1
|
Lepáček M, Boďo P, Prnová MŠ, Bučková M, Pangallo D, Pavlović J. Impact of novel aldose reductase inhibitor drug on gut microbiota composition and metabolic health in ZDF 'lean' rats. Chem Biol Interact 2025; 413:111490. [PMID: 40139546 DOI: 10.1016/j.cbi.2025.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
A novel multi-target drug, cemtirestat, inhibiting aldose reductase (ALR2) has been developed to prevent secondary diabetic complications and act as an antioxidant against hyperglycemia-related processes. This study examines cemtirestat's impact on gut microbiome composition, drug metabolism, and therapeutic efficacy in male Zucker diabetic fatty (ZDF) "Lean" rats. Rats were divided into the control group (C) and the treated group (T), which received 7.7 mg/kg/day cemtirestat for two months, with weekly monitoring of food, fluid intake, and weight gain. Stool, urine, and plasma samples were analyzed biochemically, and fecal DNA was sequenced using Oxford Nanopore Technology. Treated rats exhibited less weight gain, likely due to cemtirestat's antioxidant effects. Biochemical analyses revealed no significant changes in glucose, liver enzymes, or cholesterol. Although there was a slight increase in alanine aminotransferase (ALT), our study found that levels of other liver enzymes such as aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin remained within normal limits, suggesting the observed increase in ALT was not indicative of drug-induced liver injury. LefSe microbiome analysis revealed an enrichment of beneficial bacteria like Blautia and Faecalibacterium in treated rats. Microbial community structure did not distinctly separate treated from control groups, but differences emerged over time. DeSeq2 analysis identified varying genera abundances over weeks, with treated samples enriched in beneficial bacteria by Week 8. Correlation analysis linked plasma insulin levels positively with Prevotella and negatively with Clostridium and Lactobacillus. Cemtirestat's impact on weight and microbiota suggests the potential to improve gut health. Further research is required to uncover cemtirestat's mechanism in diabetes management, drug metabolism, and therapeutic efficacy.
Collapse
Affiliation(s)
- Marek Lepáček
- Center of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovakia
| | - Pavol Boďo
- Center of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovakia
| | - Marta Šoltésová Prnová
- Center of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 841 04, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 841 04, Bratislava, Slovakia
| | - Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 841 04, Bratislava, Slovakia.
| |
Collapse
|
2
|
Kovacikova L, Prnova MS, Bodo P, Stefek M. Cemtirestat dimerization in liposomes and erythrocytes exposed to peroxyl radicals was reverted by thiol-disulfide exchange with GSH. Free Radic Res 2024; 58:1-10. [PMID: 38145452 DOI: 10.1080/10715762.2023.2298852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
In the model system of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) liposomes exposed to peroxyl radicals generated by the azoinitiator AAPH, cemtirestat (CMTI-SH) inhibited lipid peroxidation more efficiently than the natural antioxidant glutathione. In the concentrations 100 to 500 µM, both CMTI-SH and GSH induced distinct lag phases in the initial stages of lipid peroxidation yet GSH produced consistently shorter induction periods (about twice) than equimolar CMTI-SH. Moreover, concentration dependence of lipid peroxidation inhibition measured at the 80th minute, revealed about three times higher IC50 value for GSH compared to CMTI-SH. When the incubations prolonged till 180 min no further absorbance changes at 270 and 302 nm, respectively, occurred. After addition of the reducing agent tris(2-carboxyethyl)phosphine, the absorbance peak at 270 nm shifted back to 302 nm. These findings pointed to the presence of reducible CMTI-SH disulfide whose definite structure was confirmed by proving identity of TLC retention and spectral data with those of the synthesized CMTI