1
|
Yang C, He Y, Ren S, Ding Y, Liu X, Li X, Sun H, Jiao D, Zhang H, Wang Y, Sun L. Hydrogen Attenuates Cognitive Impairment in Rat Models of Vascular Dementia by Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation. Adv Healthc Mater 2024; 13:e2400400. [PMID: 38769944 DOI: 10.1002/adhm.202400400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. Oxidative stress and neuroinflammation are important factors contributing to cognitive dysfunction in patients with VaD. The antioxidant and anti-inflammatory properties of hydrogen are increasingly being utilized in neurological disorders, but conventional hydrogen delivery has the disadvantage of inefficiency. Therefore, magnesium silicide nanosheets (MSNs) are used to release hydrogen in vivo in larger quantities and for longer periods of time to explore the appropriate dosage and regimen. In this study, it is observed that hydrogen improved learning and working memory in VaD rats in the Morris water maze and Y-maze, which elicits improved cognitive function. Nissl staining of neurons shows that hydrogen treatment significantly improves edema in neuronal cells. The expression and activation of reactive oxygen species (ROS), Thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-1β in the hippocampus are measured via ELISA, Western blotting, real-time qPCR, and immunofluorescence. The results show that oxidative stress indicators and inflammasome-related factors are significantly decreased after 7dMSN treatment. Therefore, it is concluded that hydrogen can ameliorate neurological damage and cognitive dysfunction in VaD rats by inhibiting ROS/NLRP3/IL-1β-related oxidative stress and inflammation.
Collapse
Affiliation(s)
- Congwen Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuxuan He
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Shuang Ren
- Department of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Yiqin Ding
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xinru Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xue Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Hao Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Dezhi Jiao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Haolin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Yingshuai Wang
- Department of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, 261053, China
| |
Collapse
|
2
|
Molecular Hydrogen Neuroprotection in Post-Ischemic Neurodegeneration in the Form of Alzheimer's Disease Proteinopathy: Underlying Mechanisms and Potential for Clinical Implementation-Fantasy or Reality? Int J Mol Sci 2022; 23:ijms23126591. [PMID: 35743035 PMCID: PMC9224395 DOI: 10.3390/ijms23126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, there is a lot of public interest in naturally occurring substances with medicinal properties that are minimally toxic, readily available and have an impact on health. Over the past decade, molecular hydrogen has gained the attention of both preclinical and clinical researchers. The death of pyramidal neurons in especially the CA1 area of the hippocampus, increased permeability of the blood-brain barrier, neuroinflammation, amyloid accumulation, tau protein dysfunction, brain atrophy, cognitive deficits and dementia are considered an integral part of the phenomena occurring during brain neurodegeneration after ischemia. This review focuses on assessing the current state of knowledge about the neuroprotective effects of molecular hydrogen following ischemic brain injury. Recent studies in animal models of focal or global cerebral ischemia and cerebral ischemia in humans suggest that hydrogen has pleiotropic neuroprotective properties. One potential mechanism explaining some of the general health benefits of using hydrogen is that it may prevent aging-related changes in cellular proteins such as amyloid and tau protein. We also present evidence that, following ischemia, hydrogen improves cognitive and neurological deficits and prevents or delays the onset of neurodegenerative changes in the brain. The available evidence suggests that molecular hydrogen has neuroprotective properties and may be a new therapeutic agent in the treatment of neurodegenerative diseases such as neurodegeneration following cerebral ischemia with progressive dementia. We also present the experimental and clinical evidence for the efficacy and safety of hydrogen use after cerebral ischemia. The therapeutic benefits of gas therapy open up new promising directions in breaking the translational barrier in the treatment of ischemic stroke.
