wang A. In vitro, In vivo and Ex vivo Models for Peripheral Nerve Injury and Regeneration. Curr Neuropharmacol 2021; 20:344-361. [PMID: 33827409 PMCID: PMC9413794 DOI: 10.2174/1570159x19666210407155543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Peripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.
Collapse
Affiliation(s)
- Andrew Li
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Clifford Pereira
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Elise Eleanor Hill
- University of California Davis Ringgold standard institution - Department of Surgery Sacramento, California. United States
| | - Olivia Vukcevich
- University of California Davis Ringgold standard institution - Surgery & Biomedical Engineering Sacramento, California. United States
| | - Aijun Wang
- University of California Davis - Surgery & Biomedical Engineering 4625 2nd Ave., Suite 3005 Sacramento Sacramento California 95817. United States
| |
Collapse
|
20
|
Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
- Student Research Committee Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Fornaro M, Marcus D, Rattin J, Goral J. Dynamic Environmental Physical Cues Activate Mechanosensitive Responses in the Repair Schwann Cell Phenotype. Cells 2021; 10:cells10020425. [PMID: 33671410 PMCID: PMC7922665 DOI: 10.3390/cells10020425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Schwann cells plastically change in response to nerve injury to become a newly reconfigured repair phenotype. This cell is equipped to sense and interact with the evolving and unusual physical conditions characterizing the injured nerve environment and activate intracellular adaptive reprogramming as a consequence of external stimuli. Summarizing the literature contributions on this matter, this review is aimed at highlighting the importance of the environmental cues of the regenerating nerve as key factors to induce morphological and functional changes in the Schwann cell population. We identified four different microenvironments characterized by physical cues the Schwann cells sense via interposition of the extracellular matrix. We discussed how the physical cues of the microenvironment initiate changes in Schwann cell behavior, from wrapping the axon to becoming a multifunctional denervated repair cell and back to reestablishing contact with regenerated axons.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
- Correspondence: ; Tel.: +001-630-515-6055
| | - Dominic Marcus
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Jacob Rattin
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| |
Collapse
|
22
|
Effective decellularization of human nerve matrix for regenerative medicine with a novel protocol. Cell Tissue Res 2021; 384:167-177. [PMID: 33471198 DOI: 10.1007/s00441-020-03317-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Injuries to the peripheral nerves represent a frequent cause of permanent disability in adults. The repair of large nerve lesions involves the use of autografts, but they have several inherent limitations. Overcoming these limitations, the use of decellularized nerve matrix has emerged as a promising treatment in tissue regenerative medicine. Here, we generate longer human decellularized nerve segments with a novel decellularization method, using nonionic, zwitterionic, and enzymatic incubations. Efficiency of decellularization was measured by DNA quantification and cell remnant analysis (myelin, S100, neurofilament). The evaluation of the extracellular matrix (collagen, laminin, and glycosaminoglycans) preservation was carried out by enzyme-linked immunosorbent assay (ELISA) or biochemical methods, along with histological and immunofluorescence analysis. Moreover, biomechanical properties and cytocompatibility were tested. Results showed that the decellularized nerves generated with this protocol have a concentration of DNA below the threshold of 50 ng/mg of dry tissue. Furthermore, myelin, S100, and MHCII proteins were absent, although some neurofilament remnants could be observed. Moreover, extracellular matrix proteins were well maintained, as well as the biomechanical properties, and the decellularized nerve matrix did not generate cytotoxicity. These results show that our method is effective for the generation of decellularized human nerve grafts. The generation of longer decellularized nerve segments would allow the understanding of the regenerative neurobiology after nerve injuries in both clinical assays and bigger animal models. Effective decellularization of human nerve matrix for regenerative medicine with a novel protocol. Combination of zwitterionic, non-ionic detergents, hyperosmotic solution and nuclease enzyme treatment remove cell remnants, maintain collagen, laminin and biomechanics without generating cytotoxic leachables.
