1
|
Adeyanju AA, Akinwunmi EA, Karigidi ME, Agboola OO, Elekofehinti OO. Cinnamic acid abrogates bisphenol A-induced hepatotoxicity via suppression of pro-inflammatory cytokine and modulation of gene expressions of antioxidant enzymes in rats. Toxicol Rep 2025; 14:101995. [PMID: 40226809 PMCID: PMC11986462 DOI: 10.1016/j.toxrep.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
Bisphenol A (BPA) is regularly used to produce plastic products. Its hepatotoxicity has been unveiled. The effects of cinnamic acid on BPA exposure have not been comprehensively studied, and the key mechanism of action is yet to be unraveled. Rats were allocated into 5 groups. Group 1 (control) was given corn oil. Group 2 received BPA for 14 consecutive days. Group 3 received cinnamic acid at 50 mg/kg in co-administration with BPA while group 4 received cinnamic acid at 100 mg/kg, in co-administration with BPA. Cinnamic acid (CA) only (100 mg/kg) was given to group 5. BPA exposure significantly decreased catalase, glutathione-S-transferase, and superoxide dismutase activities and non-significantly diminished glutathione level. A reduction in the gene expression of catalase accompanied this. Our result showed significant gene elevation at the mRNA level of tumor necrosis factor-α and elevated malondialdehyde by BPA. The significantly elevated alanine transaminase and aspartate transaminase activities in addition to increased levels of total cholesterol, triglycerides, and very low-density lipoprotein with reduced high-density lipoprotein reflected the detrimental effect of BPA in the liver. Our results revealed that cinnamic acid could alleviate the increased pro-inflammatory cytokine level and oxidative stress by downregulating tumor necrosis factor-α gene. The histopathological evaluation confirmed the biochemical results. Hepatic alterations were ameliorated when cinnamic acid was co-administered with BPA. These findings suggest that downregulation of the TNF-α gene induced by cinnamic acid may participate in suppressing the BPA-induced oxidative stress. This offers a new idea to unmask the mechanism underlying cinnamic acid's interference with BPA-induced hepatic damage.
Collapse
Affiliation(s)
- Anne Adebukola Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Km 18, Oyo Express Road, Ibadan, Oyo, Nigeria
| | - Emmanuel Ayomitide Akinwunmi
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Km 18, Oyo Express Road, Ibadan, Oyo, Nigeria
| | - Mojisola Esther Karigidi
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Km 18, Oyo Express Road, Ibadan, Oyo, Nigeria
| | | | | |
Collapse
|
2
|
Yan R, Yang H, Jiang X, Lai X. Renal Protective Effect of Umbelliferone on Acute Kidney Injury in Rats via Alteration of HO-1/Nrf2 and NF-κB Signaling Pathway. DOKL BIOCHEM BIOPHYS 2024; 518:442-451. [PMID: 39196533 DOI: 10.1134/s160767292460043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
Acute kidney injury (AKI), formerly known as acute renal failure, refers to a sudden and often reversible decline in kidney function. Inflammatory reaction and oxidative stress play a crucial role in the expansion of renal disease. In this experimental study, we scrutinized the renal protective effect of umbelliferone against gentamicin induced renal injury in the rats and explore the mechanism. Wistar rats were used in this study and Gentamicin was used for the induction the AKI in the rats and rats were received the oral administration of umbelliferone. The body weight, organ weight, renal, oxidative stress, cytokines, inflammatory parameters were estimated. The mRNA expression caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2 were estimated. Umbelliferone remarkably improved the body weight and altered the absolute and relative weight of hepatic and renal tissue. Umbelliferone significantly suppressed the level of BUN, Scr, magnesium, calcium, phosphorus, sodium, and potassium along with altered the level of oxidative stress parameters like CAT, SOD, GSH, LPO, and GPx. Umbelliferone altered the level of cytokines viz., TNF-α, Il-1β, IL-6, IL-10; inflammatory parameters like PGE2, COX-2, TGF-β, NF-κB, respectively. Umbelliferone significantly altered the mRNA expression of caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2. The result showed the renal protective effect of umbelliferone against gentamycin induced renal disease via alteration of HO-1/Nrf2 and NF-κB Signaling Pathway.
