1
|
Fu X, Chen M, Lu J, Li P. Cortical spreading depression induces propagating activation of the thalamus ventral posteromedial nucleus in awake mice. J Headache Pain 2022; 23:15. [PMID: 35073844 PMCID: PMC8903698 DOI: 10.1186/s10194-021-01370-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background As the relay centre for processing sensory information, the thalamus may involve in the abnormal sensory procedure caused by cortical spreading depression (CSD). However, few studies have focused on the transient response of thalamus during CSD. Our study aimed to investigate the neuronal activity of mouse thalamus ventral posteromedial nucleus (VPM) during CSD by in vivo micro-endoscopic fluorescence imaging of the genetic calcium probe GCaMP6s expressed in excitatory glutamatergic neurons. Methods Thirty-four transgenic VGluT2-GCaMP6s mice were used in the experiments. An endoscope was inserted into the VPM for image acquisition. CSD was induced by KCl topically applied unilaterally on the cranial dura. Data were acquired in awake (ipsilateral or contralateral VPM, saline instead of KCl, MK-801 treatment) and anaesthetized (isoflurane, pentobarbital) states. Statistical analysis was performed using analysis of variance (ANOVA) by SPSS. Results We found that after CSD induced in ipsilateral motor cortex, the neuronal activity increased and propagated from the posterior-lateral to the anterior-medial part of the VPM with an average speed of 3.47 mm/min. When CSD was induced in visual cortex, the response propagated in opposite direction, from the anterior-medial to the posterior-lateral part of the VPM. Aanaesthetics resulted in the suppression of VPM activation induced by CSD. No significant VPM activation was detected when CSD was induced in contralateral cortex or KCl was replaced by saline. When 5 mM MK-801 was applied to the dura, the electrode failed to record the DC shift of CSD, and there was no significant VPM activation after KCl application. Conclusion CSD induced propagating activation of the ipsilateral VPM in awake mice. The response might correlate to the cortical location where CSD was induced and might be affected by anaesthetics. No significant VPM activation was detected in saline and mk801 experiment results indicated that this VPM activation is due to CSD rather than mouse motion or direct effect of the KCl applying to the intact dura. This finding suggests the potential involvement of thalamus in the migraine auras. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01370-z.
Collapse
Affiliation(s)
- Xiaoxi Fu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jinling Lu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| | - Pengcheng Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China. .,School of Biomedical Engineering, Hainan University, Haikou, China.
| |
Collapse
|
2
|
Klass A, Sánchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab 2018; 38:1149-1179. [PMID: 29673289 PMCID: PMC6434447 DOI: 10.1177/0271678x18771440] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spreading depolarization (SD) occurs alongside brain injuries and it can lead to neuronal damage. Therefore, pharmacological modulation of SD can constitute a therapeutic approach to reduce its detrimental effects and to improve the clinical outcome of patients. The major objective of this article was to produce a systematic review of all the drugs that have been tested against SD. Of the substances that have been examined, most have been shown to modulate certain SD characteristics. Only a few have succeeded in significantly inhibiting SD. We present a variety of strategies that have been proposed to overcome the notorious harmfulness and pharmacoresistance of SD. Information on clinically used anesthetic, sedative, hypnotic agents, anti-migraine drugs, anticonvulsants and various other substances have been compiled and reviewed with respect to the efficacy against SD, in order to answer the question of whether a drug at safe doses could be of therapeutic use against SD in humans.