Collapse
|
23
|
Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A body of evidence indicates that peripheral nerves have an extraordinary yet limited capacity to regenerate after an injury. Peripheral nerve injuries have confounded professionals in this field, from neuroscientists to neurologists, plastic surgeons, and the scientific community. Despite all the efforts, full functional recovery is still seldom. The inadequate results attained with the "gold standard" autograft procedure still encourage a dynamic and energetic research around the world for establishing good performing tissue-engineered alternative grafts. Resourcing to nerve guidance conduits, a variety of methods have been experimentally used to bridge peripheral nerve gaps of limited size, up to 30-40 mm in length, in humans. Herein, we aim to summarize the fundamentals related to peripheral nerve anatomy and overview the challenges and scientific evidences related to peripheral nerve injury and repair mechanisms. The most relevant reports dealing with the use of both synthetic and natural-based biomaterials used in tissue engineering strategies when treatment of nerve injuries is envisioned are also discussed in depth, along with the state-of-the-art approaches in this field.
Collapse
|
24
|
Wang J, Cheng Y, Wang H, Wang Y, Zhang K, Fan C, Wang H, Mo X. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater 2020; 117:180-191. [PMID: 33007489 DOI: 10.1016/j.actbio.2020.09.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Development of a functional nerve conduit to replace autografts remains a significant challenge particularly considering the compositional complexity and structural hierarchy of native peripheral nerves. In the present study, a multiscale strategy was adopted to fabricate 3D biomimetic nerve conduit from Antheraea pernyi silk fibroin (ApF)/(Poly(L-lactic acid-co-caprolactone)) (PLCL)/graphene oxide (GO) (ApF/PLCL/GO) nanofibers via nanofiber dispersion, template-molding, freeze-drying and crosslinking. The resultant conduits exhibit parallel multichannels (ϕ = 125 µm) surrounded by biomimetic fibrous fragments with tailored degradation rate and improved mechanical properties in comparison with the scaffold without GO. In vitro studies showed that such 3D biomimetic nerve scaffolds had the ability to offer an effective guiding interface for neuronal cell growth. Furthermore, these conduits showed a similarity to autografts in vivo repairing sciatic nerve defects based on a series of analysis (walking track, triceps weight, morphogenesis, vascularization, axonal regrowth and myelination). The conduits almost completely degraded within 12 weeks. These findings demonstrate that the 3D hierarchical nerve guidance conduit (NGC) with fascicle-like structure have great potential for peripheral nerve repair.
Collapse
|
25
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Wang JP, Liao YT, Wu SH, Chiang ER, Hsu SH, Tseng TC, Hung SC. Mesenchymal stem cells from a hypoxic culture improve nerve regeneration. J Tissue Eng Regen Med 2020; 14:1804-1814. [PMID: 32976700 DOI: 10.1002/term.3136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Repairing the peripheral nerves following a segmental defect injury remains surgically challenging. Because of some disadvantages of nerve grafts, nerve regeneration, such as conduits combined with bone marrow-derived mesenchymal stem cells (BMSCs), may serve as an alternative. BMSCs expand under hypoxic conditions, decrease in senescence, and increase in proliferation and differentiation potential into the bone, fat, and cartilage. The purpose of this study was to investigate whether BMSCs increased the neuronal differentiation potential following expansion under hypoxic conditions. Isolated human BMSCs (hBMSCs) expand under hypoxia or normoxia, and neuronal differentiation proceeds under normoxia. in vitro tests revealed hypoxia culture enhanced the RNA and protein expression of neuronal markers. The electrophysiology of hBMSC-differentiated neuron-like cells was also enhanced by the hypoxia culturing. Our animal model indicated that the potential treatment of hypoxic rat BMSCs (rBMSCs) was better than that of normoxic rBMSCs because the conduit with the hypoxic rBMSCs injection demonstrated the highest recovery rate of gastrocnemius muscle weights. There were more toluidine blue-stained myelinated nerve fibers in the hypoxic rBMSCs group than in the normoxic group. To sum up, BMSCs cultured under hypoxia increased the potential of neuronal differentiation both in vivo and in vitro.