disulfide. When CMTI-SH and GSH were present simultaneously in the liposomal incubations, the mixing effect on the induction period was synergistic rather than additive. This was explained by ability of GSH to reduce CMTI disulfide which was proved in separate experiments with an authentic CMTI disulfide prepared synthetically. This finding was also demonstrated by experiment with CMTI-disulfide to protect the erythrocytes against oxidative damage induced by peroxyl radicals. To conclude, CMTI-SH scavenges reactive oxygen species yielding CMTI disulfide while GSH maintains CMTI-SH in the reduced state. This finding was also demonstrated by experiment with CMTI-disulfide to protect the erythrocytes against oxidative damage induced by peroxyl radicals. CMTI-SH would thus represent the first line of the cellular defense against peroxyl radical mediated oxidative stress.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Marta S Prnova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Pavol Bodo
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
3
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
4
|
Kovacikova L, Prnova MS, Majekova M, Bohac A, Karasu C, Stefek M. Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications. Molecules 2021; 26:molecules26102867. [PMID: 34066081 PMCID: PMC8151378 DOI: 10.3390/molecules26102867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023] Open
Abstract
Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Magdalena Majekova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Andrej Bohac
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- Biomagi, Inc., Mamateyova 26, 851 04 Bratislava, Slovakia
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Beşevler, 06500 Ankara, Turkey;
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
- Correspondence:
| |
Collapse
|
5
|
Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotox Res 2021; 39:588-597. [PMID: 33713301 DOI: 10.1007/s12640-021-00349-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
Aldose reductase (AR) catalyzes the conversion of glucose to sorbitol in a NADPH-dependent reaction, thereby increasing the production of reactive oxygen species (ROS). Since AR activation is linked to redox dysregulation and cell damage in neurodegenerative diseases, AR inhibitors (ARIs) constitute promising therapeutic tools for the treatment of these disorders. Among these compounds, the novel substituted triazinoindole derivatives cemtirestat (CMTI) and COTI, as well as the clinically employed epalrestat (EPA) and the pyridoindole-antioxidant stobadine (STB), were tested in both PC12 cells and BV2 microglia exposed to four different neurotoxic models. These include (1) oxidative stress with hydrogen peroxide (H2O2), (2) mitochondrial complex IV inhibition with NaN3, (3) endoplasmic reticulum-stress and lipotoxicity induced by palmitic acid/bovine serum albumin (PAM/BSA), and (4) advanced carbonyl compound lipotoxicity by 4-hydroxynonenal (4-HNE). All toxic compounds decreased cell viability and increased ROS formation in both PC12 and BV2 cells in a concentration-dependent manner (1-1000 μM; NaN3 < H2O2≈PAM/BSA < 4-HNE). In PC12 cells, EPA increased cell viability in all toxic models only at 1 μM, whereas CMTI restored baseline viability in all toxic models. COTI afforded protection against lipotoxicity, while STB only prevented H2O2-induced toxicity. Except for the 4-HNE model, EPA prevented ROS generation in all other toxic models, whereas CMTI, COTI, and STB prevented ROS production in all toxic models. In BV2 cells, EPA and CMTI restored baseline cell viability in all toxic models tested, while COTI and STB did not prevent the loss of viability in the NaN3 model. All ARIs and STB efficiently prevented ROS formation in all toxic models in a concentration-independent manner. The differential protective effects evoked by the novel ARIs and STB on the toxic models tested herein provide novel and relevant comparative evidence for the design of specific therapeutic strategies against neurodegenerative events associated with neurological disorders.