Collapse
Affiliation(s)
- Anna Klass
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| | | | - Edgar Santos
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Enger R, Dukefoss DB, Tang W, Pettersen KH, Bjørnstad DM, Helm PJ, Jensen V, Sprengel R, Vervaeke K, Ottersen OP, Nagelhus EA. Deletion of Aquaporin-4 Curtails Extracellular Glutamate Elevation in Cortical Spreading Depression in Awake Mice. Cereb Cortex 2017; 27:24-33. [PMID: 28365776 PMCID: PMC5939213 DOI: 10.1093/cercor/bhw359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 12/20/2022] Open
Abstract
Cortical spreading depression (CSD) is a phenomenon that challenges the homeostatic mechanisms on which normal brain function so critically depends. Analyzing the sequence of events in CSD holds the potential of providing new insight in the physiological processes underlying normal brain function as well as the pathophysiology of neurological conditions characterized by ionic dyshomeostasis. Here, we have studied the sequential progression of CSD in awake wild-type mice and in mice lacking aquaporin-4 (AQP4) or inositol 1,4,5-triphosphate type 2 receptor (IP3R2). By the use of a novel combination of genetically encoded sensors that a novel combination - an unprecedented temporal and spatial resolution, we show that CSD leads to brisk Ca2+ signals in astrocytes and that the duration of these Ca2+ signals is shortened in the absence of AQP4 but not in the absence of IP3R2. The decrease of the astrocytic, AQP4-dependent Ca2+ signals, coincides in time and space with a decrease in the duration of extracellular glutamate overflow but not with the initial peak of the glutamate release suggesting that in CSD, extracellular glutamate accumulation is extended through AQP4-dependent glutamate release from astrocytes. The present data point to a salient glial contribution to CSD and identify AQP4 as a new target for therapy.
Collapse
Affiliation(s)
- Rune Enger
- Department of Neurology, Oslo University Hospital, N-0027 Oslo, Norway
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Didrik B. Dukefoss
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Wannan Tang
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Klas H. Pettersen
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Daniel M. Bjørnstad
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - P. Johannes Helm
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Vidar Jensen
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
- Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Koen Vervaeke
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Erlend A. Nagelhus
- Department of Neurology, Oslo University Hospital, N-0027 Oslo, Norway
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
4
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
5
|
Erdener SE, Dalkara T. Modelling headache and migraine and its pharmacological manipulation. Br J Pharmacol 2014; 171:4575-94. [PMID: 24611635 DOI: 10.1111/bph.12651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/13/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022] Open
Abstract
Similarities between laboratory animals and humans in anatomy and physiology of the cephalic nociceptive pathways have allowed scientists to create successful models that have significantly contributed to our understanding of headache. They have also been instrumental in the development of novel anti-migraine drugs different from classical pain killers. Nevertheless, modelling the mechanisms underlying primary headache disorders like migraine has been challenging due to limitations in testing the postulated hypotheses in humans. Recent developments in imaging techniques have begun to fill this translational gap. The unambiguous demonstration of cortical spreading depolarization (CSD) during migraine aura in patients has reawakened interest in studying CSD in animals as a noxious brain event that can activate the trigeminovascular system. CSD-based models, including transgenics and optogenetics, may more realistically simulate pain generation in migraine, which is thought to originate within the brain. The realization that behavioural correlates of headache and migrainous symptoms like photophobia can be assessed quantitatively in laboratory animals, has created an opportunity to directly study the headache in intact animals without the confounding effects of anaesthetics. Headache and migraine-like episodes induced by administration of glyceryltrinitrate and CGRP to humans and parallel behavioural and biological changes observed in rodents create interesting possibilities for translational research. Not unexpectedly, species differences and model-specific observations have also led to controversies as well as disappointments in clinical trials, which, in return, has helped us improve the models and advance our understanding of headache. Here, we review commonly used headache and migraine models with an emphasis on recent developments.
Collapse
Affiliation(s)
- S E Erdener
- Department of Neurology, Faculty of Medicine, Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
6
|
Clark D, Institoris Á, Kozák G, Bere Z, Tuor U, Farkas E, Bari F. Impact of aging on spreading depolarizations induced by focal brain ischemia in rats. Neurobiol Aging 2014; 35:2803-2811. [PMID: 25044075 DOI: 10.1016/j.neurobiolaging.2014.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 11/25/2022]
Abstract
Spreading depolarization (SD) contributes to the ischemic damage of the penumbra. Although age is the largest predictor of stroke, no studies have examined age dependence of SD appearance. We characterized the electrophysiological and hemodynamic changes in young (6 weeks old, n = 7), middle-aged (9 months old, n = 6), and old (2 years old, n = 7) male Wistar rats during 30 minutes of middle cerebral artery occlusion (MCAO), utilizing multimodal imaging through a closed cranial window over the ischemic cortex: membrane potential changes (with a voltage-sensitive dye), cerebral blood volume (green light reflectance), and cerebral blood flow (CBF, laser-speckle imaging) were observed. The initial CBF drop was similar in all groups, with a significant further reduction during ischemia in old rats (p < 0.01). Age reduced the total number of SDs (p < 0.05) but increased the size of ischemic area displaying prolonged SD (p < 0.01). The growth of area undergoing prolonged SDs positively correlated with the growth of ischemic core area (p < 0.01) during MCAO. Prolonged SDs and associated hypoperfusion likely compromise cortical tissue exposed to even a short focal ischemia in aged rats.