Collapse
Affiliation(s)
- Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Hsien Wu
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Graduate Institute of New Drug Development, Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Uranues S, Bretthauer G, Tomasch G, Rafolt D, Nagele-Moser D, Berghold A, Kleinert R, Justich I, Waldert J, Koch H. A New Synthetic Conduit for the Treatment of Peripheral Nerve Injuries. World J Surg 2020; 44:3373-3382. [PMID: 32514775 PMCID: PMC7458941 DOI: 10.1007/s00268-020-05620-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Peripheral nerve defects (PND) often cause lifelong physical disability, and the available treatment options are often not satisfactory. PND are usually bridged with an autologous nerve transplant or a nerve guidance conduit (NGC), when coaptation as preferred technique is not possible. The aim of this experimental study was to determine the effectiveness of a novel NGC for regeneration in the treatment of PND. MATERIALS AND METHODS A conduit made of gelatin with an innovative interior structure was tested for the repair of a 6-mm gap versus direct microsurgical suture repair without gap. RESULTS We found that bridging the defect with this conduit was as effective as direct microsurgical coaptation without a defect. CONCLUSIONS This nerve conduit, effective in bridging neural defects, appears as an alternative to autologous nerve grafts, avoiding the problems related to nerve graft harvesting, host-donor differences in diameter, mismatches in number and pattern of fascicles, cross-sectional shape and area, and morbidity of the donor area.
Collapse
Affiliation(s)
- Selman Uranues
- Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.
| | - Georg Bretthauer
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gordana Tomasch
- Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Doris Nagele-Moser
- Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036, Graz, Austria
| | - Reinhold Kleinert
- Institute of Pathology, Medical University of Graz, 8036, Graz, Austria
| | - Ivo Justich
- Clinical Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Jörg Waldert
- State Hospital for Neurology and Psychiatrics, 8055, Graz, Austria
| | - Horst Koch
- Clinical Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036, Graz, Austria
| |
Collapse
|
28
|
Micro-grooved nerve guidance conduits combined with microfiber for rat sciatic nerve regeneration. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
30
|
Cheng Z, Shen Y, Qian T, Yi S, He J. Protein phosphorylation profiling of peripheral nerve regeneration after autologous nerve grafting. Mol Cell Biochem 2020; 472:35-44. [PMID: 32529497 DOI: 10.1007/s11010-020-03781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
Abstract
Autologous nerve grafting is the golden standard therapeutic approach of peripheral nerve injury. However, the clinical effect of autologous nerve grafting is still unsatisfying. To achieve better clinical functional recovery, it is of an impending need to expand our understanding of the dynamic cellular and molecular changes after nerve transection and autologous nerve transplantation. To address this aim, in the current study, rats were subjected to sciatic nerve transection and autologous nerve grafting. Rat sciatic nerve segments were collected at 4, 7, and 14 days after surgery and subjected to antibody array analysis to determine phosphoprotein profiling patterns. Compared with rats that underwent sham surgery, a total of 48, 19, and 75 differentially expressed phosphoproteins with fold changes > 2 or < -2 were identified at 4, 7, and 14 days after autologous nerve grafting, respectively. Several phosphoproteins, including STAM2 (Phospho-Tyr192) and Tau (Phospho-Ser422), were found to be differentially expressed at multiple time points, suggesting the importance of the phosphorylation of these proteins. Western blot validation of the expression patterns of STAM2 (Phospho-Tyr192) indicated the accuracy of antibody array assay. Bioinformatic analysis of these differentially expressed proteins suggested that cellular behavior and organ morphology were significantly involved biological functions while cell behavior and immune response-related signaling pathways were significantly involved canonical signaling pathways. These outcomes contributed to the illumination of the molecular mechanisms underlying autologous nerve grafting from the phosphoprotein profiling perspective.