Collapse
|
6
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
7
|
Valachová K, Mach M, Šoltés L. Oxidative Degradation of High-Molar-Mass Hyaluronan: Effects of Some Indole Derivatives to Hyaluronan Decay. Int J Mol Sci 2020; 21:ijms21165609. [PMID: 32764392 PMCID: PMC7460571 DOI: 10.3390/ijms21165609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Indole derivatives such as isatin (a natural compound), cemtirestat, stobadine, and its derivatives (synthetic compounds) are known to have numerous positive effects on human health due to regulation of oxidative status. The aim of the study was to assess radical scavenging capacities of these compounds and explore their potential protective effects against reactive oxygen species formed during Cu(II) ions and ascorbate-induced degradation of high-molar-mass hyaluronan. Based on the IC50 values determined by the ABTS assay, the most effective compound was SM1M3EC2·HCl reaching the value ≈ 11 µmol/L. The lowest IC50 value reached in the DPPH assay was reported for cemtirestat ≈ 3 µmol/L. Great potency of inhibition of hyaluronan degradation was shown by cemtirestat, followed by isatin even at low concentration 10 µmol/L. On the other hand, stobadine·2HCl had also a protective effect on hyaluronan degradation, however at greater concentrations compared to cemtirestat or isatin. SME1i-ProC2·HCl reported to be a less effective compound and SM1M3EC2·HCl can be considered almost ineffective compared to stobadine·2HCl. In conclusion, our results showed that both isatin and cemtirestat were capable of attenuating the degradation of high-molar-mass hyaluronan due to their ability to complex/sequester cupric ions.
Collapse
|
8
|
Soltesova Prnova M, Medina-Campos ON, Pedraza-Chaverri J, Colín-González AL, Piedra-García F, Rangel-López E, Kovacikova L, Ceylan A, Karasu C, Santamaria A, Stefek M. Antioxidant Mechanisms in the Neuroprotective Action of Cemtirestat: Studies in Chemical Models, Liposomes and Rat Brain Cortical Slices. Neuroscience 2020; 443:206-217. [PMID: 32681927 DOI: 10.1016/j.neuroscience.2020.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Neuroprotective action of the novel aldose reductase (AR) inhibitor cemtirestat (CMT), 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl)acetic acid, was recently proved in experimental rat models of diabetes. The in vivo results indicated that the antioxidant activity of this compound might have participated on its effects. The aim of this study was to explore in a greater detail the putative antioxidant mechanisms potentially involved in CMT mediated neuroprotection. Antioxidant efficacy per se of CMT was proved by a ferric reducing antioxidant power (FRAP) test and CMT was found to scavenge reactive oxygen species (ROS) generated in water phase chemically with decreasing efficacy as follows ROO > H2O2 > O2-. Studies in liposomes revealed the ability of CMT to inhibit lipid peroxidation more efficiently than melatonin, yet less effectively than Trolox. In the rat brain cortical slices, CMT reduced the loss of cell viability/mitochondrial function induced by quinolinic acid (QUIN), and inhibited lipid peroxidation. In addition, CMT normalized the GSH/GSSG ratio which could be explained, at least partially, by the ability of this compound to release free GSH from the pool of endogenously bound disulfides. Neuronal cell damage induced by QUIN or H2O2 was reduced by CMT as proved by significant drop in propidium iodide incorporation into cells. On balance then, our results corroborated the notion of a multifunctional action of CMT as a drug combining AR inhibition with direct antioxidant and ROS scavenging activity. Moreover, the ability of CMT to restore thiol-disulfide homeostasis was proved.
Collapse
Affiliation(s)
- Marta Soltesova Prnova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Francisco Piedra-García
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Lucia Kovacikova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Asli Ceylan
- Department of Medical Pharmacology, School of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
9
|
General toxicity assessment of the novel aldose reductase inhibitor cemtirestat. Interdiscip Toxicol 2020; 12:120-128. [PMID: 32210700 PMCID: PMC7085302 DOI: 10.2478/intox-2019-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/15/2019] [Indexed: 11/20/2022] Open
Abstract
Cemtirestat, 3-mercapto-5H-[1,2,4]-triazino[5,6-b] indole-5-acetic acid was recently designed and patented as a highly selective and efficient aldose reductase inhibitor endowed with antioxidant activity. The aim of the present study was to assess the general toxicity of cemtirestat using in silico predictions, in vitro and in vivo assays. ProTox-II toxicity prediction software gave 17 "Inactive" outputs, a mild hepatotoxicity score (0.52 probability) along with a predicted LD50 of 1000 mg/kg. Five different cell lines were used including the immortalized mouse microglia BV-2, the primary human fibroblasts VH10, the insulinoma pancreatic β-cells INS-1E, the human colon cancer cells HCT116 and the human immortalized epithelial endometrial cell lines HIEEC. In contrast to the clinically used epalrestat, cemtirestat showed remarkably low cytotoxicity in several different cell culture viability tests such as MTT proliferation assay, neutral red uptake, BrdU incorporation, WST-1 proliferation assay and propidium iodide staining followed by flow cytometry. In a yeast spotting assay, the presence of cemtirestat in incubation of Saccaromyces cerevisiae at concentrations as high as 1000 μM did not affect cell growth rate significantly. In the 120-day repeated oral toxicity study in male Wistar rats with daily cemtirestat dose of 6.4 mg/kg, no significant behavioral alterations or toxicological manifestations were observed in clinical and pathological examinations or in hematological parameters. In summary, these results suggest that cemtirestat is a safe drug that can proceed beyond preclinical studies.
