1
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
2
|
Strohm AO, Majewska AK. Physical exercise regulates microglia in health and disease. Front Neurosci 2024; 18:1420322. [PMID: 38911597 PMCID: PMC11192042 DOI: 10.3389/fnins.2024.1420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
There is a well-established link between physical activity and brain health. As such, the effectiveness of physical exercise as a therapeutic strategy has been explored in a variety of neurological contexts. To determine the extent to which physical exercise could be most beneficial under different circumstances, studies are needed to uncover the underlying mechanisms behind the benefits of physical activity. Interest has grown in understanding how physical activity can regulate microglia, the resident immune cells of the central nervous system. Microglia are key mediators of neuroinflammatory processes and play a role in maintaining brain homeostasis in healthy and pathological settings. Here, we explore the evidence suggesting that physical activity has the potential to regulate microglia activity in various animal models. We emphasize key areas where future research could contribute to uncovering the therapeutic benefits of engaging in physical exercise.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
3
|
Rahman Z, Ghuge S, Dandekar MP. Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats. Metab Brain Dis 2023; 38:2339-2354. [PMID: 37402080 DOI: 10.1007/s11011-023-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Acute ischemic stroke is a catastrophic medical condition that causes severe disability and mortality if the sufferer escapes treatment within a stipulated timeframe. While timely intervention with clot-bursting agents like tissue-plasminogen activators abrogates some post-stroke neurologic deficits, no neuroprotective therapy is yet promisingly addresses the post-recanalization neuroinflammation in post-stroke survivors. Herein, we investigated the effect of partial blood replacement therapy (BRT), obtained from healthy and treadmill-trained donor rats, on neurological deficits, and peripheral and central inflammatory cascades using the ischemia-reperfusion animal paradigm. The cerebral ischemia-reperfusion was induced in rats by occlusion of the middle cerebral artery (MCAO) for 90 min, followed by reperfusion. Rats underwent MCAO surgery displayed remarkable sensorimotor and motor deficits in rotarod, foot fault, adhesive removal, and paw whisker tests till 5 days post-surgery. These behavior abnormalities were ameliorated in the BRT-recipient MCAO rats. BRT also reduced the infarct volume and neuronal death in the ipsilateral hemisphere revealed by TTC and cresyl violet staining compared to the MCAO group. Rats received BRT infusion exhibited the reduced expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1 (Iba-1), and MyD88 on day 5 post-MCAO in immunohistochemistry and immunofluorescent assays. Moreover, elevated levels of toll-like receptor 4 (TLR4) and mRNA expression of IL-1β, TNF-α, matrix metalloproteinase-9 and NLRP3, and decreased levels of zonula occludens-1 in MCAO rats, were reversed following BRT. These findings suggest that the partial BRT may rescind MCAO-induced neurological dysfunctions and cerebral injury by intervening in the TLR4 and NLRP3 pathways in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Shubham Ghuge
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
4
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
5
|
Tian R, Liu X, Jing L, Yang L, Xie N, Hou Y, Tao H, Tao Y, Wu J, Meng X. Huang-Lian-Jie-Du decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115196. [PMID: 35337922 DOI: 10.1016/j.jep.2022.115196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD) is a traditional Chinese formula that is efficacious in treating diabetes mellitus, Alzheimer's disease, and diabetic encephalopathy; the underlying mechanisms of HLJDD in diabetes-associated cognitive dysfunction remain unclear. AIM OF THE STUDY This study investigated the neuroprotective effects of HLJDD on cognitive function, and the possible underlying mechanisms in type 2 diabetes mellitus (T2DM) in a rat model of cognitive impairment. MATERIALS AND METHODS Twelve active ingredients in HLJDD were detected using high-performance liquid chromatography analysis. An animal model of cognitive dysfunction in T2DM was induced via a high-sugar and high-fat diet combined with a low dose of streptozotocin. Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin (0.34 g/kg/day), and HLJDD groups (3, 1.5, and 0.75 g/kg/day). All treatments were intragastrically administrated for nine continuous weeks after the development of T2DM. Body weight, food and water intake, fasting blood glucose, insulin sensitivity, and blood lipid levels were measured. Spatial learning and memory of the rats were assessed using the Morris water maze test. Hematoxylin and eosin and Nissl staining were performed to evaluate neuronal morphology and vitality. Glutathione, malondialdehyde, and superoxide dismutase levels were measured to determine the level of oxidative stress in the hippocampus. Transmission electron microscopy was performed to observe the synaptic morphology and structure of hippocampal neurons. IL-1β levels in the hippocampus and cerebrospinal fluid were determined. The protein expression of NLRP3, cleaved caspase-1, mature IL-1β, ATG7, P62, LC3, and brain-derived neurotrophic factor (BDNF) was determined using western blotting and immunofluorescence analysis. RESULTS HLJDD attenuated cognitive dysfunction in rats with T2DM as shown by the decreased escape latency, increased times crossing the platform and time spent in the target quadrant in the Morris water maze test (P < 0.05), improvement in hippocampal histopathological changes, and an elevated level of cell vitality. HLJDD treatment also reduced