Collapse
Affiliation(s)
- RuiJuan Yan
- Department of Emergency Medicine, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, China
| | - Hui Yang
- Department of Respiratory, Qingdao, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, China
| | - XiaoQi Jiang
- Department of Respiratory, Qingdao, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, China
| | - XiaoDong Lai
- Department of Urology Surgery, Qingdao, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), 266000, Qingdao, China.
| |
Collapse
|
3
|
Yin SH, Zhang WJ, Jiang LL, Wang GY, Jeon YJ, Ding Y, Li Y. Protective effects of the secondary metabolites from Quercus salicina Blume against gentamicin-induced nephrotoxicity in zebrafish (Danio rerio) model. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109952. [PMID: 38852915 DOI: 10.1016/j.cbpc.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
To reveal the protective effect on the nephrotoxicity of Quercus salicina Blume(QS), a traditional medicine for the treatment of urolithiasis, the 50 % ethanol extract from the branches and leaves of QS was chemically studied by systematic solvent extraction and HPLC chromatography. Two phenolic acids and three flavonoids were identified by nuclear magnetic resonance spectroscopy, namely Ferulic acid (1), p-Hydroxycinnamic acid (2), Hesperidin (3), Formononetin (4), and Quercetin (5). At the same time, the gentamicin-induced nephrotoxicity of zebrafish was used as a model for the first time. The antioxidant activity of these derivatives with good antioxidant activity screened from free radical scavenging experiments in vitro (DPPH and ABTS) was evaluated in vivo, including protein levels (LPO, NO, GSH, and SOD), kidney injury factor (KIM-1), zebrafish kidney pathology and real-time PCR. The results showed that metabolites 1, 3, and 5 had strong antioxidant activity, and oxidative stress in renal tissue was significantly reduced; KIM-1, TNF-α, and IL-6 mRNA expression in a dose-dependent manner, which preliminarily revealed the protective effect of the secondary metabolites of QS on nephrotoxicity, and preliminarily discussed the structure-activity relationship. This study provides an experimental basis for further exploring the mechanism of QS in the kidney.
Collapse
Affiliation(s)
- Shuang-Hui Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Wen-Jun Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Lu-Lu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Guang-Yue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - You-Jin Jeon
- School of Marine Biomedical Science, Je Ju National University, Je ju Daehakro, Je ju City 63243, Republic of Korea
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
4
|
Sarkaki A, Badavi M, Nejaddehbashi F, Hajipour S, Basir Z, Amini N. The renoprotective effects of hesperidin on kidney injury induced by exposure to severe chronic dust storm particulate matter through inhibiting the Smads/TGF-β1 signaling in rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3615-3626. [PMID: 37272929 DOI: 10.1007/s00210-023-02562-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Exposure to dust storm particulate matter (PM) is detrimental to kidney tissue. In this study, the impacts of chronic intake of dusty PM were explored as a major objective in a specified compartment to make a real-like dust storm (DS) model, and the role of hesperidin (HSP) as an antioxidant on kidney tissue was assessed in rats. Thirty-two male Wistar rats (200-220 g) were randomly allocated into 4 groups: CA+NS: (clean air and normal saline as a vehicle of HSP). Dusty PM and NS (DS+NS). HSP+ CA: rats received 200 mg/kg of HSP by gavage for 28 days, once daily in addition to exposure to clean air. HSP+DS: HSP plus DS. In DS groups, the animals were exposed to dust storms at a concentration of 5000-8000 μg/m3 in the chamber for 1 h daily, for 4 consecutive weeks, except Thursdays and Fridays. At the end of the experiment, the animals were sacrificed for biochemical, inflammatory, oxidative stress, molecular parameters, and histological evaluation. DS significantly enhanced blood urea nitrogen and creatinine, inflammatory (tumor necrosis factor-α, and interleukin-1β), and oxidative stress indexes. Likewise, a significant increase was seen in mRNA Smads, collagen-I, and transforming growth factor-β1 (TGF-β1) expressions in the kidney. Histological findings showed contracted glomeruli and kidney structure disorder. In addition, Masson's trichrome staining demonstrated renal fibrosis. Nevertheless, HSP could significantly reverse these changes. Our data confirmed that DS results in kidney fibrosis through enhancing Smads/TGF-β1 signaling. However, HSP was able to inhibit these changes as confirmed by histological findings.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and molecular research center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Negin Amini
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and molecular research center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