Collapse
|
3
|
Evaluation of Neuroprotective Effects of Sugammadex Following a Head Trauma in an Experimental Study. J Craniofac Surg 2021; 33:1260-1264. [PMID: 34690313 DOI: 10.1097/scs.0000000000008292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT To compare the efficacy of mannitol, the first choice of treatment in daily clinical practice for head trauma, and sugammadex, a frequently used neuroanesthesia in recent years. A total of 35 male rats were randomly selected and were divided into 5 groups, each comprising 7 rats. The groups were divided into Group I, sham (n = 7); Group II, control (head trauma, n = 7); Group III, treated with mannitol (head trauma, mannitol 20% 1 g/kg, n = 7); Group IV, treated with sugammadex (head trauma, sugammadex 100 mg/kg, n = 7); and Group V, treated with mannitol and sugammadex (head trauma, mannitol 20% 1 g/kg and sugammadex 100 mg/kg, n = 7). After the sacrification, histological examination and immunohistochemical staining were performed in the brain of all subjects. Mann-Whitney U test was used to evaluate the significance between neuronal density, neuronal nuclei, and activated caspase-3 immunohistochemistry results measured from the prefrontal cortex. Neuronal density showing neuronal viability was observed to significantly increase in Group III compared to Group IV. However, neuronal nuclei immunohistochemistry showing apoptotic neurons also significantly increased. The present study has shown that sugammadex, an agent reversing the effects of neuromuscular blocking agents, has neuroprotective effects and is as effective as mannitol.
Collapse
|
4
|
Huang L, Lenahan C, Boling W, Tang J, Zhang JH. Molecular Hydrogen Application in Stroke: Bench to Bedside. Curr Pharm Des 2021; 27:703-712. [PMID: 32940172 DOI: 10.2174/1381612826666200917152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Effective treatments are limited. Molecular hydrogen is emerging as a novel medical gas with therapeutic potential for various neurological diseases, including stroke. We reviewed the experimental and clinical findings of the effects of molecular hydrogen therapy in stroke patients and models. The underlying neuroprotective mechanisms against stroke pathology were also discussed.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - Warren Boling
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Jiping Tang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| |
Collapse
|
5
|
Chen KD, Lin WC, Kuo HC. Chemical and Biochemical Aspects of Molecular Hydrogen in Treating Kawasaki Disease and COVID-19. Chem Res Toxicol 2021; 34:952-958. [PMID: 33719401 DOI: 10.1021/acs.chemrestox.0c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kawasaki disease (KD) is a systemic vasculitis and is the most commonly acquired heart disease among children in many countries, which was first reported 50 years ago in Japan. The 2019 coronavirus disease (COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has been a pandemic in most of the world since 2020, and since late 2019 in China. Kawasaki-like disease caused by COVID-19 shares some symptoms with KD, referred to as multisystem inflammatory syndrome in children, and has been reported in the United States, Italy, France, England, and other areas of Europe, with an almost 6-10 times or more increase compared with previous years of KD prevalence. Hydrogen gas is a stable and efficient antioxidant, which has a positive effect on oxidative damage, inflammation, cell apoptosis, and abnormal blood vessel inflammation. This review reports the chemical and biochemical aspects of hydrogen gas inhalation in treating KD and COVID-19.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| | - Wen-Chang Lin
- EPOCH Energy Technology Corporation, Kaohsiung, Taiwan 33302.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| |
Collapse
|
6
|
Abstract
Traumatic brain injury (TBI) is a serious global public health problem. Survivors of TBI often suffer from long-term disability, which puts a heavy burden on society and families. Unfortunately, up to now, there is no efficacious treatment for TBI patients in clinical practice. As a reducing gas, hydrogen has been shown to be neuroprotective in multiple cerebral disease models; however, its efficacy in TBI remains controversial. In this review, we will focus on the results of hydrogen in experimental TBI, elaborate the potential mechanisms, and put forward for future researches based on our current understanding and views.