blood glucose and lipid levels, ameliorated oxidative stress, and downregulated IL-1β expression in the hippocampus and cerebrospinal fluid (P < 0.05). Moreover, HLJDD enhanced BDNF, ATG7, and LC3 protein expression and significantly inhibited the expression of P62, NLRP3, cleaved caspase-1, and mature IL-1β in the hippocampal CA1 region (P < 0.05). Immunofluorescence results further confirmed that the fluorescence intensity of NLRP3 and P62 in the hippocampus decreased after HLJDD intervention (P < 0.05). CONCLUSIONS HLJDD ameliorated cognitive dysfunction in T2DM rats. The neuroprotective effect is exerted via the modulation of glucose and lipid metabolism, upregulation of autophagy, and inhibition of NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ruimin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Na Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Rahmati M, Keshvari M, Mirnasouri R, Chehelcheraghi F. Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomed Pharmacother 2021; 139:111577. [PMID: 33839493 DOI: 10.1016/j.biopha.2021.111577] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Diabetes mellitus is related to cognitive impairments and molecular abnormalities of the hippocampus. A growing body of evidence suggests that Urtica dioica (Ud) and exercise training (ET) have potential therapeutic effects on diabetes and its related complications. Therefore, we hypothesized that the combined effect of exercise training (ET) and Ud might play an important role in insulin signaling pathway, oxidative stress, neuroinflammation, and cognitive impairment in diabetic rats. METHODS Forty animals were divided into five groups (N = 8): healthy-sedentary (H-sed), diabetes-sedentary (D-sed), diabetes-exercise training (D-ET), diabetes-Urtica dioica (D-Ud), diabetes-exercise training-Urtica dioica (D-ET-Ud). Streptozotocin (STZ) (Single dosage; 45 mg/kg, i.p.) was used to induce diabetes. Then, ET (moderate intensity/5day/week) and Ud extract (50 mg/kg, oral/daily) were administered for six weeks. We also investigated the effects of ET and Ud on cognitive performance (assessed through Morris Water Maze tests), antioxidant capacity, and lipid peroxidation markers in hippocampus. Furthermore, we measured levels of insulin sensitivity and signaling factors (insulin-Ins, insulin receptor-IR and insulin-like growth factor-1 receptor-IGF-1R), and neuroinflammatory markers (IL-1 β, TNF-α). This was followed by TUNEL assessment of the apoptosis rate in all regions of the hippocampus. RESULTS D-sed rats compared to H-sed animals showed significant impairments (P < 0.001) in hippocampal insulin sensitivity and signaling, oxidative stress, neuroinflammation, and apoptosis, which resulted in cognitive dysfunction. Ud extract and ET treatment effectively improved these impairments in D-ET (P < 0.001), D-Ud (P < 0.05), and D-ET-Ud (P < 0.001) groups compared to D-sed rats. Moreover, diabetes mediated hippocampal oxidative stress, neuroinflammation, insulin signaling deficits, apoptosis, and cognitive dysfunction was further reversed by chronic Ud+ET administration in D-ET-Ud rats (P < 0.001) compared to D-sed animals. CONCLUSIONS Ud extract and ET ameliorate cognitive dysfunction via improvement in hippocampal oxidative stress, neuroinflammation, insulin signaling pathway, and apoptosis in STZ-induced diabetic rats. The results of this study provide new experimental evidence for using Ud+ET in the treatment of hippocampal complications and cognitive dysfunction caused by diabetes.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Maryam Keshvari
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Rahim Mirnasouri
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Anatomical Sciences Department, School of Medicine, Lorestan University Medical of Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Esmaeili MH, Enayati M, Khabbaz Abkenar F, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res 2020; 379:112359. [PMID: 31733313 DOI: 10.1016/j.bbr.2019.112359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
8
|
Mehta BK, Singh KK, Banerjee S. Effect of exercise on type 2 diabetes-associated cognitive impairment in rats. Int J Neurosci 2018; 129:252-263. [DOI: 10.1080/00207454.2018.1526795] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bina Kumari Mehta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| | - Kaushal Kumar Singh
- Department of Veterinary Pathology, Faculty of Veterinary Science & Animal Husbandry, Birsa Agriculture University, Ranchi, India
| | - Sugato Banerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
9
|
Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 2018; 42:28-39. [PMID: 29247713 DOI: 10.1016/j.arr.2017.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
In the central nervous system, the primary immune cells, the microglia, prevent pathogenic invasion as the first line of defense. Microglial energy consumption is dependent on their degree of activity. Microglia express transporters for the three primary energy substrates (glucose, fatty acids, glutamine) and regulate diabetic encephalopathy via microglia-neuron interactions. Microglia may play a sentry role for rapid protection or even ablation of impaired neurons. Neurons exhibit hyperactivity in response to hyperglycemia, hyperlipidemia, and neurotoxic factors and release potential microglial activators. Microglial activation is also regulated by proinflammatory factors, caspase-3 activity, P2X7 receptor, interferon regulatory factor-8, and glucocorticoids. Modulation of microglia in diabetic encephalopathy may involve CX3CL1, p38 MAPK, purinergic, and CD200/CD200R signaling pathways, and pattern recognition receptors. The microglia-neuron interactions play an important role in diabetic encephalopathy, and modulation of microglial activation may be a therapeutic target for diabetic encephalopathy.
