1
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
2
|
Rahmasari FV, Asih PBS, Dewayanti FK, Rotejanaprasert C, Charunwatthana P, Imwong M, Syafruddin D. Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia. Malar J 2022; 21:354. [PMID: 36443817 PMCID: PMC9703442 DOI: 10.1186/s12936-022-04385-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
This review article aims to investigate the genotypic profiles of Plasmodium falciparum and Plasmodium vivax isolates collected across a wide geographic region and their association with resistance to anti-malarial drugs used in Indonesia. A systematic review was conducted between 1991 and date. Search engines, such as PubMed, Science Direct, and Google Scholar, were used for articles published in English and Indonesian to search the literature. Of the 471 initially identified studies, 61 were selected for 4316 P. falciparum and 1950 P. vivax individual infections. The studies included 23 molecular studies and 38 therapeutic efficacy studies. K76T was the most common pfcrt mutation. K76N (2.1%) was associated with the haplotype CVMNN. By following dihydroartemisinin-piperaquine (DHA-PPQ) therapy, the mutant pfmdr1 alleles 86Y and 1034C were selected. Low prevalence of haplotype N86Y/Y184/D1246Y pfmdr1 reduces susceptibility to AS-AQ. SNP mutation pvmdr1 Y976F reached 96.1% in Papua and East Nusa Tenggara. Polymorphism analysis in the pfdhfr gene revealed 94/111 (84.7%) double mutants S108N/C59R or S108T/A16V in Central Java. The predominant pfdhfr haplotypes (based on alleles 16, 51, 59,108, 164) found in Indonesia were ANCNI, ANCSI, ANRNI, and ANRNL. Some isolates carried A437G (35.3%) or A437G/K540E SNPs (26.5%) in pfdhps. Two novel pfdhps mutant alleles, I588F/G and K540T, were associated with six pfdhps haplotypes. The highest prevalence of pvdhfr quadruple mutation (F57L/S58R/T61M/S117T) (61.8%) was detected in Papua. In pvdhps, the only polymorphism before and after 2008 was 383G mutation with 19% prevalence. There were no mutations in the pfk13 gene reported with validated and candidate or associated k13 mutation. An increased copy number of pfpm2, associated with piperaquine resistance, was found only in cases of reinfection. Meanwhile, mutation of pvk12 and pvpm4 I165V is unlikely associated with ART and PPQ drug resistance. DHA-PPQ is still effective in treating uncomplicated falciparum and vivax malaria. Serious consideration should be given to interrupt local malaria transmission and dynamic patterns of resistance to anti-malarial drugs to modify chemotherapeutic policy treatment strategies. The presence of several changes in pfk13 in the parasite population is of concern and highlights the importance of further evaluation of parasitic ART susceptibility in Indonesia.
Collapse
Affiliation(s)
- Farindira Vesti Rahmasari
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Parasitology, School of Medicine, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Puji B S Asih
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Farahana K Dewayanti
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Chawarat Rotejanaprasert
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Din Syafruddin
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
3
|
Fola AA, Kattenberg E, Razook Z, Lautu-Gumal D, Lee S, Mehra S, Bahlo M, Kazura J, Robinson LJ, Laman M, Mueller I, Barry AE. SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malar J 2020; 19:375. [PMID: 33081815 PMCID: PMC7576724 DOI: 10.1186/s12936-020-03440-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.
Collapse
Affiliation(s)
- Abebe A Fola
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eline Kattenberg
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Zahra Razook
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Stuart Lee
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Somya Mehra
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James Kazura
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leanne J Robinson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Alyssa E Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia.
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
4
|
Pava Z, Puspitasari AM, Rumaseb A, Handayuni I, Trianty L, Utami RAS, Tirta YK, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey NM, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Molecular surveillance over 14 years confirms reduction of Plasmodium vivax and falciparum transmission after implementation of Artemisinin-based combination therapy in Papua, Indonesia. PLoS Negl Trop Dis 2020; 14:e0008295. [PMID: 32379762 PMCID: PMC7237043 DOI: 10.1371/journal.pntd.0008295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/19/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004-2006) to 18% (22/125) at the end of the study (2015-2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016-2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Betson M, Alonte AJI, Ancog RC, Aquino AMO, Belizario VY, Bordado AMD, Clark J, Corales MCG, Dacuma MG, Divina BP, Dixon MA, Gourley SA, Jimenez JRD, Jones BP, Manalo SMP, Prada JM, van Vliet AHM, Whatley KCL, Paller VGV. Zoonotic transmission of intestinal helminths in southeast Asia: Implications for control and elimination. ADVANCES IN PARASITOLOGY 2020; 108:47-131. [PMID: 32291086 DOI: 10.1016/bs.apar.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal helminths are extremely widespread and highly prevalent infections of humans, particularly in rural and poor urban areas of low and middle-income countries. These parasites have chronic and often insidious effects on human health and child development including abdominal problems, anaemia, stunting and wasting. Certain animals play a fundamental role in the transmission of many intestinal helminths to humans. However, the contribution of zoonotic transmission to the overall burden of human intestinal helminth infection and the relative importance of different animal reservoirs remains incomplete. Moreover, control programmes and transmission models for intestinal helminths often do not consider the role of zoonotic reservoirs of infection. Such reservoirs will become increasingly important as control is scaled up and there is a move towards interruption and even elimination of parasite transmission. With a focus on southeast Asia, and the Philippines in particular, this review summarises the major zoonotic intestinal helminths, risk factors for infection and highlights knowledge gaps related to their epidemiology and transmission. Various methodologies are discussed, including parasite genomics, mathematical modelling and socio-economic analysis, that could be employed to improve understanding of intestinal helminth spread, reservoir attribution and the burden associated with infection, as well as assess effectiveness of interventions. For sustainable control and ultimately elimination of intestinal helminths, there is a need to move beyond scheduled mass deworming and to consider animal and environmental reservoirs. A One Health approach to control of intestinal helminths is proposed, integrating interventions targeting humans, animals and the environment, including improved access to water, hygiene and sanitation. This will require coordination and collaboration across different sectors to achieve best health outcomes for all.
Collapse
Affiliation(s)
- Martha Betson
- University of Surrey, Guildford, Surrey, United Kingdom.
| | | | - Rico C Ancog
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Jessica Clark
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | - Billy P Divina
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Ben P Jones
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | | | | | | |
Collapse
|
6
|
Sibley CH. A Solid Beginning to Understanding Plasmodium vivax in Africa. J Infect Dis 2019; 220:1716-1718. [PMID: 30668773 DOI: 10.1093/infdis/jiz019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/28/2024] Open
|
7
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
8
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
9
|
Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, Serre D. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax. PLoS Negl Trop Dis 2016; 10:e0004526. [PMID: 27018585 PMCID: PMC4809505 DOI: 10.1371/journal.pntd.0004526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. METHODOLOGY/PRINCIPAL FINDINGS We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites.
Collapse
Affiliation(s)
- Lindsey R. Friedrich
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jean Popovici
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 2015; 109:142-52. [PMID: 25891915 DOI: 10.1179/2047773215y.0000000012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes.
Collapse
Key Words
- Control,
- Elimination
- Genetic diversity,
- Genetics,
- Genomics,
- Linkage disequilibrium,
- Malaria,
- Microsatellites,
- Mitochondrial DNA,
- Plasmodium vivax,
- Population structure,
- Relapse,
- Single nucleotide polymorphisms,
- Transmission,
Collapse
|