1
|
Cherrada N, Elkhalifa Chemsa A, Erol E, Günaydın Akyildiz A, Oyku Dinc H, Gheraissa N, Ghemam Amara D, Rebiai A, Abdel-Kader MS, Messaoudi M. Phytochemical profiling of Salsola tetragona Delile by LC-HR/MS and investigation of the antioxidant, anti-inflammatory, cytotoxic, antibacterial and anti-SARS-CoV-2 activities. Saudi Pharm J 2023; 31:101731. [PMID: 37638223 PMCID: PMC10448174 DOI: 10.1016/j.jsps.2023.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to investigate the phytochemical composition and biological activity of Salsola tetragona Delile. (Amaranthaceae), a medicinal plant. The study evaluated the antioxidant potential of the crude extract and five fractions of S. tetragona using DPPH•, ABTS•+, CUPRAC, and metal chelating assays. The anti-inflammatory activity was determined using a protein denaturation assay, and the antibacterial activity was determined by the Minimum inhibitory concentrations (MICs) for the growth of Escherichia coli and Staphylococcus aureus strains. The MTT test and an in vitro scratch assay evaluated the effects on cell viability and cell migration. The potential anti-SARS-CoV-2 activity was assessed by analyzing the effects on the interaction between ACE2 and Spike protein. The bioactive compounds present in the plant were identified using LC-HR/MS analysis. The crude hydromethanolic extract (STM) and five fractions of S. tetragona, n-hexane (STH), dichloromethane (STD), ethyl acetate (STE), n-butanol (STB), and aqueous (STW) showed significant antioxidant activity in four different tests. In the anti-inflammatory assay, the ethyl acetate fraction exhibited significantly higher activity than Aspirin® (IC50 = 13 ± 5 µg/mL). The crude extract and its fractions showed positive antibacterial activity with similar MICs. In the cytotoxicity assay against the breast cancer cell line MCF7, the dichloromethane fractions (STD) were very effective and demonstrated superiority over the other fractions (IC50 = 98 µg/mL). Moreover, the potential of the extract and fractions as anti-SARS-CoV-2, the ethyl acetate, and dichloromethane fractions demonstrated important activity in this test. LC-HR/MS analysis identified 16 different phenolic compounds, Eleven of which had not been previously reported in the genus Salsola. The results suggest that the extracts of S. tetragona have the potential to become new sources for developing plant-based therapies for managing a range of diseases.
Collapse
Affiliation(s)
- Nezar Cherrada
- El Oued University, Faculty of Life and Natural Sciences, Department of Cellular and Molecular Biology, Algeria
- El Oued University, Laboratory of Biodiversity and Application of Biotechnology in Agriculture, Algeria
| | - Ahmed Elkhalifa Chemsa
- El Oued University, Laboratory of Biodiversity and Application of Biotechnology in Agriculture, Algeria
- El Oued University, Faculty of Life and Natural Sciences, Department of Biology, Algeria
| | - Ebru Erol
- Department Of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Günaydın Akyildiz
- Department Of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Harika Oyku Dinc
- Department Of Pharmaceutical Microbiology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Noura Gheraissa
- El Oued University, Faculty of Life and Natural Sciences, Department of Cellular and Molecular Biology, Algeria
- El Oued University, Laboratory of Biodiversity and Application of Biotechnology in Agriculture, Algeria
| | - Djilani Ghemam Amara
- El Oued University, Faculty of Life and Natural Sciences, Department of Cellular and Molecular Biology, Algeria
- El Oued University, Laboratory Biology, Environment And Health, Algeria
| | - Abdelkrim Rebiai
- Chemistry Department, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
2
|
ElNaggar MH, Eldehna WM, Abourehab MAS, Abdel Bar FM. The old world salsola as a source of valuable secondary metabolites endowed with diverse pharmacological activities: a review. J Enzyme Inhib Med Chem 2022; 37:2036-2062. [PMID: 35875938 PMCID: PMC9327781 DOI: 10.1080/14756366.2022.2102005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Salsola is an important genus in the plant kingdom with diverse traditional, industrial, and environmental applications. Salsola species are widely distributed in temperate regions and represent about 45% of desert plants. They are a rich source of diverse phytochemical classes, such as alkaloids, cardenolides, triterpenoids, coumarins, flavonoids, isoflavonoids, and phenolic acids. Salsola spp. were traditionally used as antihypertensive, anti-inflammatory, and immunostimulants. They attracted great interest from researchers as several pharmacological activities were reported, including analgesic, antipyretic, antioxidant, cytotoxic, hepatoprotective, contraceptive, antidiabetic, neuroprotective, and antimicrobial activities. Genus Salsola is one of the most notorious plant genera from the taxonomical point of view. Our study represents a comprehensive review of the previous phytochemical and biological research on the old world Salsola secies. It is designed to be a guide for future research on different plant species that still belong to this genus or have been transferred to other genera.