Collapse
Affiliation(s)
- Hong-Wei Hu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Gang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Huang L, Applegate Ii RL, Applegate PM, Gong L, Ocak U, Boling W, Zhang JH. Inhalation of high-concentration hydrogen gas attenuates cognitive deficits in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2020; 9:122-126. [PMID: 31552874 PMCID: PMC6779004 DOI: 10.4103/2045-9912.266986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cognitive deficits are a devastating neurological outcome seen in survivors of cardiac arrest. We previously reported water electrolysis derived 67% hydrogen gas inhalation has some beneficial effects on short-term outcomes in a rat model of global brain hypoxia-ischemia induced by asphyxia cardiac arrest. In the present study, we further investigated its protective effects in long-term spatial learning memory function using the same animal model. Water electrolysis derived 67% hydrogen gas was either administered 1 hour prior to cardiac arrest for 1 hour and at 1-hour post-resuscitation for 1 hour (pre- & post-treatment) or at 1-hour post-resuscitation for 2 hours (post-treatment). T-maze and Morris water maze were used for hippocampal memory function evaluation at 7 and 14 days post-resuscitation, respectively. Neuronal degeneration within hippocampal Cornu Ammonis 1 (CA1) regions was examined by Fluoro-Jade staining ex vivo. Hippocampal deficits were detected at 7 and 18 days post-resuscitation, with increased neuronal degeneration within hippocampal CA1 regions. Both hydrogen gas treatment regimens significantly improved spatial learning function and attenuated neuronal degeneration within hippocampal CA1 regions at 18 days post-resuscitation. Our findings suggest that water electrolysis derived 67% hydrogen gas may be an effective therapeutic approach for improving cognitive outcomes associated with global brain hypoxia-ischemia following cardiac arrest. The study was approved by the Animal Health and Safety Committees of Loma Linda University, USA (approval number: IACUC #8170006) on March 2, 2017.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Richard L Applegate Ii
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lei Gong
- Department of Pharmacy, 1st Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Umut Ocak
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
8
|
Cheng S, Peng L, Xu B, Chen W, Chen Y, Gu Y. Protective Effects of Hydrogen-Rich Water Against Cartilage Damage in a Rat Model of Osteoarthritis by Inhibiting Oxidative Stress, Matrix Catabolism, and Apoptosis. Med Sci Monit 2020; 26:e920211. [PMID: 31927559 PMCID: PMC6977642 DOI: 10.12659/msm.920211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to investigate the mechanisms underlying the potential effects of hydrogen-rich water (HW) on articular cartilage in a rat osteoarthritis (OA) model. Material/Methods A rat model of OA was established using the modified Hulth method, and rats were forced to exercise for 30 min every day 1 week after surgery for 7 weeks. Mankin’s method was used to score the severity of OA. The animals were assigned into the OA group, OA+HW group, and sham operation group. After 8 weeks, the animals in the OA group had a Mankin score >8 points, and HW was administered into the knee joint. After 2 weeks of treatment, articular cartilage was obtained for pathological examination, consisting of hematoxylin and eosin, toluidine blue, and Hoechst staining, as well as quantitative real-time PCR and Western blot analyses. This combination of pharmacological and molecular biological analyses was performed to examine the mechanism underlying the protective effect of HW on articular cartilage. Results The antioxidant effects of HW suppressed oxidative damage, which may have aided the inhibition of ECM-degrading enzymes (MMP3, MMP13, ADAMT4, and ADAMT5), the upregulation of Col II and aggrecan expression, and the downregulation of COX-2, iNOS, and NO expression. The results of HE staining indicated intra-articular treatment of HW attenuated cartilage degradation. However, Hoechst staining in the OA group indicated the nuclei of the fragmented chondrocytes were condensed compared to the sham operation group, and this effect was inhibited by HW. Conclusions HW showed a protective effect against the progression of OA in an animal model, which may have been mediated by its anti-oxidant and anti-apoptotic activities.
Collapse
Affiliation(s)
- ShaoWen Cheng
- Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - BaiChao Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland).,Hainan Medical College, Haikou, Hainan, China (mainland)
| | - WenSheng Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - YangPing Chen
- Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - YunTao Gu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| |
Collapse
|
9
|
Marchidann A. Hydrogen, the next neuroprotective agent? FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2019-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Adrian Marchidann
- Stony Brook University Hospital, State University of New York, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Hydrogen as a complementary therapy against ischemic stroke: A review of the evidence. J Neurol Sci 2018; 396:240-246. [PMID: 30529801 DOI: 10.1016/j.jns.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is one of the most common sources of mortality in the world. Researchers have been trying to find a complementary therapy to treat ischemic stroke in order to improve its prognosis and expand the therapeutic window for reperfusion treatment. For this reason, many experimental and clinical trials studying the effects of hydrogen against ischemic stroke have been published. Hydrogen gas has been found to eliminate hydroxyl free radical and peroxynitrite anions as well as producing therapeutic effect in patients with ischemic stroke. Many studies have been published illustrating its anti-oxidative, anti-inflammatory and anti-apoptotic effects. The purpose of this article is to review the literature concerning treatment of cerebral I/R injury or ischemic stroke with hydrogen therapy. Specifically, we will examine the appropriate laboratory methods, mechanisms of hydrogen therapy, and outcomes of relevant clinical trials. We conclude this review with a discussion on future investigations of hydrogen therapy to treat ischemic stroke.
