1
|
Königstein K, Dipla K, Zafeiridis A. Training the Vessels: Molecular and Clinical Effects of Exercise on Vascular Health-A Narrative Review. Cells 2023; 12:2544. [PMID: 37947622 PMCID: PMC10649652 DOI: 10.3390/cells12212544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Accelerated biological vascular ageing is still a major driver of the increasing burden of cardiovascular disease and mortality. Exercise training delays this process, known as early vascular ageing, but often lacks effectiveness due to a lack of understanding of molecular and clinical adaptations to specific stimuli. This narrative review summarizes the current knowledge about the molecular and clinical vascular adaptations to acute and chronic exercise. It further addresses how training characteristics (frequency, intensity, volume, and type) may influence these processes. Finally, practical recommendations are given for exercise training to maintain and improve vascular health. Exercise increases shear stress on the vascular wall and stimulates the endothelial release of circulating growth factors and of exerkines from the skeletal muscle and other organs. As a result, remodeling within the vascular walls leads to a better vasodilator and -constrictor responsiveness, reduced arterial stiffness, arterio- and angiogenesis, higher antioxidative capacities, and reduced oxidative stress. Although current evidence about specific aspects of exercise training, such as F-I-T-T, is limited, and exact training recommendations cannot be given, some practical implications can be extracted. As such, repeated stimuli 5-7 days per week might be necessary to use the full potential of these favorable physiological alterations, and the cumulative volume of mechanical shear stress seems more important than peak shear stress. Because of distinct short- and long-term effects of resistance and aerobic exercise, including higher and moderate intensities, both types of exercise should be implemented in a comprehensive training regimen. As vascular adaptability towards exercise remains high at any age in both healthy individuals and patients with cardiovascular diseases, individualized exercise-based vascular health prevention should be implemented in any age group from children to centenarians.
Collapse
Affiliation(s)
- Karsten Königstein
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, 4052 Basel, Switzerland
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece;
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece;
| |
Collapse
|
2
|
Malvandi AM, Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan S, Lombardi G, Ebrahimzadeh-Bideskan A, Mohammadipour A. Targeting miR-21 in spinal cord injuries: a game-changer? Mol Med 2022; 28:118. [PMID: 36138359 PMCID: PMC9502625 DOI: 10.1186/s10020-022-00546-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological state causing physical disability, psychological stress and financial burden. SCI global rate is estimated between 250,000 and 500,000 individuals every year, of which 60% of victims are young, healthy males between 15 and 35 years. A variety of pathological conditions such as neuroinflammation, mitochondrial dysfunction, apoptosis, glial scar formation, blood-spinal cord barrier disruption, and angiogenesis disruption occur after SCI leading to a limitation in recovery. MicroRNAs (miRs) are endogenous and non-coding RNAs consisting of 22 nucleotides that regulate 60% of all human genes and involve several normal physiological processes and pathological conditions. miR-21 is among the most highly expressed miRs and its expression has been shown to increase one day after SCI and this elevation is sustained up to 28 days after injury. Overexpression of miR-21 exerts many protective effects against SCI by inhibiting neuroinflammation, improving blood-spinal cord barrier function, regulating angiogenesis, and controlling glial scar formation. It also exhibits anti-apoptotic effects in SCI by down-regulating the expression of PTEN, Spry2, and PDCD4. This review provides a novel therapeutic perspective for miR-21 in SCI.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | - Seyed Hamidreza Rastegar-Moghaddam
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Physical Exercise for Individuals With Spinal Cord Injury: Systematic Review Based on the International Classification of Functioning, Disability, and Health. J Sport Rehabil 2019; 28:505-516. [DOI: 10.1123/jsr.2017-0185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Horiuchi M, Fukuoka Y. Absence of cardiovascular drift during prolonged arm-crank exercise in individuals with spinal cord injury. Spinal Cord 2019; 57:942-952. [DOI: 10.1038/s41393-019-0301-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/09/2022]
|
5
|
Niemiro GM, Edwards T, Barfield JP, Beals JW, Broad EM, Motl RW, Burd NA, Pilutti LA, DE Lisio M. Circulating Progenitor Cell Response to Exercise in Wheelchair Racing Athletes. Med Sci Sports Exerc 2018; 50:88-97. [PMID: 28806276 DOI: 10.1249/mss.0000000000001402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Circulating progenitor cells (CPC) are a heterogeneous population of stem/progenitor cells in peripheral blood that participate in tissue repair. CPC mobilization has been well characterized in able-bodied persons but has not been previously investigated in wheelchair racing athletes. The purpose of this study was to characterize CPC and CPC subpopulation mobilization in elite wheelchair racing athletes in response to acute, upper-extremity aerobic exercise to determine whether CPC responses are similar to ambulatory populations. METHODS Eight participants (three females; age = 27.5 ± 4.0 yr, supine height = 162.5 ± 18.6 cm, weight = 53.5 ± 10.9 kg, V˙O2peak = 2.4 ± 0.62 L·min, years