Collapse
Affiliation(s)
- Darren Clark
- Department of Medical Physics and Informatics, School of Medicine, University of Szeged, Szeged, Hungary; Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| | - Ádám Institoris
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Medical Physics and Informatics, School of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Bere
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Ursula Tuor
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Eszter Farkas
- Department of Medical Physics and Informatics, School of Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, School of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Abstract
BACKGROUND Spreading depression (SD) is the electrophysiological substrate of migraine aura and a potential trigger for headache. Since its discovery by Leão in 1944, SD has transformed from being viewed as an epiphenomenon into a therapeutic target relevant in the pathophysiology of migraine and brain injury. AIM Despite decades of research, the underpinnings of SD are still poorly understood, hampering our efforts to selectively block its initiation and spread. Experimental models have nevertheless been useful to measure the likelihood of SD occurrence (i.e. SD susceptibility) and characterize genetic, physiological and pharmacological modulation of SD in search of potential therapies, such as in migraine prophylaxis and stroke. Here, I review experimental SD susceptibility endpoints and surrogates, and minimum essential model requirements to improve their utility in drug screening. CONCLUSION A critical reappraisal of strengths and caveats of experimental models of SD susceptibility is needed to set standards and improve data quality, interpretation and reconciliation.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA 02129, USA.
| |
Collapse
|
8
|
Liu R, Huang Q, Li B, Yin C, Jiang C, Wang J, Lu J, Luo Q, Li P. Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals. OPTICS EXPRESS 2013; 21:1911-24. [PMID: 23389174 DOI: 10.1364/oe.21.001911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Observation of brain activities in freely moving animals has become an important approach for neuroscientists to understand the correlation between brain function and behavior. We describe an extendable fiber-optic-based multi-modal imaging system that can concurrently carry out laser speckle contrast imaging (LSCI) of blood flow and optical intrinsic signal (OIS) imaging in freely moving animals, and it could be extended to fluorescence imaging. Our imaging system consists of a multi-source illuminator, a fiber multi-channel optical imaging unit, and a head-mounted microscope. The imaging fiber bundle delivers optical images from the head-mounted microscope to the multi-channel optical imaging unit. Illuminating multi-mode fiber bundles transmit light to the head-mounted microscope which has a mass of less than 1.5 g and includes a gradient index lens, giving the animal maximum movement capability. The internal optical components are adjustable, allowing for a change in magnification and field of view. We test the system by observing hemodynamic changes during cortical spreading depression (CSD) in freely moving and anesthetized animals by simultaneous LSCI and dual-wavelength OIS imaging. Hemodynamic parameters were calculated. Significant differences in CSD propagation durations between the two states were observed. Furthermore, it is capable of performing fluorescence imaging to explore animal behavior and the underlying brain functional activity further.
Collapse
Affiliation(s)
- Rui Liu
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mayevsky A, Barbiro-Michaely E. Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies. J Clin Monit Comput 2012. [PMID: 23203204 DOI: 10.1007/s10877-012-9414-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal mitochondrial function in the process of metabolic energy production is a key factor in maintaining cellular activities. Many pathological conditions in animals, as well as in patients, are directly or indirectly related to dysfunction of the mitochondria. Monitoring the mitochondrial activity by measuring the autofluorescence of NADH has been the most practical approach since the 1950s. This review presents the principles and technological aspects, as well as typical results, accumulated in our laboratory since the early 1970s. We were able to apply the fiber-optic-based NADH fluorometry to many organs monitored in vivo under various pathophysiological conditions in animals. These studies were the basis for the development of clinical monitoring devices as presented in accompanying article. The encouraging experimental results in animals stimulated us to apply the same technology in patients after technological adaptations as described in the accompanying article. Our medical device was approved for clinical use by the FDA.