Collapse
|
11
|
Wang Q, Lv H, Lu L, Ren P, Li L. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. J Matern Fetal Neonatal Med 2018; 32:3685-3692. [PMID: 29681183 DOI: 10.1080/14767058.2018.1468881] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is an important cause of neonatal death and disability. At present, there is no unified standard and specialized treatment method for neonatal HIE. In clinical practice, we have found that a gap remains between preclinical medical research and clinical application in the treatment of neonatal HIE. To promote an organic combination of preclinical research and clinical application, we propose the different phases as intervention targets, based on the pathophysiologic changes in phases I, II, and III of neonatal HIE; moreover, we suggest transformative medicine as a principle that may improve the therapeutic effect by blocking the progression of the disease to an irreversible stage. For instance, in phase I, mild hypothermia, free radical scavenger (erythropoietin, hydrogen-rich saline), excitatory amino acid receptor blocker, and neuroprotective agents should be administered to neonates with moderate/severe HIE; in phase II, following phase I treatment, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients; in phase III, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients. As soon as the patient's condition has stabilized, acupuncture, massage, and rehabilitation training should be performed. Following further study of stem cells, stem cell transplantation is expected to become the most promising therapeutic candidate for treatment of severe neonatal HIE with its sequelae.
Collapse
Affiliation(s)
- Qiuli Wang
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Hongyan Lv
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lixin Lu
- c Department of Pediatrics , Handan 7th Hospital , Handan , PR China
| | - Pengshun Ren
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lianxiang Li
- b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,d Department of Neural Development and Neural Pathology , Hebei University of Engineering School of Medicine , Handan , PR China
| |
Collapse
|
12
|
Nakayama M, Kabayama S, Ito S. The hydrogen molecule as antioxidant therapy: clinical application in hemodialysis and perspectives. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0036-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
14
|
Zhao Y, Xiao M, He W, Cai Z. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits. Neuropsychiatr Dis Treat 2015; 11:507-16. [PMID: 25750531 PMCID: PMC4348135 DOI: 10.2147/ndt.s73836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND PURPOSE The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB-BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. METHODS The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. RESULTS The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007). The number of times the platform position was crossed for sham-operation rats was more than that of the model groups in the corresponding platform location (P=0.0021). The number of times the platform position was crossed for minocycline treatment animals was significantly increased compared to the model groups in the corresponding platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent bilateral occlusion of both common carotid arteries in the model group. Minocycline increased the expression of CREB, pCREB, and BDNF, and improved cognitive suffered from impairment of permanent bilateral occlusion of both common carotid arteries. CONCLUSION Minocycline improved cognitive impairment from cerebral ischemia via enhancing CREB, pCREB, and BDNF activity in the hippocampus.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| |
Collapse
|
15
|
Hydrogen-rich saline attenuates neuronal ischemia--reperfusion injury by protecting mitochondrial function in rats. J Surg Res 2014; 192:564-72. [PMID: 24969549 DOI: 10.1016/j.jss.2014.05.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/30/2014] [Accepted: 05/19/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hydrogen, a popular antioxidant gas, can selectively reduce cytotoxic oxygen radicals and has been found to protect against ischemia-reperfusion (I/R) injury of multiple organs. Acute neuronal death during I/R has been attributed to loss of mitochondrial permeability transition coupled with mitochondrial dysfunction. This study was designed to investigate the potential therapeutic effect of hydrogen-rich saline on neuronal mitochondrial injury from global cerebral I/R in rats. MATERIALS AND METHODS We used a four-vessel occlusion model of global cerebral ischemia and reperfusion, with Sprague-Dawley rats. The rats were divided randomly into six groups (n = 90): sham (group S), I/R (group I/R), normal saline (group NS), atractyloside (group A), hydrogen-rich saline (group H), and hydrogen-rich saline + atractyloside (group HA). In groups H and HA, intraperitoneal hydrogen-rich saline (5 mL/kg) was injected immediately after reperfusion, whereas the equal volume of NS was injected in the other four groups. In groups A and HA, atractyloside (15 μL) was intracerebroventricularly injected 10 min before reperfusion, whereas groups NS and H received equal NS. The mitochondrial permeability transition pore opening and mitochondrial membrane potential were measured by spectrophotometry. Cytochrome c protein expression in the mitochondria and cytoplasm was detected by western blot. The hippocampus mitochondria ultrastructure was examined with transmission electron microscope. The histologic damage in hippocampus was assessed by hematoxylin and eosin staining. RESULTS Hydrogen-rich saline treatment significantly improved the amount of surviving cells (P < 0.05). Furthermore, hydrogen-rich saline not only reduced tissue damage, the degree of mitochondrial swelling, and the loss of mitochondrial membrane potential but also preserved the mitochondrial cytochrome c content (P < 0.05). CONCLUSIONS Our study showed that hydrogen-rich saline was able to attenuate neuronal I/R injury, probably by protecting mitochondrial function in rats.