El Latif AA, Zahra AEA, Badr A, Elbialy ZI, Alghamdi AAA, Althobaiti NA, Assar DH, Abouzed TK. The potential role of upregulated PARP-1/RIPK1 expressions in amikacin-induced oxidative damage and nephrotoxicity in Wistar rats. Toxicol Res (Camb) 2023; 12:979-989. [PMID: 37915468 PMCID: PMC10615830 DOI: 10.1093/toxres/tfad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the gene expression levels associated with nephrotoxic action of amikacin, as well as the post-treatment effect of diuretics on its nephrotoxic effects. Sixty male rats were divided equally into six groups, including the control group receiving saline intra-peritoneally (ip), and the five treated groups including therapeutic and double therapeutic dose groups, injected ip (15 and 30 mg/kg b.wt./day) respectively for seven days, and another two rat groups treated as therapeutic and double therapeutic dose groups then administered the diuretic orally for seven days and the last group received amikacin ip at a rate of 15 mg/kg/day for seven days, then given free access to water without diuretics for another seven days and was kept as a self-recovery group. Amikacin caused kidney injury, which was exacerbated by the double therapeutic dose, as evidenced by abnormal serum renal injury biomarkers, elevated renal MDA levels, inhibition of renal catalase and SOD enzyme activities, with renal degenerative and necrotic changes. Moreover, comet assays also revealed renal DNA damage. Interestingly, amikacin administration markedly elevated expression levels of the PARP-1, RIP1, TNF-α, IL-1β, and iNOS genes as compared to the control group. However, compared to the self-recovery group, post-amikacin diuretic treatment modulates amikacin-induced altered findings and alleviates amikacin nephrotoxic effects more efficiently. Our findings suggested the potential role of PARP-1 and RIPK1 expressions that influence the expression of proinflammatory cytokines such as IL-1β and TNF-α by exaggerating oxidative stress which may contribute to the pathogenesis of amikacin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abo Elnasr A Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - AlShimaa Badr
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Kafrelsheikh University, El-Gish Street, Albaha 1988, Kingdom of Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Kafrelsheikh University, El-Gish Street, El-Gish Street, Al Quwaiiyah 19257, Kingdom of Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Tarek kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
6
|
Hassan NH, Yousef DM, Alsemeh AE. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: biochemical, histological, and ultrastructural study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36208-36227. [PMID: 36547838 PMCID: PMC10039835 DOI: 10.1007/s11356-022-24800-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/13/2022] [Indexed: 06/09/2023]
Abstract
Aluminum, one of the most abundant metallic elements, is known to be toxic to multiple organs including the kidneys. This study aimed to investigate the pleiotropic nephroprotective effects of Hesperidin in aluminum chloride (ALCL3)-induced renal injury, highlighting the potential molecular mechanisms underlying. Twenty-four male albino rats were divided into four groups: control, Hesperidin (80 mg/kg BW, orally), ALCL3 (10 mg/kg BW, IP), and ALCL3 + Hesperidin groups. By the end of the study, blood samples were collected, and tissue samples were harvested at sacrifice. ALCL3 rats showed dramatically declined renal function, enhanced intrarenal oxidative stress, inflammation, apoptosis, and extravagant renal histopathological damage with interstitial fibrosis as shown by a higher Endothelial, Glomerular, Tubular, and Interstitial (EGTI) score. Hesperidin significantly reversed all the aforementioned detrimental effects in ALCL3-treated rats. The study verified the nephroprotective effects of Hesperidin on ALCL3-induced renal damage and confirmed the critical role of extracellular matrix (ECM) remodeling and apoptosis inhibition.
Collapse
Affiliation(s)
- Nancy Husseiny Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Doaa Mohammed Yousef
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
7
|
Abd-Eldayem AM, Dahpy MA, Badary DM, Alnasser SM, Hareedy MS. Celecoxib has Preventive and Therapeutic Benefits against Nephrotoxicity Caused by Gentamicin in Mice. Drug Res (Stuttg) 2022; 72:259-267. [PMID: 35359021 DOI: 10.1055/a-1785-4005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It's crucial to comprehend the impact of oxidative stress and pro-inflammatory cytokines in the gentamicin-induced kidney injury mechanism. Celecoxib was administered orally either before or after intraperitoneal therapy with gentamicin in mice. The serum levels of creatinine (SCr), blood urea nitrogen (BUN), IL-6, and TNF-α were measured by ELISA test, as well as the levels of the kidney tissue malondialdehyde (MDA), and glutathione (GSH) were also estimated spectrophotometrically. The renal expression of nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) mRNAs were evaluated by qPCR. Histopathological evaluation and Immunohistochemical examination of kidney NF-κB, IL-6, and COX-2 were also, performed. Celecoxib successfully prevented gentamicin-induced kidney damage as indicated by reducing blood BUN, SCr, and tissue MDA levels and increasing renal tissue GSH levels as well as lowering the blood IL-6 and TNF-α in comparison to mice received gentamicin. Furthermore, celecoxib has inhibited COX-2, NF-κB, IL-6, and TNF-α expression in the renal tissue. It is noteworthy that celecoxib therapy after gentamicin administration brought about substantially the same results as celecoxib treatment before gentamicin injection in mice. Our results showed the role of celecoxib as a therapeutic tool for gentamicin-induced nephrotoxicity as well as raised its beneficial prophylactic role in this medical challenge by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Al-Ghad International Colleges of Applied Medical Sciences, Abha, Saudi Arabia
| | - Marwa A Dahpy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Dalia M Badary
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | | |
Collapse
|
8
|