Collapse
Affiliation(s)
- Avraham Mayevsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900, Ramat Gan, Israel.
| | | |
Collapse
|
10
|
Li B, Zhou F, Luo Q, Li P. Altered resting-state functional connectivity after cortical spreading depression in mice. Neuroimage 2012; 63:1171-7. [PMID: 22986358 DOI: 10.1016/j.neuroimage.2012.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/18/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Cortical spreading depression (CSD) underlies some neurological disorders. Previous imaging work suggests that CSD is associated with functional and structural alterations in the cerebral cortex. However, the changes in cortical functional network following CSD are poorly understood. The present study examines the changes in resting-state function connectivity (RSFC) of the mouse sensorimotor cortex after the onset of CSD by using optical intrinsic signal imaging. Our results show that RSFC between ipsilateral sensorimotor cortex (the cortex where CSD spreads) and contralateral sensorimotor cortex (the cortex where CSD does not spread) was significantly reduced after CSD. Moreover, a marked connectivity increase was found after CSD not only within contralateral somatosensory cortex and contralateral motor cortex themselves, but also between contralateral somatosensory cortex and contralateral motor cortex. Amplitude of low-frequency fluctuation (ALFF) analysis revealed an increase in ALFF in the ipsilateral cortex but a decrease in the contralateral cortex after CSD, indicating different effects of CSD on the neural activity in the ipsilateral and contralateral sensorimotor cortexes. These results suggest that CSD would alter the RSFC in the sensorimotor cortexes, and functional connectivity analysis may help to understand the effect of CSD on the cerebral functional network.
Collapse
Affiliation(s)
- Bing Li
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | |
Collapse
|
11
|
Sonn J, Mayevsky A. Responses to Cortical Spreading Depression under Oxygen Deficiency. Open Neurol J 2012; 6:6-17. [PMID: 22670162 PMCID: PMC3367297 DOI: 10.2174/1874205x01206010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES OBJECTIVES The effect of cortical spreading depression (CSD) on extracellular K(+) concentrations ([K(+)](e)), cerebral blood flow (CBF), mitochondrial NADH redox state and direct current (DC) potential was studied during normoxia and three pathological conditions: hypoxia, after NOS inhibition by L-NAME and partial ischemia. METHODS A SPECIAL DEVICE (MPA) WAS USED FOR MONITORING CSD WAVE PROPAGATION, CONTAINING: mitochondrial NADH redox state and reflected light, by a fluorometry technique; DC potential by Ag/AgCl electrodes; CBF by laser Doppler flowmetry; and [K(+)](e) by a mini-electrode. RESULTS AND DISCUSSION CSD under the 3 pathological conditions caused an initial increase in NADH and a further decrease in CBF during the first phase of CSD, indicating an imbalance between oxygen supply and demand as a result of the increase in oxygen requirements. The hyperperfusion phase in CBF was significantly reduced during hypoxia and ischemia showing a further decline in oxygen supply during CSD. CSD wave duration increased during the pathological conditions, showing a disturbance in energy production.Extracellular K(+) levels during CSD, increased to identical levels during normoxia and during the three pathological groups, indicating correspondingly increase in oxygen demand. 5. The special design of the MPA enabled identifying differences in the simultaneous responses of the measured parameters, which may indicate changes in the interrelation between oxygen demand, oxygen supply and oxygen balance during CSD propagation, under the conditions tested. 6. In conclusion, brain oxygenation was found to be a critical factor in the responses of the brain to CSD.