Collapse
Affiliation(s)
- Zhangchun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
- College of Medicine, Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
31
|
Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, Wang L. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36860-36872. [PMID: 32649170 DOI: 10.1021/acsami.0c08457] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peripheral nerve injury usually leads to poor outcomes such as painful neuropathies and disabilities. Autogenous nerve grafting is the current gold standard; however, the limited source of a donor nerve remains a problem. Numerous tissue engineering nerve guidance conduits have been developed as substitutes for autografts. However, a few conduits can achieve the reparative effect equivalent to autografts. Here, we report for the development and application of a carbon nanotube (CNT)/sericin nerve conduit with electrical conductivity and suitable mechanical properties for nerve repair. This CNT/sericin conduit possesses favorable properties including biocompatibility, biodegradability, porous microarchitecture, and suitable swelling property. We thus applied this conduit for bridging a 10 mm gap defect of a transected sciatic nerve combined with electrical stimulation (ES) in a rat injury model. By the end of 12 weeks, we observed that the CNT/sericin conduit combined with electrical stimulation could effectively promote both structural repair and functional recovery comparable to those of the autografts, evidenced by the morphological and histological analyses, electrophysiological responses, functional studies, and target muscle reinnervation evaluations. These findings suggest that this electric conductive CNT/sericin conduit combined with electrical stimulation may have the potential to serve as a new alternative for the repair of transected peripheral nerves.
Collapse
Affiliation(s)
- Xiaolin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Yang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongjian Xie
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E1637. [PMID: 32717878 PMCID: PMC7465920 DOI: 10.3390/polym12081637] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fabrication of nerve conduits for perfectly repairing or replacing damaged peripheral nerve is an urgent demand worldwide, but it is also a formidable clinical challenge. In the last decade, with the rapid development of manufacture technologies, 3D printing and bioprinting have been becoming remarkable stars in the field of neural engineering. In this review, we explore that the biomaterial inks (hydrogels, thermoplastic, and thermoset polyesters and composite) and bioinks have been selected for 3D printing and bioprinting of peripheral nerve conduits. This review covers 3D manufacturing technologies, including extrusion printing, inkjet printing, stereolithography, and bioprinting with inclusion of cells, bioactive molecules, and drugs. Finally, an outlook on the future directions of 3D printing and 4D printing in customizable nerve therapies is presented.
Collapse
Affiliation(s)
- Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
33
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
34
|
Jaswal R, Shrestha S, Shrestha BK, Kumar D, Park CH, Kim CS. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111213. [PMID: 32806222 DOI: 10.1016/j.msec.2020.111213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Herein, we report the bioactivity of monodispersed nanosized reduced graphene oxide (RGO) enfolded gold nanoparticles (AuNPs) engineered polycaprolactone (PCL) based electrospun composite scaffolds. The 2D patterns of PCL based nanofibers prepared by the homogenous distribution of RGO-AuNPs exhibited unique topological and biological features such as mechanical properties, porous structure, large surface area, high electrical conductivity, biodegradability, and resemble the natural extracellular matrix (ECM) that supports the adhesion, growth, proliferation, and differentiation of stem cells. The prepared composite nanofibers based scaffolds containing RGO-AuNPs accelerated neuronal cell functions and confirmed that the optimized concentration showed cytocompatibility to PC12 and S42 cells. The 0.0005 wt% loading of RGO-AuNPs on PCL has a huge impact on neurite growth which leads to an almost one-fold increase in neurite length growth. The present study provides a new strategic design of highly efficient scaffolds that have a significant direct impact on cell activity and could be a potential bioimplant for peripheral nerve repair.