Askari H, Enayati N, Ahmadian-Attari MM, Bakhtiyari M, Alirezaei A. Protective Effects of Descurainia sophia against Gentamicin Induced Nephrotoxicity in Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:40-52. [PMID: 34400939 PMCID: PMC8170741 DOI: 10.22037/ijpr.2020.112105.13535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several studies have tried to find an efficient agent to prevent or reverse gentamicin (Gm) induced acute kidney injury (AKI). In this study, we assessed the potential renal protective effects of Descurainia sophia (L.) Webb ex Prantl against Gm-induced nephrotoxicity in rats. Thirty-five male Wistar rats were categorized in five groups (n = 7 per group). Control group was treated with normal saline. In four experimental groups, the rats were initially treated with normal saline (A), 800 (B), 1600 (C) and 2400 (D) mg/kg Descurainia sophia respectively for 28 days. After that, the rats of experimental groups were treated with Gm (80 mg/Kg) for 7 consecutive days. Blood and urine markers, as well as apoptosis and histological features were determined. Serum BUN, creatinine, cholesterol, and triglycerides level, as well as urinary excretion of Na+ significantly increased in group A. Furthermore, Gm induced inflammatory cells infiltration, apoptosis, and renal cells injuries in rats were pretreated with normal saline (group A). However, in the rats pretreated with Descurainia sophia extract (groups B, C, and D, there were significant and dose-dependent reductions in serum BUN, creatinine, cholesterol and triglyceride, urinary Na+ excretion, apoptosis rate, and inflammatory cells infiltration in renal tissues. Overall, Descurainia sophia showed significant protective effects against Gm-induced AKI by alleviating biochemical and histological markers of renal toxicity.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Noora Enayati
- Department of Photochemistry, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Mehdi Ahmadian-Attari
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhesam Alirezaei
- Clinical Research and Development Center, Shahid Modarres Hospital, Department of Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Babaeenezhad E, Nouryazdan N, Nasri M, Ahmadvand H, Moradi Sarabi M. Cinnamic acid ameliorate gentamicin-induced liver dysfunctions and nephrotoxicity in rats through induction of antioxidant activities. Heliyon 2021; 7:e07465. [PMID: 34278037 PMCID: PMC8264605 DOI: 10.1016/j.heliyon.2021.e07465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
This study was the first to evaluate the possible protective effects of cinnamic acid (CA) against Gentamicin (GM) induced liver and kidney dysfunctions in rats. Adult male Wistar rats were randomly assigned to 4 equal groups (n = 8): Control group (saline, 0.5 ml/day), CA group (CA, 50 mg/kg/day), GM group (GM, 100 mg/kg/day), and GM + CA group (100 & 50 mg/kg/day). Following 12 days of treatments, blood and 24 h urine samples were collected and kidneys were taken out for biochemical, histopathological, and molecular studies. Following CA treatment, renal function markers and transaminases activities including serum urea (59.92%) and creatinine (50.41%), protein excretion rate (43.67%), and serum activities of aspartate aminotransferase (AST) (54.34%) and alanine aminotransferase (ALT) (47.26%) significantly reduced in the treated group as compared with the GM group (P < 0.05). Also, CA could significantly ameliorate the levels of triglyceride (29.70%), cholesterol (13.02%), very low-density lipoprotein (29.69%) and high-density lipoprotein-cholesterol (7.28%). CA could also attenuate oxidative stress through a decrease of serum malondialdehyde (MDA) (50.86%) and nitric oxide (NO) (0.85%) and an increase of renal catalase (CAT) (196.14%) and glutathione peroxidase (GPX) activities (45.88%) as well as GPX mRNA expression (44.42-fold) as compared with the GM group (P < 0.05). Moreover, histopathological evaluations revealed attenuated tubular damages and reduced inflammatory cellular infiltration in CA treated animals. Overall, CA alleviates GM-induced nephrotoxicity and alterations in transaminases activities in rats through its antioxidant activities.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Nouryazdan
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasri
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
10
|
Mohamed HZE, Shenouda MBK. Amelioration of renal cortex histological alterations by aqueous garlic extract in gentamicin induced renal toxicity in albino rats: a histological and immunohistochemical study. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2020.1871179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Hala ZE Mohamed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Merry BK Shenouda
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Wang Y, Liu XJ, Chen JB, Cao JP, Li X, Sun CD. Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr 2021; 62:3833-3854. [PMID: 33435726 DOI: 10.1080/10408398.2020.1870035] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant ability is the link and bridge connecting a variety of biological activities. Citrus flavonoids play an essential role in regulating oxidative stress and are an important source of daily intake of antioxidant supplements. Many studies have shown that citrus flavonoids promote health through antioxidation. In this review, the biosynthesis, composition and distribution of citrus flavonoids were concluded. The detection methods of antioxidant capacity of citrus flavonoids were divided into four categories: chemical, cellular, animal and clinical antioxidant capacity evaluation systems. The modeling methods, applicable scenarios, and their relative merits were compared based on these four systems. The antioxidant functions of citrus flavonoids under different evaluation systems were also discussed, especially the regulation of the Nrf2-antioxidases pathway. Some shortcomings in the current research were pointed out, and some suggestions for progress were put forward.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiao-Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Jayapalan JJ, Subramanian P, Kani A, Hiji J, Najjar SG, Abdul-Rahman PS, Hashim OH. Hesperidin modulates the rhythmic proteomic profiling in Drosophila melanogaster under oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21738. [PMID: 32924199 DOI: 10.1002/arch.21738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.