Collapse
Affiliation(s)
- J Sonn
- The Mina & Everard Goodman, Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research
Center, Bar-Ilan University RAMAT-GAN 52900, Israel
| | | |
Collapse
|
12
|
UNEKAWA MIYUKI, TOMITA MINORU, TOMITA YUTAKA, TORIUMI HARUKI, SUZUKI NORIHIRO. Sustained Decrease and Remarkable Increase in Red Blood Cell Velocity in Intraparenchymal Capillaries Associated With Potassium-Induced Cortical Spreading Depression. Microcirculation 2012; 19:166-74. [DOI: 10.1111/j.1549-8719.2011.00143.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
New concepts regarding cerebral vasospasm: glial-centric mechanisms. Can J Anaesth 2010; 57:479-89. [PMID: 20131107 DOI: 10.1007/s12630-010-9271-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Poor outcome in patients with cerebral vasospasm following subarachnoid hemorrhage remains a serious clinical problem. The current management with focus on the cerebrovascular constriction accounts for the use of "triple-H" therapy (hypertension, hypervolemia, and hemodilution) to enhance cerebral blood flow through constricted vessels. Recent work suggests that spreading depression (a stereotypical response of cerebral cortical tissue to noxious stimuli with subsequent oligemic blood flow) occurs in patients with cerebral vasospasm. A narrative review was conducted to examine the relationship between spreading depression and subarachnoid hemorrhage and to identify the anesthetic effects on the propagation of spreading depression. PRINCIPAL FINDINGS Following review of the literature, an underlying mechanism is advanced that cerebral vasospasm is not primarily a problem of the cerebral vasculature but a consequence of glial cell dysfunction following spreading depression - a glial-centric cause for vasospasm. Such a mechanism for vasospasm becomes manifest when spreading depression waves transition to peri-infarct depolarization waves - with protracted ischemic blood flow in compromised tissue. The extracellular microenvironment with high potassium and low nitric oxide tension can account for conducting vessel narrowing. CONCLUSIONS The implication for clinical management is discussed supposing glial cell dysfunction is an underlying mechanism responsible for the vascular spasm.
Collapse
|
14
|
Pikov V, McCreery DB. Spinal hyperexcitability and bladder hyperreflexia during reversible frontal cortical inactivation induced by low-frequency electrical stimulation in the cat. J Neurotrauma 2009; 26:109-19. [PMID: 19119915 DOI: 10.1089/neu.2008.0584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal hyperexcitability and hyperreflexia gradually develop in the majority of stroke patients. These pathologies develop as a result of reduced cortical modulation of spinal reflexes, mediated largely indirectly via relays in the brainstem and other subcortical structures. Cortical control of spinal reflexes is markedly different in small animals, such as rodents, while in some larger species, such as cats, it is more comparable to that in humans. In this study, we developed a novel model of stroke in the cat, with controllable and reversible inhibition of cortical neuronal activity appearing approximately 1h after initiation of low-frequency electrical stimulation in the frontal cerebral cortex, evidenced by a large increase in the alpha frequency band (7-14 Hz) of the frontal electrocorticographic signal. Hyperreflexia of the urinary bladder developed 3h or more after induction of reversible cortical inactivation with optimized stimulation parameters (frequency of 1-2 Hz, amplitude of 10 mA, applied for 30 min). The bladder hyperreflexia persisted for at least 8h, and disappeared within 24h. At the S2 level of the spinal cord, where neural circuits mediating micturition and other pelvic reflexes reside, we have recorded an increase in neuronal activity correlated with the development of hyperreflexia. The low-frequency stimulation-induced reversible cortical inactivation model of stroke is highly reproducible and allows evaluation of spinal hyperexcitability and hyperreflexia using within-animal comparisons across experimental conditions, which can be of great value in examination of mechanisms of spinal hyperreflexia following stroke or brain trauma, and for developing more effective treatments for these conditions.
Collapse
Affiliation(s)
- Victor Pikov
- Neural Engineering Program, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| | | |
Collapse
|
15
|
Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 2008; 86:379-95. [PMID: 18835324 PMCID: PMC2615412 DOI: 10.1016/j.pneurobio.2008.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/23/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Cortical spreading depression (CSD) leads to dramatic changes in cerebral hemodynamics. However, mechanisms involved in promoting and counteracting cerebral vasodilator responses are unclear. Here we review the development and current status of this important field of research especially with respect to the role of perivascular nerves and nitric oxide (NO). It appears that neurotransmitters released from the sensory and the parasympathetic nerves associated with cerebral arteries, and NO released from perivascular nerves and/or parenchyma, promote cerebral hyperemia during CSD. However, the relative contributions of each of these factors vary according to species studied. Related to CSD, axonal and reflex responses involving trigeminal afferents on the pial surface lead to increased blood flow and inflammation of the overlying dura mater. Counteracting the cerebral vascular dilation is the production and release of constrictor prostaglandins, at least in some species, and other possibly yet unknown agents from the vascular wall. The cerebral blood flow response in healthy human cortex has not been determined, and thus it is unclear whether the cerebral oligemia associated with migraines represents the normal physiological response to a CSD-like event or represents a pathological response. In addition to promoting cerebral hyperemia, NO produced during CSD appears to initiate signaling events which lead to protection of the brain against subsequent ischemic insults. In summary, the cerebrovascular response to CSD involves multiple dilator and constrictor factors produced and released by diverse cells within the neurovascular unit, with the contribution of each of these factors varying according to the species examined.