Collapse
|
10
|
Proteomic approach to detect changes in hippocampal protein levels in an animal model of type 2 diabetes. Neurochem Int 2017; 108:246-253. [PMID: 28434974 DOI: 10.1016/j.neuint.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
In our previous study, we demonstrated that type 2 diabetes affects blood-brain barrier integrity and ultrastructural morphology in Zucker diabetic fatty (ZDF) rats at 40 weeks of age. In the present study, we investigated the possible candidates for diabetes-related proteins in the hippocampus of ZDF rats and their control littermates (Zucker lean control, ZLC), by using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Approximately 2756 protein spots were detected by 2D-DIGE, and an increase or decrease of more than 1.4-fold was observed for 13 proteins in the hippocampal homogenates of ZDF rats relative to those of ZLC rats. Among these proteins, we found four proteins whose levels were significantly lower in the hippocampi of ZDF rats than in those of ZLC rats: glial fibrillary acidic protein (GFAP), apolipoprotein A-I preprotein (apoAI-P), myelin basic protein (MBP), and rCG39881, isoform CRA_a. Among these proteins, apoAI-P protein levels were decreased most prominently in ZDF rats than in ZLC rats, based on Western blot analysis. In addition, immunohistochemical and Western blot studies demonstrated that MBP, not GFAP, immunoreactivity and protein levels were significantly decreased in the hippocampus of ZDF rats compared to ZLC rats. In addition, ultrastructural analysis showed that ZDF rats showed myelin degeneration and disarrangement in the hippocampal tissue. These results suggest that chronic type 2 diabetes affects hippocampal function via reduction of MBP and apoAI-P levels as well as disarrangement of myelin.
Collapse
|
11
|
Li F, Pendy JT, Ding JN, Peng C, Li X, Shen J, Wang S, Geng X. Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury. Neurol Res 2017; 39:530-537. [PMID: 28415917 DOI: 10.1080/01616412.2017.1315882] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fengwu Li
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - John T. Pendy
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jessie N. Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaorong Li
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Jiamei Shen
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sainan Wang
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Romano S, Mitro N, Diviccaro S, Spezzano R, Audano M, Garcia-Segura LM, Caruso D, Melcangi RC. Short-term effects of diabetes on neurosteroidogenesis in the rat hippocampus. J Steroid Biochem Mol Biol 2017; 167:135-143. [PMID: 27890531 DOI: 10.1016/j.jsbmb.2016.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/12/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Diabetes may induce neurophysiological and structural changes in the central nervous system (i.e., diabetic encephalopathy). We here explored whether the levels of neuroactive steroids (i.e., neuroprotective agents) in the hippocampus may be altered by short-term diabetes (i.e., one month). To this aim, by liquid chromatography-tandem mass spectrometry we observed that in the experimental model of the rat raised diabetic by streptozotocin injection, one month of pathology induced changes in the levels of several neuroactive steroids, such as pregnenolone, progesterone and its metabolites (i.e., tetrahydroprogesterone and isopregnanolone) and testosterone and its metabolites (i.e., dihydrotestosterone and 3α-diol). Interestingly these brain changes were not fully reflected by the plasma level changes, suggesting that early phase of diabetes directly affects steroidogenesis and/or steroid metabolism in the hippocampus. These concepts are also supported by the findings that crucial steps of steroidogenic machinery, such as the gene expression of steroidogenic acute regulatory protein (i.e., molecule involved in the translocation of cholesterol into mitochondria) and cytochrome P450 side chain cleavage (i.e., enzyme converting cholesterol into pregnenolone) and 5α-reductase (enzyme converting progesterone and testosterone into their metabolites) are also affected in the hippocampus. In addition, cholesterol homeostasis as well as the functionality of mitochondria, a key organelle in which the limiting step of neuroactive steroid synthesis takes place, are also affected. Data obtained indicate that short-term diabetes alters hippocampal steroidogenic machinery and that these changes are associated with impaired cholesterol homeostasis and mitochondrial dysfunction in the hippocampus, suggesting them as relevant factors for the development of diabetic encephalopathy.