Collapse
Affiliation(s)
- Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Akshaya Kani
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Jumriah Hiji
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara G Najjar
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn H Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Erseçkin V, Mert H, İrak K, Yildirim S, Mert N. Nephroprotective effect of ferulic acid on gentamicin-induced nephrotoxicity in female rats. Drug Chem Toxicol 2020; 45:663-669. [PMID: 32354291 DOI: 10.1080/01480545.2020.1759620] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ferulic acid is a kind of phenolic compound that can be found in various fruits and vegetables. This study aims to investigate the effect of ferulic acid on nephrotoxicity induced by gentamicin (GM). In this study, rats were separated into 4 groups such that each containing 8 randomly selected rats: Control group, Ferulic Acid (FA) group, Gentamicin (GM) group and Gentamicin + Ferulic acid (GM + FA) group. Blood samples were collected after 24 hours following the 8-day trial period, and kidneys were taken out for histopathological evaluation. Serum urea, creatinine, uric acid and LDH analyses were performed in autoanalyzer while Malondialdehyde (MDA), Advanced Oxidized Protein Products (AOPP), Glutathione (GSH), Superoxide dismutase (SOD), Catalase (CAT), Interleukin 6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α) analyses were performed in ELISA, and kidney tissues were also examined histopathologically. Urea (p < .001), creatinine (p < .001), MDA (p < .01), AOPP (p < .001), IL-6 (p < .01) and TNF-α (p < .001) levels were found to be statistically and significantly lowered in GM + FA group when compared to GM group. As a result, ferulic acid has reduced the inflammation in nephrotoxicity induced by GM, causing decreased oxidative stress. In this study, anti-inflammatory features of ferulic acid have come to the forefront rather than the antioxidant features. It can be said that ferulic acid reduces nephrotoxic damage and has protective properties for kidneys.
Collapse
Affiliation(s)
- Vasfiye Erseçkin
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Handan Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kıvanç İrak
- Department of Biochemistry, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Serkan Yildirim
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
14
|
Mohamed DI, Khairy E, Saad SST, Habib EK, Hamouda MA. Potential protective effects of Dapagliflozin in gentamicin induced nephrotoxicity rat model via modulation of apoptosis associated miRNAs. Gene 2019; 707:198-204. [PMID: 31075409 DOI: 10.1016/j.gene.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Drug-induced kidney injury (DIKI) can be manifested with progressive chronic kidney diseases or end-stage renal diseases. Understanding the molecular disarrangements caused by DIKI is an attractive point of interest. A class of non-coding RNA called microRNAs (miRNAs) is known to play a major role in regulation of gene expression and signaling pathways making miRNAs excellent targets for new therapeutic agents. AIM OF THE STUDY We aimed to investigate the role of miRNA 21 and 181a in gentamicin (GNT) induced nephrotoxicity rat model and the protective effect of Dapagliflozin (DAPA) in modulating their expression through studying its effect on renal function as well as renal histopathological changes. MATERIALS AND METHODS Wistar rats were used and divided into: naïve, DAPA, GNT and DAPA + GNT groups. In all studied groups, kidney function, oxidative stress, apoptosis markers and miRNAs' expression in serum and renal biopsies were investigated in addition to the histopathological studies to identify its early renoprotective effect. RESULTS DAPA was found to improve kidney function, oxidative stress markers, decrease apoptosis of renal tubular cells and increase miR-21 but decrease the expression of miR-181a with restoration of the renal architecture after 14 days of treatment in GNT induced nephrotoxicity rat model. CONCLUSIONS DAPA produced significant decrease in renal expression of miR-181a on the other hand it increased the expression of renal miR-21, this may introduce a novel early protective effect of DAPA against GNT-induced nephrotoxicity.