Collapse
Affiliation(s)
- David W Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
16
|
Kudo C, Nozari A, Moskowitz MA, Ayata C. The impact of anesthetics and hyperoxia on cortical spreading depression. Exp Neurol 2008; 212:201-6. [PMID: 18501348 PMCID: PMC2459317 DOI: 10.1016/j.expneurol.2008.03.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/15/2008] [Accepted: 03/31/2008] [Indexed: 11/16/2022]
Abstract
Cortical spreading depression (CSD), a transient neuronal and glial depolarization that propagates slowly across the cerebral cortex, is the putative electrophysiological event underlying migraine aura. It negatively impacts tissue injury during stroke, cerebral contusion and intracranial hemorrhage. Susceptibility to CSD has been assessed in several experimental animal models in vivo, such as after topical KCl application or cathodal stimulation. Various combinations of anesthetics and ambient conditions have been used by different laboratories making comparisons problematic and differences in data difficult to reconcile. We systematically studied CSD susceptibility comparing commonly used experimental anesthetics (isoflurane, alpha-chloralose, and urethane) with or without N(2)O or normobaric hyperoxia (100% O(2) inhalation). The frequency of evoked CSDs, and their propagation speed, duration, and amplitude were recorded during 2 h topical KCl (1 M) application. We found that N(2)O reduced CSD frequency when combined with isoflurane or urethane, but not alpha-chloralose; N(2)O also decreased CSD propagation speed and duration. Urethane anesthesia was associated with the highest CSD frequency that was comparable to pentobarbital. Inhalation of 100% O(2) did not alter CSD frequency, propagation speed or duration in combination with any of the anesthetics tested. Our data show anesthetic modulation of CSD susceptibility in an experimental model of human disease, underscoring the importance of proper study design for hypothesis testing as well as for comparing results between studies.
Collapse
Affiliation(s)
- Chiho Kudo
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Ala Nozari
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Michael A. Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
17
|
Abstract
The recent increase in the frequency and intensity of killer heat waves across the globe has aroused worldwide medical attention to exploring therapeutic strategies to attenuate heat-related morbidity and/or mortality. Death due to heat-related illnesses often exceeds >50% of heat victims. Those who survive are crippled with lifetime disabilities and exhibit profound cognitive, sensory, and motor dysfunction akin to premature neurodegeneration. Although more than 50% of the world populations are exposed to summer heat waves; our understanding of detailed underlying mechanisms and the suitable therapeutic strategies have still not been worked out. One of the basic reasons behind this is the lack of a reliable experimental model to simulate clinical hyperthermia. This chapter describes a suitable animal model to induce hyperthermia in rats (or mice) comparable to the clinical situation. The model appears to be useful for studying the effects of heat-related illnesses on changes in various organs and systems, including the central nervous system (CNS). Since hyperthermia is often associated with profound brain dysfunction, additional methods to examine some crucial parameters of brain injury, e.g., blood-brain barrier (BBB) breakdown and brain edema formation, are also described.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185 Uppsala, Sweden.
| |
Collapse
|
18
|
Santamaria F, Tripp PG, Bower JM. Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 2006; 97:248-63. [PMID: 17050824 DOI: 10.1152/jn.01098.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential "beamlike" activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. This prediction was tested, in vivo, by recording PCs sharing a common set of pfs before and after pharmacologically blocking inhibitory inputs. As predicted by the model, pf-induced beams of excitatory PC responses were seen only when inhibition was blocked. Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.
Collapse
Affiliation(s)
- Fidel Santamaria
- Research Imaging Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-6240, USA
| | | | | |
Collapse
|