Collapse
|
10
|
Hlaváč M, Kováčiková L, Prnová MŠ, Šramel P, Addová G, Májeková M, Hanquet G, Boháč A, Štefek M. Development of Novel Oxotriazinoindole Inhibitors of Aldose Reductase: Isosteric Sulfur/Oxygen Replacement in the Thioxotriazinoindole Cemtirestat Markedly Improved Inhibition Selectivity. J Med Chem 2019; 63:369-381. [PMID: 31820975 DOI: 10.1021/acs.jmedchem.9b01747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inhibition of aldose reductase (AR), the first enzyme of the polyol pathway, is a promising approach in treatment of diabetic complications. We proceeded with optimization of the thioxotriazinoindole scaffold of the novel AR inhibitor cemtirestat by replacement of sulfur with oxygen. A series of 2-(3-oxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl)acetic acid derivatives (OTIs), designed by molecular modeling and docking, were synthesized. More electronegative and less bulky oxygen of OTIs compared to the sulfur of the original thioxotriazinoindole congeners was found to form a stronger H-bond with Leu300 of AR and to render larger rotational flexibility of the carboxymethyl pharmacophore. AR inhibitory activities of the novel compounds were characterized by the IC50 values in a submicromolar range. Markedly enhanced inhibition selectivity relative to the structurally related aldehyde reductase was recorded. To conclude, structure modification of the original carboxymethylated thioxotriazinoindole cemtirestat by isosteric replacement of sulfur with oxygen in combination with variable N(2) simple substituents provided novel analogues with increased AR inhibition efficacy and markedly improved selectivity.
Collapse
Affiliation(s)
- Matúš Hlaváč
- Department of Organic Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Lucia Kováčiková
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| | - Marta Šoltésová Prnová
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| | - Peter Šramel
- Department of Organic Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Gabriela Addová
- Institute of Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Magdaléna Májeková
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| | - Gilles Hanquet
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM , 25 rue Becquerel , 67087 Strasbourg , France
| | - Andrej Boháč
- Department of Organic Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia.,Biomagi, Inc. , Mamateyova 26 , 851 04 Bratislava , Slovakia
| | - Milan Štefek
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| |
Collapse
|
11
|
Prnova MS, Kovacikova L, Svik K, Bezek S, Elmazoğlu Z, Karasu C, Stefek M. Triglyceride-lowering effect of the aldose reductase inhibitor cemtirestat-another factor that may contribute to attenuation of symptoms of peripheral neuropathy in STZ-diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:651-661. [PMID: 31802170 DOI: 10.1007/s00210-019-01769-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
Hyperglycemia is considered a key risk factor for development of diabetic complications including neuropathy. There is strong scientific evidence showing a primary role of aldose reductase, the first enzyme of the polyol pathway, in the cascade of metabolic imbalances responsible for the detrimental effects of hyperglycemia. Aldose reductase is thus considered a significant drug target. We investigated the effects of cemtirestat, a novel aldose reductase inhibitor, in the streptozotocin-induced rat model of uncontrolled type 1 diabetes in a 4-month experiment. Markedly increased sorbitol levels were recorded in the erythrocytes and the sciatic nerve of diabetic animals. Osmotic fragility of red blood cells was increased in diabetic animals. Indices of thermal hypoalgesia were significantly increased in diabetic rats. Tactile allodynia, recorded in diabetic animals in the early stages, turned to mechanical hypoalgesia by the end of the experiment. Treatment of diabetic animals with cemtirestat (i) reduced plasma triglycerides and TBAR levels; (ii) did not affect the values of HbA1c and body weights; (iii) reversed erythrocyte sorbitol accumulation to near control values, while sorbitol in the sciatic nerve was not affected; (iv) ameliorated indices of the erythrocyte osmotic fragility; and (v) attenuated the symptoms of peripheral neuropathy more significantly in the middle of the experiment than at the end of the treatment. Taking into account the lipid metabolism as an interesting molecular target for prevention or treatment of diabetic peripheral neuropathy, the triglyceride-lowering effect of cemtirestat should be considered in future studies. The most feasible mechanisms of triglyceride-lowering action of cemtirestat were suggested.