Collapse
Affiliation(s)
- Doaa I Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman Khairy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, P.O. Box 11381, Abbassia, Cairo, Egypt
| | - Sherin S T Saad
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, P.O. Box 11381, Abbassia, Cairo, Egypt
| | | |
Collapse
|
15
|
Dahdouh F, Bendjeffal H, Nouacer Z, Moumene W, Zeminour MEH, Naous M, Djebar H. Selenium Nanoparticles Attenuate Gentamycin-Induced Nephrotoxicity and Hematotoxicity in Female Swiss Albino Mice. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-0598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Hanedan B, Ozkaraca M, Kirbas A, Kandemir FM, Aktas MS, Kilic K, Comakli S, Kucukler S, Bilgili A. Investigation of the effects of hesperidin and chrysin on renal injury induced by colistin in rats. Biomed Pharmacother 2018; 108:1607-1616. [DOI: 10.1016/j.biopha.2018.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
|
17
|
Vasco CF, Watanabe M, Fonseca CDD, Vattimo MDFF. Sepsis-induced acute kidney injury: kidney protection effects by antioxidants. Rev Bras Enferm 2018; 71:1921-1927. [DOI: 10.1590/0034-7167-2017-0469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT Objective: To evaluate the antioxidant action of N-acetylcysteine and diosmin-hesperidin in an experimental model of sepsis-induced acute kidney injury in rats. Methods: The study used 20 Wistar adult male rats divided into the following groups: control (laparotomy with no induction of abdominal sepsis), sepsis (experimental model of sepsis with cecal ligation and puncture), N-acetylcysteine + sepsis and diosmin-hesperidin + sepsis. The evaluation contemplated physiological parameters (temperature, glycemia, and average blood pressure), kidney function (creatinine clearance), oxidative stress (urinary peroxides) and kidney histology. Results: The animals submitted to cecal ligation and puncture (sepsis) presented lower body temperature, lower average blood pressure, reduced creatinine clearance and increased urinary hydrogen peroxide levels. Treatment with diosmin-hesperidin improved kidney function and led to a reduction in the excretion of oxidative metabolites. Conclusion: The present study highlighted the protective antioxidant action of diosmin-hesperidin in the experimental model of sepsis-induced acute kidney injury.
Collapse
|
18
|
Adefegha SA, Leal DBR, Doleski PH, Ledur PC, Ecker A. Peripheral blood mononuclear cells from rat model of pleurisy: The effects of hesperidin on ectoenzymes activity, apoptosis, cell cycle and reactive oxygen species production. Biomed Pharmacother 2017; 91:278-286. [PMID: 28460230 DOI: 10.1016/j.biopha.2017.04.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
The present study investigates the effect of hesperidin; a flavonone commonly found in citrus fruits, on the ectoenzymes (ectonucleotidase and ecto-adenosine deaminase) activity, cell viability, apoptosis, cell cycle arrest and reactive oxygen species production in peripheral blood mononuclear cells (PBMCs) from rat model of pleurisy. Wistar rats were pretreated with either saline or hesperidin (80mg/kg) by oral gavage for 21days and injected intrapleurally with 2% carrageenan or saline on the 22nd day. PBMCs were subsequently prepared after 4h of carrageenan induction. The results revealed that hesperidin may exhibit its anti-inflammatory effects through possible modulation of ectonucleotidase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) activities, reduction of intracellular reactive oxygen species, prevention of DNA damage and modulation of apoptosis as well as activation of cell cycle arrest. This study suggests some possible underlying anti-inflammatory mechanisms of hesperidin on PBMCs in acute inflammatory condition. Furthermore, hesperidin may minimize oxidative injury mediated pleurisy in rat.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil; Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Daniela Bitencourt Rosa Leal
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil; Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | - Pedro Henrique Doleski
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | - Pauline Christ Ledur
- Programa de Pós-Graduação em Farmacologie, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | - Assis Ecker
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
19
|
Katary M, Salahuddin A. Ameliorative effect of gossypin against gentamicin-induced nephrotoxicity in rats. Life Sci 2017; 176:75-81. [DOI: 10.1016/j.lfs.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022]
|
20
|
Abstract
Hesperidin, a member of the flavanone group of flavonoids, can be isolated in large amounts from the rinds of some citrus species. Considering the wide range of pharmacological activities and widespread application of hesperidin, this paper reviews preclinical and clinical trials of hesperidin and its related compounds, including their occurrence, pharmacokinetics, and some marketed products available. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as neurological disorders, psychiatric disorders, and cardiovascular diseases and others, due to its anti-inflammatory, antioxidant, lipid-lowering, and insulin-sensitizing properties.