Collapse
|
16
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
17
|
Xin HG, Zhang BB, Wu ZQ, Hang XF, Xu WS, Ni W, Zhang RQ, Miao XH. Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats. Mol Cell Biochem 2014; 392:117-24. [PMID: 24652103 DOI: 10.1007/s11010-014-2024-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/05/2014] [Indexed: 01/19/2023]
Abstract
In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of renal disease. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. Herein, we investigated the protective effect of hydrogen-rich water (HW) against renal injury in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar-Kyoto rats were randomized into HW-treated (1.3 ± 0.2 mg/l for 3 months, drinking) and vehicle-treated group. Although treatment with HW had no significant effect on blood pressure, it significantly ameliorated renal injury in SHR. Treatment with HW lowered reactive oxygen species formation, upregulated the activities of superoxide dismutase, glutathione peroxidase, glutathione-S-epoxide transferase, and catalase, and suppressed NADPH oxidase activity. Treatment with HW in SHR depressed pro-inflammatory cytokines expression including TNF-α, IL-6, IL-1β, and macrophage chemoattractant protein 1, which might be mediated by suppressing nuclear factor-κB activation. In addition, treatment with HW had protective effect on mitochondrial function including adenosine triphosphate formation and membrane integrity in SHR. In conclusion, consumption of HW is a promising strategy to alleviate renal injury as a supplement for anti-hypertensive therapy.
Collapse
Affiliation(s)
- Hai-Guang Xin
- Department of Infectious Disease, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Dong Y, Chen H, Han H, Yu Y, Wang G, Zeng Y, Xie K. Protective effects of hydrogen-rich saline in a rat model of permanent focal cerebral ischemia via reducing oxidative stress and inflammatory cytokines. Brain Res 2012; 1486:103-11. [PMID: 23010312 DOI: 10.1016/j.brainres.2012.09.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 09/16/2012] [Accepted: 09/18/2012] [Indexed: 11/17/2022]
Abstract
Hydrogen gas (H(2)) as a new medical gas exerts organ-protective effects through regulating oxidative stress, inflammation and apoptosis. In contrast to H(2), hydrogen-rich saline (HS) may be more suitable for clinical application. The present study was designed to investigate whether HS can offer a neuroprotective effect in a rat model of permanent focal cerebral ischemia and what mechanism(s) underlies the effect. Sprague-Dawley rats were subjected to permanent focal cerebral ischemia induced by permanent middle cerebral artery occlusion (pMCAO). Different doses of HS or normal saline were intraperitoneally administered at 5min after pMCAO or sham operation followed by injections at 6h, 12h and 24h. Here, we found that HS treatment significantly reduced infarct volume and improved neurobehavioral outcomes at 24h, 48h and 72h after pMCAO operation in a dose-dependent manner (P<0.05). Moreover, we found that HS treatment dose-dependently increased the activities of endogenous antioxidant enzymes (SOD and CAT) as well as decreased the levels of oxidative products (8-iso-PGF2α and MDA) and inflammatory cytokines (TNF-α and HMGB1) in injured ipsilateral brain tissues at 6h, 12h and 24h after pMCAO operation (P<0.05). Thus, hydrogen-rich saline dose-dependently exerts a neuroprotective effect against permanent focal cerebral ischemia, and its beneficial effect is at least partially mediated by reducing oxidative stress and inflammation. Molecular hydrogen may be an effective therapeutic strategy for stroke patients.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Neurology, No. 323 Hospital of PLA, Xi'an 710054, Shaanxi Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|