Collapse
Affiliation(s)
- Richa Jaswal
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Dinesh Kumar
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
35
|
Katiyar KS, Struzyna LA, Morand JP, Burrell JC, Clements B, Laimo FA, Browne KD, Kohn J, Ali Z, Ledebur HC, Smith DH, Cullen DK. Tissue Engineered Axon Tracts Serve as Living Scaffolds to Accelerate Axonal Regeneration and Functional Recovery Following Peripheral Nerve Injury in Rats. Front Bioeng Biotechnol 2020; 8:492. [PMID: 32523945 PMCID: PMC7261940 DOI: 10.3389/fbioe.2020.00492] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Strategies to accelerate the rate of axon regeneration would improve functional recovery following peripheral nerve injury, in particular for cases involving segmental nerve defects. We are advancing tissue engineered nerve grafts (TENGs) comprised of long, aligned, centimeter-scale axon tracts developed by the controlled process of axon "stretch-growth" in custom mechanobioreactors. The current study used a rat sciatic nerve model to investigate the mechanisms of axon regeneration across nerve gaps bridged by TENGs as well as the extent of functional recovery compared to nerve guidance tubes (NGT) or autografts. We established that host axon growth occurred directly along TENG axons, which mimicked the action of "pioneer" axons during development by providing directed cues for accelerated outgrowth. Indeed, axon regeneration rates across TENGs were 3-4 fold faster than NGTs and equivalent to autografts. The infiltration of host Schwann cells - traditional drivers of peripheral axon regeneration - was also accelerated and progressed directly along TENG axons. Moreover, TENG repairs resulted in functional recovery levels equivalent to autografts, with both several-fold superior to NGTs. These findings demonstrate that engineered axon tracts serve as "living scaffolds" to guide host axon outgrowth by a new mechanism - which we term "axon-facilitated axon regeneration" - that leads to enhanced functional recovery.
Collapse
Affiliation(s)
- Kritika S. Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
| | - Laura A. Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph P. Morand
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Basak Clements
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Franco A. Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Bojanic C, To K, Zhang B, Mak C, Khan WS. Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration. World J Stem Cells 2020; 12:288-302. [PMID: 32399137 PMCID: PMC7202926 DOI: 10.4252/wjsc.v12.i4.288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peripheral nerve injury can occur as a result of trauma or disease and carries significant morbidity including sensory and motor loss. The body has limited ability for nerve regeneration and functional recovery. Left untreated, nerve lesions can cause lifelong disability. Traditional treatment options such as neurorrhaphy and neurolysis have high failure rates. Surgical reconstruction with autograft carries donor site morbidity and often provide suboptimal results. Mesenchymal stem cells (MSCs) are known to have promising regenerative potential and have gained attention as a treatment option for nerve lesions. It is however, unclear whether it can be effectively used for nerve regeneration. AIM To evaluate the evidence for the use of human umbilical cord derived MSCs (UCMSCs) in peripheral nerve regeneration. METHODS We carried out a systematic literature review in accordance with the PRISMA protocol. A literature search was performed from conception to September 2019 using PubMed, EMBASE and Web of Science. The results of eligible studies were appraised. A risk of bias analysis was carried out using Cochrane's RoB 2.0 tool. RESULTS Fourteen studies were included in this review. A total of 279 subjects, including both human and animal were treated with UCMSCs. Four studies obtained UCMSCs from a third-party source and the remainder were harvested by the investigators. Out of the 14 studies, thirteen conducted xenogenic transplantation into nerve injury models. All studies reported significant improvement in nerve regeneration in the UCMSC treated groups compared with the various different controls and untreated groups. CONCLUSION The evidence summarised in this PRISMA systematic review of in vivo studies supports the notion that human UCMSC transplantation is an effective treatment option for peripheral nerve injury.
Collapse
Affiliation(s)
- Christine Bojanic
- Department of Plastic and Reconstructive Surgery, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, United Kingdom
| | - Kendrick To
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bridget Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Christopher Mak
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
37
|
Kim H, Dingle AM, Ness JP, Baek DH, Bong J, Lee IK, Shulzhenko NO, Zeng W, Israel JS, Pisaniello JA, Millevolte AX, Park DW, Suminski AJ, Jung YH, Williams JC, Poore SO, Ma Z. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing. J Neurosci Methods 2020; 336:108602. [DOI: 10.1016/j.jneumeth.2020.108602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
|
38
|
Recent Advances in Carbon Nanotubes for Nervous Tissue Regeneration. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6861205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regenerative medicine has taken advantage of several nanomaterials for reparation of diseased or damaged tissues in the nervous system involved in memory, cognition, and movement. Electrical, thermal, mechanical, and biocompatibility aspects of carbon-based nanomaterials (nanotubes, graphene, fullerenes, and their derivatives) make them suitable candidates to drive nerve tissue repair and stimulation. This review article focuses on key recent advances on the use of carbon nanotube- (CNT-) based technologies on nerve tissue engineering, outlining how neurons interact with CNT interfaces for promoting neuronal differentiation, growth and network reconstruction. CNTs still represent strong candidates for use in therapies of neurodegenerative pathologies and spinal cord injuries.