Collapse
Affiliation(s)
- Chaoyun Li
- a Division of Immunopathology of the Nervous System , Department of Neuropathology , Institute of Pathology and Neuropathology, University of Tuebingen , Tuebingen , Germany
| | - Hermann Schluesener
- a Division of Immunopathology of the Nervous System , Department of Neuropathology , Institute of Pathology and Neuropathology, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
21
|
Yarijani ZM, Najafi H, Hamid Madani S. Protective effect of crocin on gentamicin-induced nephrotoxicity in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:337-43. [PMID: 27114805 PMCID: PMC4834125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Gentamicin is used for the treatment of Gram-negative bacterial infections. However, gentamicin administration is limited because of nephrotoxicity. The aim of the present study was to evaluate the protective effect of crocin against gentamicin-induced nephrotoxicity in rats. MATERIALS AND METHODS Thirty two male Wistar rats received gentamicin (100 mg/kg, IP), with or without crocin (100 mg/kg, IP) for seven consecutive days. Plasma creatinine and urea-nitrogen concentrations, oxidative stress and histopathological changes of kidney tissues were monitored. RESULTS Administration of gentamicin resulted in significant increases in plasma creatinine and urea-nitrogen concentrations and renal tissue malondialdehyde (MDA) level, and a decrease in the renal tissue ferric reducing/antioxidant power (FRAP) level. Crocin decreased plasma creatinine and urea-nitrogen concentrations and tissue MDA level, but increased the level of tissue FRAP. In addition, gentamicin led to cellular damages including glomerular atrophy, cellular desquamation, tubular necrosis and fibrosis, epithelial oedema of proximal tubules, perivascular edema, vascular congestion and intra-tubular proteinaceous casts, all of which were partially recovered by crocin. CONCLUSION Crocin has protective effects against functional disturbances, oxidative stress and tissue damages induced by gentamicin.
Collapse
Affiliation(s)
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran,Corresponding author: Houshang Najafi. Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. ; Tel: +98-8334274622; Fax: +98-8334274623
| | - Seyed Hamid Madani
- Department of Pathology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Manikandan R, Arumugam M. Anticataractogenic effect of hesperidin in galactose-induced cataractogenesis in Wistar rats. World J Ophthalmol 2016; 6:1-9. [DOI: 10.5318/wjo.v6.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/28/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the anticataractogenic potential of hesperidin, a flavanone, in galactose-induced cataractogenesis.
METHODS: In this study, cataract was induced by administering galactose enriched food in a set of rats. Effect of different dosages of hesperidin (25, 50 and 75 mg/kg body weight) were administered simultaneously with galactose in prevention of cataract was determined in another set. In both sets of animals, the levels of peroxidation, oxidants (NO and OH), antioxidants (enzymatic: Superoxide dismutase, catalase, glutathione S-transferase, GPx and non-enzymatic: Reduced glutathione, vitamin E), aldose reductase and sorbitol were determined in the eye lens. In addition, glucose and lipid peroxidation levels were also tested in serum. The quantitative changes in lens inducible nitric oxide synthase (iNOS) and its expression were also determined using Western blot and real-time polymerase chain reaction analyses.
RESULTS: Galactose enriched food produced cataract in both the eye lens as a sequel to elevated serum glucose. Simultaneous administration of hesperidin not only reduced serum glucose but also prevented cataract development, through reduced levels of reactive oxygen species (NO and OH) and iNOS expression as well as elevated enzymic and non-enzymic antioxidants were observed in the eye lens.
CONCLUSION: These results indicate the preventive effect of hesperidin against cataract in hyperglycemic rats.
Collapse
|
23
|
Siddiqi A, Hasan SK, Nafees S, Rashid S, Saidullah B, Sultana S. Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways. Exp Mol Pathol 2015; 99:641-53. [DOI: 10.1016/j.yexmp.2015.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/04/2015] [Indexed: 12/23/2022]
|
24
|
Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci 2015; 137:125-32. [PMID: 26188593 DOI: 10.1016/j.lfs.2015.07.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/13/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Many plants produce flavonoids as secondary metabolites. These organic compounds may be involved in the defense against plant-threatening factors, such as microbes and toxins. Certain flavonoids protect their origin source against plant pathogens, but they also exhibit potential healthy properties in human organisms. Hesperidin (Hsd) and its aglycone, hesperetin (Hst), are two flavonoids from the Citrus species that exhibit various biological properties, including antioxidant, antiinflammatory and anticancer effects. Recent studies indicated that Hst and Hsd possess antimicrobial activity. Although the exact mechanisms behind their antimicrobial properties are not fully understood, several mechanisms such as the activation of the host immune system, bacterial membrane disruption, and interference with microbial enzymes, have been proposed. Hsd and Hst may also have protective effects against toxicity induced by various agents. These natural substances may contribute to the protection of cells and tissues through their antioxidant and radical scavenging activities. This review discusses the protective activities of Hsd and Hst against microbes and several toxicities induced by oxidants, chemicals, toxins, chemotherapy and radiotherapy agents, which were reported in vitro and in vivo. Furthermore, the probable mechanisms behind these activities are discussed.