Collapse
Affiliation(s)
- Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Ahmed WMS, Ibrahim MA, Helmy NA, ElKashlan AM, Elmaidomy AH, Zaki AR. Amelioration of aluminum-induced hepatic and nephrotoxicity by Premna odorata extract is mediated by lowering MMP9 and TGF-β gene alterations in Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72827-72838. [PMID: 35614356 PMCID: PMC9522688 DOI: 10.1007/s11356-022-20735-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
This study aims to investigate the effect of Premna odorata (P. odorata) (Lamiaceae) on the hepatic and nephrotoxicity induced by aluminum chloride (AlCl3) in rat. Wistar male rats were equally classified into four groups: control, P. odorata extract (500 mg/kg B.W.), AlCl3 (70 mg/kg B.W.), and P. odorata extract plus AlCl3 groups. All treatments were given orally for 4 weeks. Serum transaminases and some biochemical parameters, hepatic and renal antioxidant/oxidant biomarker; tumor necrosis factor-α (TNF-α); matrix metalloproteinase (MMP9) and transforming growth factor-β (TGF-β) mRNA expression; histopathological examination of the liver, and kidneys were investigated. The obtained results revealed that AlCl3 significantly increased the activities of serum aspartate transaminase, alanine transaminase, and alkaline phosphatase as well as produced a significant increase in total cholesterol, triglyceride, urea, and creatinine concentrations, while there were no changes observed in the total protein, albumin, and globulin concentrations. Also, aluminum administration significantly decreased the reduced glutathione content and increased the catalase activity, malondialdehyde, and TNF-α concentrations in the liver and kidney tissue. Moreover, AlCl3 results in congestion, degeneration, and inflammation of the liver and kidney tissue. Co-treatment of P. odorata extract with AlCl3 alleviated its harmful effects on the previous parameters and reduced the histopathological alterations induced by AlCl3. Therefore, Premna odorata may have a potent protective effect against oxidative stress induced by Al toxicity through downregulation of MMP9 and TGF-β gene expression.
Collapse
Affiliation(s)
- Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Nermeen A Helmy
- Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amr R Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Murshid SSA, Atoum D, Abou-Hussein DR, Abdallah HM, Hareeri RH, Almukadi H, Edrada-Ebel R. Genus Salsola: Chemistry, Biological Activities and Future Prospective-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:714. [PMID: 35336596 PMCID: PMC8953912 DOI: 10.3390/plants11060714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
The genus Salsola L. (Russian thistle, Saltwort) includes halophyte plants and is considered one of the largest genera in the family Amaranthaceae. The genus involves annual semi-dwarf to dwarf shrubs and woody tree. The genus Salsola is frequently overlooked, and few people are aware of its significance. The majority of studies focus on pollen morphology and species identification. Salsola has had little research on its phytochemical makeup or biological effects. Therefore, we present this review to cover all aspects of genus Salsola, including taxonomy, distribution, differences in the chemical constituents and representative examples of isolated compounds produced by various species of genus Salsola and in relation to their several reported biological activities for use in folk medicine worldwide.
Collapse
Affiliation(s)
- Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (D.A.); (R.E.-E.)
| | - Dana Atoum
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (D.A.); (R.E.-E.)
| | - Dina R. Abou-Hussein
- Department of Pharmacoagnosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacoagnosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.H.H.); (H.A.)
| | - Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.H.H.); (H.A.)
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (D.A.); (R.E.-E.)