Collapse
Affiliation(s)
- Simone Romano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Spezzano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
13
|
Cobianchi S, Arbat-Plana A, López-Álvarez VM, Navarro X. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors. Curr Neuropharmacol 2017; 15:495-518. [PMID: 27026050 PMCID: PMC5543672 DOI: 10.2174/1570159x14666160330105132] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. METHODS Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. RESULTS Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. CONCLUSION Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Víctor M. López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
14
|
YOO DY, YIM HS, JUNG HY, NAM SM, KIM JW, CHOI JH, SEONG JK, YOON YS, KIM DW, HWANG IK. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus. J Vet Med Sci 2016; 78:957-62. [PMID: 26876499 PMCID: PMC4937155 DOI: 10.1292/jvms.15-0589] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022] Open
Abstract
In the present study, we investigated the effects of type 2 diabetes-induced hyperglycemia on the integrity of the blood-brain barrier and tight junction markers in the rat hippocampus. Forty-week-old diabetic (Zucker diabetic fatty, ZDF) rats and littermate control (Zucker lean control, ZLC) rats were used in this study. We evaluated the integrity of the blood-brain barrier by measuring sodium fluorescein extravasation and blood vessel ultrastructure. In addition, tight junction markers, such as zona occludens-1, occludin and claudin-5, were quantified by western blot analysis. ZDF rats showed significantly increased sodium fluorescein leakage in the hippocampus. Tight junction markers, such as occludin and claudin-5, were significantly decreased in the hippocampi of ZDF rats compared to those of ZLC rats. In addition, ZDF rats showed ultrastructural changes with phagocytic findings in the blood vessels. These results suggest that chronic untreated diabetes impairs the permeability of the hippocampal blood-brain barrier by down-regulating occludin and claudin-5, indicating that chronic untreated diabetes may cause hippocampus-dependent dysfunction.
Collapse
Affiliation(s)
- Dae Young YOO
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Hee Sun YIM
- Department of Biochemistry and Molecular Biology, Research Institute of Oral
Sciences, College of Dentistry, Kangneung-Wonju National University, Gangneung 25457; South Korea
| | - Hyo Young JUNG
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sung Min NAM
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Jong Whi KIM
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Jung Hoon CHOI
- Department of Anatomy, College of Veterinary Medicine, Kangwon National
University, Chuncheon 24341, South Korea
| | - Je Kyung SEONG
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul 08826,
South Korea
| | - Yeo Sung YOON
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul 08826,
South Korea
| | - Dae Won KIM
- Department of Biochemistry and Molecular Biology, Research Institute of Oral
Sciences, College of Dentistry, Kangneung-Wonju National University, Gangneung 25457; South Korea
| | - In Koo HWANG
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and
Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul 08826,
South Korea
| |
Collapse
|
15
|
Gong X, Jiang J, Zhang M. Exercise preconditioning reduces neonatal incision surgery-induced enhanced hyperalgesia via inhibition of P38 mitogen-activated protein kinase and IL-1β, TNF-α release. Int J Dev Neurosci 2016; 52:46-54. [PMID: 27235543 DOI: 10.1016/j.ijdevneu.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/03/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Neonatal surgery leads to enhanced hyperalgesia to noxious stimulation in adulthood via a mechanism caused by enhanced phosphorylated (p)-p38 expression in microglia. We tested the effect of exercise on reducing enhanced hypersensitivity primed by neonatal incision surgery. Adult female Wistar rats, with or without neonatal incision surgery at postnatal day (P) 3, received right hind paw plantar incision surgery under anesthesia at P44. The rats performed wheel-running exercise from P22 to P41. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured and ipsilateral spinal cords were collected for protein quantification. For PWT and PWL, exercise reduced the pain index after incision surgery at P44 in rats with neonatal surgery (P<0.01). Western blots showed that exercise suppressed P-p38 expression relative to adult rats without neonatal surgery (P<0.05). Results of ELISA showed that exercise reduced IL-1β and TNF-α (P<0.05) concentration in the ipsilateral spinal cord. Exercise preconditioning is an effective approach to reducing enhanced adult hyperalgesia primed by neonatal surgery. The mechanism may be explained by exercise-induced inhibition of P-p38 activation and IL-1β, TNF-α release.
Collapse
Affiliation(s)
- Xingrui Gong
- Department of Anesthesiology & Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Jiang
- Department of Anesthesiology & Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mazhong Zhang
- Department of Anesthesiology & Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|