Collapse
Affiliation(s)
- Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamideh Parhiz
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats. Mol Cell Biochem 2015; 406:9-20. [DOI: 10.1007/s11010-015-2400-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
|
26
|
Subramanian P, Anandan R, Jayapalan JJ, Hashim OH. Hesperidin protects gentamicin-induced nephrotoxicity via Nrf2/HO-1 signaling and inhibits inflammation mediated by NF-κB in rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Fouad AA, Albuali WH, Zahran A, Gomaa W. Protective effect of naringenin against gentamicin-induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:420-429. [PMID: 25128772 DOI: 10.1016/j.etap.2014.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
The protective effect of naringenin, a flavonoid compound isolated from citrus fruits, was investigated against nephrotoxicity induced by gentamicin (80mgkg(-1)/day, i.p., for eight days) in rats. Naringenin treatment (50mgkg(-1)/day, p.o.) was administered for eight days, starting on the same day of gentamicin administration. Gentamicin caused significant elevations of serum creatinine, and kidney tissue levels of malondialdehyde, nitric oxide, and interleukin-8, and a significant decrease in renal glutathione peroxidase activity. Naringenin treatment significantly ameliorated the changes in the measured biochemical parameters resulted from gentamicin administration. Also, naringenin markedly attenuated the histopathological renal tissue injury observed with gentamicin. Immunohistochemical examinations showed that naringenin significantly reduced the gentamicin-induced expression of kidney injury molecule-1, vascular endothelial growth factor, inducible nitric oxide synthase, and caspase-9, and increased survivin expression in the kidney tissue. It was concluded that naringenin, through its antioxidant and anti-inflammatory effects, may represent a therapeutic option to protect against gentamicin nephrotoxicity.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Waleed H Albuali
- Department of Pediatrics, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ahmed Zahran
- Department of Internal Medicine, Nephrology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Wafaey Gomaa
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Aswar M, Kute P, Mahajan S, Mahajan U, Nerurkar G, Aswar U. Protective effect of hesperetin in rat model of partial sciatic nerve ligation induced painful neuropathic pain: an evidence of anti-inflammatory and anti-oxidative activity. Pharmacol Biochem Behav 2014; 124:101-7. [PMID: 24871567 DOI: 10.1016/j.pbb.2014.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 12/28/2022]
Abstract
Behavioral, biochemical and gene expression changes were investigated in a rat model of partial sciatic nerve ligation (PSNL) after administration of hesperetin (20, 50mg/kg; p.o.), pregabalin (10mg/kg; p.o.) or vehicle (1 ml/kg, p.o.). Thirty-six animals were randomly divided into six groups. Left sciatic nerve was exposed and ligated, animals in the control and test groups were treated orally with respective drugs for fifteen days. Nociceptive threshold was assessed on 0 day and thereafter every three days. Three weeks later, sciatic nerve tissue homogenate was prepared and subjected for estimation of oxidative markers namely total protein, nitric oxide, lipid peroxidase, interleukins (IL-1β and IL-6) and TNF-α. Administration of hesperetin resulted in a dose dependent attenuation in PSNL-induced mechanical and thermal hyperalgesia, mechanical allodynia as well as down regulation of IL-1β, IL-6 and TNF-α, and biochemical markers. Consequently, it can be concluded that anti-hyperalgesic effect of hesperetin in rats after PSNL may be attributed to various oxidative markers as well as the pro-inflammatory mediators secreted at the injury site. Hesperetin appears to be a promising candidate for the development as a novel therapeutic for the patients suffering from the neuropathic pain.
Collapse
Affiliation(s)
- Manoj Aswar
- Dept. of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, Maharashtra, India.
| | - Prasad Kute
- Dept. of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, Maharashtra, India
| | - Snehal Mahajan
- Dept. of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, Maharashtra, India
| | - Umesh Mahajan
- Dept. of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, Maharashtra, India
| | - Geetanjali Nerurkar
- Dept. of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, Maharashtra, India
| | - Urmila Aswar
- Dept. of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
29
|
Hamdan DI, Mahmoud MF, Wink M, El-Shazly AM. Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:907-15. [PMID: 24691249 DOI: 10.1016/j.etap.2014.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 05/13/2023]
Abstract
Hesperidin and neohesperidin are the major flavanones isolated from bittersweet orange. It was recently reported that they have potent anti-inflammatory effects in various inflammatory models. In the present study, the effects of hesperidin and neohesperidin on indomethacin-induced ulcers in rats and the underlying mechanisms were investigated. Gastric ulcers were induced in rats with a single dose of indomethacin. The effects of pretreatment with hesperidin and neohesperidin were assessed in comparison with omeprazole as reference standard. Ulcer index, gene expression of gastric cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), lipid peroxidation product, malondialdhyde (MDA), and reduced glutathione (GSH) content in stomach were measured. Furthermore, gross and histopathological examination was performed. Our results indicated that both hesperidin and neohesperidin significantly aggravated gastric damage caused by indomethacin administration as evidenced by increased ulcer index and histopathological changes of stomach.
Collapse
Affiliation(s)
- Dalia I Hamdan
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, ImNeuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|