postinjury = 21.5 ± 6.2 yr) completed a 25-km time trial on a road course. Blood sampling occurred before and immediately after exercise for quantification of CPC (CD34), hematopoietic stem and progenitor cells (HSPC) (CD34/CD45), hematopoietic stem cells (HSC) (CD34/CD45/CD38), CD34 adipose tissue (AT)-derived mesenchymal stromal cells (MSC) (CD45/CD34/CD105/CD31), CD34 bone marrow (BM)-derived MSC (CD45/CD34/CD105/CD31), and endothelial progenitor cells (EPC) (CD45/CD34/VEGFR2) via flow cytometry. Blood lactate was measured before and after trial as an indicator of exercise intensity. RESULTS CPC concentration increased 5.7-fold postexercise (P = 0.10). HSPC, HSC, EPC, and both MSC populations were not increased postexercise. Baseline HSPC populations were significantly positively correlated to absolute V˙O2peak (rho = 0.71, P < 0.05) with HSC trending to positively correlate to V˙O2peak (rho = 0.62, P = 0.10). AT-MSC populations were trending to be negatively correlated to baseline V˙O2peak (rho = -0.62, P = 0.058). The change in CPC, EPC, and AT-MSC pre- and postexercise significantly positively correlated to the change in lactate concentrations (rho = 0.91 P = 0.002, 0.71 P = 0.047, 0.81 P = 0.02, respectively, all P < 0.05). CONCLUSION These data suggest that CPC content in wheelchair racing athletes is related to cardiorespiratory fitness, and responses to exercise are positively related to exercise intensity.
Collapse
Affiliation(s)
- Grace M Niemiro
- 1Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; 2Department of Health and Human Performance, Radford University, Radford, VA; 3U.S. Paralympics, Colorado Springs, CO; 4Department of Physical Therapy, University of Alabama-Birmingham, Birmingham, AL; 5Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, CANADA; and 6School of Human Kinetics, Brain and Mind Research Institute, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, CANADA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Arm-Cranking Exercise Training Reduces Plasminogen Activator Inhibitor 1 in People With Spinal Cord Injury. Arch Phys Med Rehabil 2017; 98:2174-2180. [DOI: 10.1016/j.apmr.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/04/2017] [Indexed: 11/17/2022]
|
7
|
Ruge T, Carlsson AC, Larsson A, Ärnlöv J. Endostatin: a promising biomarker in the cardiovascular continuum? Biomark Med 2017; 11:905-916. [DOI: 10.2217/bmm-2017-0025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The current review article aims to provide an up-to-date summary of previous studies in humans that have reported the association between circulating endostatin levels and different cardiovascular phenotypes. We also aim to provide suggestions for future directions of future research evaluating endostatin as a clinically relevant cardiovascular biomarker. With a few exceptions, higher circulating levels of endostatin seem to reflect vascular and myocardial damage, and a worsened prognosis for cardiovascular events or mortality in individuals with hypertension, diabetes, kidney disease, cardiovascular disease, as well as in the general population. Circulating endostatin seems to be a promising biomarker for cardiovascular pathology, but there is not enough evidence to date to support the use of endostatin measurements in clinical practice.
Collapse
Affiliation(s)
- Toralph Ruge
- Department of Internal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Emergency Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Axel C Carlsson
- Division of Family Medicine & Primary Care, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Huddinge, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine & Primary Care, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Huddinge, Sweden
- School of Health & Social Studies, Dalarna University, Falun, Sweden
| |
Collapse
|
8
|
Olfert IM. Physiological Capillary Regression is not Dependent on Reducing VEGF Expression. Microcirculation 2016; 23:146-56. [PMID: 26660949 PMCID: PMC4744091 DOI: 10.1111/micc.12263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/03/2015] [Indexed: 01/04/2023]
Abstract
Investigations into physiologically controlled capillary regression report the provocative finding that microvessel regression occurs in the face of persistent elevation of skeletal muscle VEGF expression. TSP-1, a negative angiogenic regulator, is increasingly being observed to temporally correlate with capillary regression, suggesting that increased TSP-1 (and not reduction in VEGF per se) is needed to initiate, and likely regulate, capillary regression. Based on evidence being gleaned from physiologically mediated regression of capillaries, it needs to be recognized that capillary regression (and perhaps capillary rarefaction with disease) is not simply the reversal of factors used to stimulate angiogenesis. Rather, the conceptual understanding that angiogenesis and capillary regression each have specific and unique requirements that are biologically constrained to opposite sides of the balance between positive and negative angioregulatory factors may shed light on why anti-VEGF therapies have not lived up to the promise in reversing angiogenesis and providing the cure that many had hoped toward fighting cancer. Emerging evidence from physiological controlled angiogenesis suggest that cases involving excessive or uncontrolled capillary expansion may be best treated by therapies designed to increase expression of negative angiogenic regulators, whereas those involving capillary rarefaction may benefit from inhibiting negative regulators (like TSP-1).
Collapse
Affiliation(s)
- I Mark Olfert
- Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Mary Babb Randolph Cancer Center, West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|