Collapse
Affiliation(s)
- Marta Soltesova Prnova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Lucia Kovacikova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Karol Svik
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Stefan Bezek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Zübeyir Elmazoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia.
| |
Collapse
|
12
|
Soltesova Prnova M, Svik K, Bezek S, Kovacikova L, Karasu C, Stefek M. 3-Mercapto-5H-1,2,4-Triazino[5,6-b]Indole-5-Acetic Acid (Cemtirestat) Alleviates Symptoms of Peripheral Diabetic Neuropathy in Zucker Diabetic Fatty (ZDF) Rats: A Role of Aldose Reductase. Neurochem Res 2019; 44:1056-1064. [PMID: 30689163 DOI: 10.1007/s11064-019-02736-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Peripheral neuropathy is the most prevalent chronic complication of diabetes mellitus. Good glycemic control can delay the appearance of neuropathic symptoms in diabetic patients but it is not sufficient to prevent or cure the disease. Therefore therapeutic approaches should focus on attenuation of pathogenetic mechanisms responsible for the nerve injury. Considering the role of polyol pathway in the etiology of diabetic neuropathy, we evaluated the effect of a novel efficient and selective aldose reductase inhibitor, 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (cemtirestat), on symptoms of diabetic peripheral neuropathy in Zucker Diabetic Fatty (ZDF) rats. Since the age of 5 months, male ZDF rats were orally administered cemtirestat, 2.5 and 7.5 mg/kg/day, for two following months. Thermal hypoalgesia was evaluated by tail flick and hot plate tests. Tactile allodynia was determined by a von Frey flexible filament test. Two-month treatment of ZDF rats with cemtirestat (i) did not affect physical and glycemic status of the animals; (ii) partially inhibited sorbitol accumulation in red blood cells and the sciatic nerve; (iii) markedly decreased plasma levels of thiobarbituric acid reactive substances; (iv) normalized symptoms of peripheral neuropathy with high significance. The presented findings indicate that inhibition of aldose reductase by cemtirestat is not solely responsible for the recorded improvement of the behavioral responses. In future studies, potential effects of cemtirestat on consequences of diabetes that are not exclusively dependent on glucose metabolism via polyol pathway should be taken into consideration.
Collapse
Affiliation(s)
- Marta Soltesova Prnova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Karol Svik
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Stefan Bezek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Lucia Kovacikova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia.
| |
Collapse
|
13
|
Prnová MŠ, Švík K, Bezek Š, Kovaciková L, Karasu C, Štefek M. CEMTIRESTAT ATTENUATED NEUROLOGICAL DISORDERS IN RAT MODELS OF TYPE I AND TYPE II DIABETES: A BEHAVIORAL STUDY. PATHOPHYSIOLOGY 2018. [DOI: 10.1016/j.pathophys.2018.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|