| |
Collapse
|
5
|
Sadek KM, Mahmoud SFE, Zeweil MF, Abouzed TK. Proanthocyanidin alleviates doxorubicin-induced cardiac injury by inhibiting NF-kB pathway and modulating oxidative stress, cell cycle, and fibrogenesis. J Biochem Mol Toxicol 2021; 35:e22716. [PMID: 33484087 DOI: 10.1002/jbt.22716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023]
Abstract
This study investigated the potential mechanism(s) and the signaling pathway(s) underlying the prophylactic effect of proanthocyanidin extract (PE) against doxorubicin (DOX)-induced cardiotoxicity in rats. A total of 32 male albino rats were randomly allocated into four groups. Control rats were orally administrated normal saline. Rats in the second group were orally administrated PE (50 mg/kg bw/once daily) for 4 weeks. Rats in the third group were intraperitoneally injected with DOX (10 mg/kg on Days 3, 9, 15, and 21 of the experiment). Rats in the fourth group were injected with DOX and PE simultaneously for 4 weeks. DOX significantly augmented the levels of serum heart damage biomarkers. In addition, histopathology indicated that DOX-induced cardiac tissue injury upregulated the expression of fibrogenic factors, alpha smooth muscle actin (α-SMA), transforming growth factor β1 (TGF- β1), and p16INK4A . Downregulation of cell proliferation markers, cyclin-dependent kinase-4 (CDK4), and retinoblastoma (Rb) was also observed. Furthermore, DOX-induced oxidative and inflammatory stress resulted in increased cardiac malondialdehyde (MDA), protein carbonyl (PC), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Decreased cardiac glutathione (GSH) levels and enzyme activity of catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were observed. Treatment of DOX-induced rat cardiotoxicity with PE normalized serum parameters for the aforementioned parameters and alleviated cardiac tissue structure. Furthermore, reduced cardiac tissue α-SMA and TGF-β1, and increased CDK4 and Rb protein expression, along with the amelioration of oxidative and inflammatory effects were observed. PE attenuates DOX-induced cardiomyocyte inflammation possibly by attenuating the nuclear factor kappa-B (NF- kB) signaling pathway. These results indicate that PE may be useful as a preventative agent against DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sahar F E Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed F Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Damanhour, Egypt
| |
Collapse
|
6
|
Abstract
Adriamycin (ADR)-induced chronic heart injury (CHI) is a serious complication of chemotherapy. The present study was designed to assess the ability of fasudil, a Rho kinase inhibitor, to prevent ADR-induced CHI. Forty male 6-week-old C57BL6 mice were randomly divided into the following four groups: (1) control group, (2) CHI induced by adriamycin (ADR group), (3) CHI plus low dose fasudil (ADR + L group), and (4) CHI plus high dose fasudil (ADR + H group). Animals from groups 2-4 received ADR (2.5 mg/kg, i.p.) once a week for 8 weeks, and the control group received saline. Meanwhile, the animals in groups 3-4 received 2 mg/kg/day or 10 mg/kg/day fasudil, respectively. After measurement of cardiac functions, blood samples were collected for biochemical assays. The hearts were excised for histological, immunohistochemistry and western blot study, respectively. Adriamycin produced evident cardiac damage revealed by cardiac functions changes: decreased left ventricular fractional shortening (FS), left ventricular ejection fraction (EF), increased left ventricular volume, cardiac injury marker changes (increased creatine kinase, lactate dehydrogenase), antioxidant enzymes activity changes (decreased superoxide dismutase), and lipid peroxidation (elevated malondialdehyde) to the control group. Fasudil treatment notably ameliorated ADR-induced cardiac damage, restored heart function, suppressed cell apoptosis and senescence, ameliorated redox imbalance, and DNA damage. Fasudil has a protective effect on ADR-induced chronic heart injury, which partially attributed to its antioxidant, anti-apoptotic effects of inhibiting the RhoA/Rho kinase (ROCK) signaling pathway.
Collapse
|
7
|
Rejinold NS, Yoo J, Jon S, Kim YC. Curcumin as a Novel Nanocarrier System for Doxorubicin Delivery to MDR Cancer Cells: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28458-28470. [PMID: 30064206 DOI: 10.1021/acsami.8b10426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Curcumin (CRC) has been widely used as a therapeutic agent for various drug delivery applications. In this work, we focused on the applicability of CRC as a nanodrug delivery agent for doxorubicin hydrochloride (DOX) (commercially known as Adriamycin) coated with poly(ethylene glycol) (PEG) as an effective therapeutic strategy against multidrug-resistant cancer cells. The developed PEG-coated CRC/DOX nanoparticles (NPs) (PEG-CRC/DOX NPs) were well localized within the resistant cancer cells inducing apoptosis confirmed by flow cytometry and DNA fragmentation assays. The PEG-CRC/DOX NPs suppressed the major efflux proteins in DOX-resistant cancer cells. The in vivo biodistribution studies on HCT-8/DOX-resistant tumor xenograft showed improved bioavailability of the PEG-CRC/DOX NPs, and thereby suppressed tumor growth significantly compared to the other samples. This study clearly shows that curcumin nanoparticles could deliver DOX efficiently into the multidrug-resistant cancer cells to have potential therapeutic benefits.
Collapse
|
8
|
Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol 2017; 80:745-753. [DOI: 10.1007/s00280-017-3413-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
|
9
|
Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 90:935-946. [PMID: 28460429 DOI: 10.1016/j.biopha.2017.04.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications.
Collapse
Affiliation(s)
| | - Ammar Ismail
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr Muhammad Abdo Salem
- Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Pharmacology Department, Dr. D.Y. Patil Medical College, Pune, Maharashtra, India.
| |
Collapse
|