Collapse
|
39
|
Zaszczynska A, Sajkiewicz P, Gradys A. Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E161. [PMID: 31936240 PMCID: PMC7022784 DOI: 10.3390/polym12010161] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 01/03/2023] Open
Abstract
Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities, which still lacks an effective treatment. Tissue engineering in the post-injury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. Tissue engineering relies on scaffolds for supporting cell differentiation and growth with recent emphasis on stimuli responsive scaffolds, sometimes called smart scaffolds. One of the representatives of this material group is piezoelectric scaffolds, being able to generate electrical charges under mechanical stimulation, which creates a real prospect for using such scaffolds in non-invasive therapy of neural tissue. This paper summarizes the recent knowledge on piezoelectric materials used for tissue engineering, especially neural tissue engineering. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges, and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and serves as a starting point for novel research pathways in the most relevant and challenging open questions.
Collapse
Affiliation(s)
- Angelika Zaszczynska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland
| |
Collapse
|
40
|
Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D Printed Neural Regeneration Devices. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [PMID: 32038121 PMCID: PMC7007064 DOI: 10.1002/adfm.201906237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/16/2023]
Abstract
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.
Collapse
Affiliation(s)
- Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicolas S Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sung Hyun Park
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904911. [PMID: 31657053 DOI: 10.1002/adma.201904911] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Indexed: 05/08/2023]
Abstract
Fibers are the building blocks of a broad spectrum of products from textiles to composites, and waveguides to wound dressings. While ubiquitous, the capabilities of fibers have not rapidly increased compared to semiconductor chip technology, for example. Recognizing that fibers lack the composition, geometry, and feature sizes for more functions, exploration of the boundaries of fiber functionality began some years ago. The approach focuses on a particular form of fiber production, thermal-drawing from a preform. This process has been used for producing single material fibers, but by combining metals, insulators, and semiconductors all within a single strand of fiber, an entire world of functionality in fibers has emerged. Fibers with optical, electrical, acoustic, or optoelectronic functionalities can be produced at scale from relatively easy-to-assemble macroscopic preforms. Two significant opportunities now present themselves. First, can one expect that fiber functions escalate in a predictable manner, creating the context for a "Moore's Law" analog in fibers? Second, as fabrics occupy an enormous surface around the body, could fabrics offer a valuable service to augment the human body? Toward answering these questions, the materials, performance, and limitations of thermally drawn fibers in different electronic applications are detailed and their potential in new fields is envisioned.
Collapse
Affiliation(s)
- Gabriel Loke
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Soldier Nanotechnology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tural Khudiyev
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Grace Noel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Soldier Nanotechnology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Advanced Functional Fabrics of America (AFFOA), Cambridge, MA, 02139, USA
| |
Collapse
|
42
|
Rao F, Wang Y, Zhang D, Lu C, Cao Z, Sui J, Wu M, Zhang Y, Pi W, Wang B, Kou Y, Wang X, Zhang P, Jiang B. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics 2020; 10:1590-1603. [PMID: 32042324 PMCID: PMC6993237 DOI: 10.7150/thno.36272] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Autologous nerve transplantation, which is the gold standard for clinical treatment of peripheral nerve injury, still has many limitations. In this study, aligned chitosan fiber hydrogel (ACG) grafted with a bioactive peptide mixture consisting of RGI (Ac-RGIDKRHWNSQGG) and KLT (Ac-KLTWQELYQLKYKGIGG), designated as ACG-RGI/KLT, was used as nerve conduit filler to repair sciatic nerve defects in rats. Methods: Chitosan nanofiber hydrogel was prepared by a combination of electrospinning and mechanical stretching methods, and was then grafted with RGI and KLT, which are peptides mimicking brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), respectively. The physicochemical properties of ACG-RGI/KLT were fully characterized. In vitro, the distribution, proliferation, and secretory activity of Schwann cells were analyzed. Next, the in vivo repair potential for 15-mm rat sciatic nerve defects was examined. The recovery of regenerated nerve, muscle, and motor function was evaluated by neuromuscular histology, electrophysiology, and catwalk gait analysis. Results: We first constructed directionally aligned chitosan nanofiber hydrogel grafted with RGI/KLT peptide mixture (ACG-RGI/KLT). ACG-RGI/KLT oriented the Schwann cells, and promoted the proliferation and secretion of neurotrophic factors by Schwann cells. At an early injury stage, ACG-RGI/KLT not only enhanced nerve regeneration, but also promoted vascular penetration. At 12 weeks, ACG-RGI/KLT facilitated nerve regeneration and functional recovery in rats. Conclusions: Aligned chitosan nanofiber hydrogel grafted with RGI/KLT peptide provides an effective means of repairing sciatic nerve defects and shows great potential for clinical application.
Collapse
|
43
|
Chen B, Chen Q, Parkinson DB, Dun XP. Analysis of Schwann Cell Migration and Axon Regeneration Following Nerve Injury in the Sciatic Nerve Bridge. Front Mol Neurosci 2019; 12:308. [PMID: 31920539 PMCID: PMC6914761 DOI: 10.3389/fnmol.2019.00308] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
While it is proposed that interaction between Schwann cells and axons is key for successful nerve regeneration, the behavior of Schwann cells migrating into a nerve gap following a transection injury and how migrating Schwann cells interact with regenerating axons within the nerve bridge has not been studied in detail. In this study, we combine the use of our whole-mount sciatic nerve staining with the use of a proteolipid protein-green fluorescent protein (PLP-GFP) mouse model to mark Schwann cells and have examined the behavior of migrating Schwann cells and regenerating axons in the sciatic nerve gap following a nerve transection injury. We show here that Schwann cell migration from both nerve stumps starts later than the regrowth of axons from the proximal nerve stump. The first migrating Schwann cells are only observed 4 days following mouse sciatic nerve transection injury. Schwann cells migrating from the proximal nerve stump overtake regenerating axons on day 5 and form Schwann cell cords within the nerve bridge by 7 days post-transection injury. Regenerating axons begin to attach to migrating Schwann cells on day 6 and then follow their trajectory navigating across the nerve gap. We also observe that Schwann cell cords in the nerve bridge are not wide enough to guide all the regenerating axons across the nerve bridge, resulting in regenerating axons growing along the outside of both proximal and distal nerve stumps. From this analysis, we demonstrate that Schwann cells play a crucial role in controlling the directionality and speed of axon regeneration across the nerve gap. We also demonstrate that the use of the PLP-GFP mouse model labeling Schwann cells together with the whole sciatic nerve axon staining technique is a useful research model to study the process of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Bing Chen
- Department of Neurology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Quan Chen
- Department of Neurology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - David B Parkinson
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth University, Plymouth, United Kingdom
| | - Xin-Peng Dun
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
44
|
Zha F, Chen W, Zhang L, Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:519-548. [DOI: 10.1080/09205063.2019.1697170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangwen Zha
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, PR China
| | - Lifeng Zhang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, NC A&T State University, Greensboro, NC, USA
| | - Demei Yu
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
45
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
46
|
Likhodiievskyi V. Early Experimental Results of Nerve Gap Bridging with Silicon Microwires. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.3.176925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
47
|
Shrestha S, Shrestha BK, Lee J, Joong OK, Kim BS, Park CH, Kim CS. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:511-523. [DOI: 10.1016/j.msec.2019.04.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
48
|
Tajdaran K, Chan K, Gordon T, Borschel GH. Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration. Exp Neurol 2019; 319:112817. [DOI: 10.1016/j.expneurol.2018.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023]
|
49
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Wang J, Zheng W, Chen L, Zhu T, Shen W, Fan C, Wang H, Mo X. Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2019; 5:2444-2456. [DOI: 10.1021/acsbiomaterials.8b01564] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Zheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tonghe Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|