1
|
Eze C, Vinken M. E-waste: mechanisms of toxicity and safety testing. FEBS Open Bio 2024; 14:1420-1440. [PMID: 38987214 PMCID: PMC11492355 DOI: 10.1002/2211-5463.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Currently, information on the toxicity profile of the majority of the identified e-waste chemicals, while extensive and growing, is admittedly fragmentary, particularly at the cellular and molecular levels. Furthermore, the toxicity of the chemical mixtures likely to be encountered by humans during and after informal e-waste recycling, as well as their underlying mechanisms of action, is largely unknown. This review paper summarizes state-of-the-art knowledge of the potential underlying toxicity mechanisms associated with e-waste exposures, with a focus on toxic responses connected to specific organs, organ systems, and overall effects on the organism. To overcome the complexities associated with assessing the possible adverse outcomes from exposure to chemicals, a growing number of new approach methodologies have emerged in recent years, with the long-term objective of providing a human-based and animal-free system that is scientifically superior to animal testing, more effective, and acceptable. This encompasses a variety of techniques, typically regarded as alternative approaches for determining chemical-induced toxicities and holds greater promise for a better understanding of key events in the metabolic pathways that mediate known adverse health outcomes in e-waste exposure scenarios. This is crucial to establishing accurate scientific knowledge on mixed e-waste chemical exposures in shorter time frames and with greater efficacy, as well as supporting the need for safe management of hazardous chemicals. The present review paper discusses important gaps in knowledge and shows promising directions for mechanistically anchored effect-based monitoring strategies that will contribute to the advancement of the methods currently used in characterizing and monitoring e-waste-impacted ecosystems.
Collapse
Affiliation(s)
- Chukwuebuka Eze
- Entity of In Vitro Toxicology and Dermato‐Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato‐Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
2
|
Ma Q, Yang X, Guo Y, Wang Y, Liu Y, Zhang S, Xie HQ, Xiang T, Li Z, Nie T, Yan Y, Qu G, Jiang G. Effect-directed analysis of estrogenic chemicals in sediments from an electronic-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119369. [PMID: 35513195 DOI: 10.1016/j.envpol.2022.119369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Electronic waste (e-waste) pollution is of great concern due to the release of hazardous chemicals during the improper e-waste disposal. Many chemicals leached from e-waste were reported to pose estrogenic effects. To date, little is known regarding the occurrence and biological effects of estrogenic chemicals in sediments near an e-waste area. In this study, an effect-directed analysis (EDA) is applied to determine the estrogenic chemicals in sediments of four sites collected from a typical e-waste recycling city in China. Following screening with the ER-CALUX assay, the extract of sample with the most potent effect was subjected in fractionation using reverse phase liquid chromatography. Based on a target analysis for the active fractions, four compounds, including estrone, 17β-estradiol, 17α-ethinylestradiol and bisphenol A, were identified, and these contributed to 17% of the total toxic effects in the sample. A further nontarget analysis screened four candidates, namely diethylstilbestrol (DES), hexestrol (HES), nandrolone and durabolin, and the total contribution was found to be 48% from the active sample. Specifically, DES and HES were only detected in the active sample and were found to be the primary drivers of estrogenic effects. An examination of the identified chemicals in the four sites indicated that these estrogenic chemicals may originate from e-waste recycling, livestock excretion and domestic waste. These findings uncovered the estrogenic pollutants in sediments from an e-waste area. Considering single endpoint in biological assay is not abundant to screen chemicals with different toxic effects, further EDA studies with multiple endpoints are required to better understand the occurrence of representative or unknown chemicals in e-waste-polluted areas.
Collapse
Affiliation(s)
- Qianchi Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Nie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuhao Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China
| |
Collapse
|
3
|
Wang Z, Sun Y, Dong JJ, Shi LL, Nakayama SF, Kido T, Jung CR, Ma C, Feng H, Hang JG, Sun XL. Relationship between dioxins and steroid hormone in 6-year-olds: A follow-up study in an e-waste region of China. CHEMOSPHERE 2022; 296:134018. [PMID: 35181420 DOI: 10.1016/j.chemosphere.2022.134018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
We conducted a follow-up observational study on the effects of dioxin exposure on the synthesis of steroid hormones in infants during the perinatal period. The participants included 42 pairs of mothers and infants that were previously studied in 2015. We analyzed four types of steroid hormones including progesterone, testosterone, androstenedione (A-dione), and dehydroepiandrosterone (DHEA) in the serum samples of 6-year-olds and the concentration of dioxins in breast milk. A multivariate linear regression was performed to associate steroid hormones (dependent variables) and dioxins with the body mass index (BMI), sex, age, and residence of participants (independent variables). The results were reported as β (standardized coefficient) and p-values. We found that dioxins have a significant negative correlation with DHEA and A-dione but no significant relationship with progesterone and testosterone. However, in previous studies, we found that testosterone and progesterone levels were significantly related to dioxins in 4-year-olds. We concluded that dioxins can affect the level of steroid hormones, but their effects fluctuate, and the harm caused by dioxins in children requires further long-term monitoring.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ying Sun
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jing Jian Dong
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Li Li Shi
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Shoji F Nakayama
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, 406040, Taiwan
| | - Chaochen Ma
- Cancer Control Center, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Hao Feng
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318050, China.
| | - Xian Liang Sun
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China; Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan.
| |
Collapse
|
4
|
Parvez SM, Jahan F, Brune MN, Gorman JF, Rahman MJ, Carpenter D, Islam Z, Rahman M, Aich N, Knibbs LD, Sly PD. Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health 2021; 5:e905-e920. [PMID: 34895498 PMCID: PMC8674120 DOI: 10.1016/s2542-5196(21)00263-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Electronic waste (e-waste) contains numerous chemicals harmful to human and ecological health. To update a 2013 review assessing adverse human health consequences of exposure to e-waste, we systematically reviewed studies reporting effects on humans related to e-waste exposure. We searched EMBASE, PsycNET, Web of Science, CINAHL, and PubMed for articles published between Dec 18, 2012, and Jan 28, 2020, restricting our search to publications in English. Of the 5645 records identified, we included 70 studies that met the preset criteria. People living in e-waste exposed regions had significantly elevated levels of heavy metals and persistent organic pollutants. Children and pregnant women were especially susceptible during the critical periods of exposure that detrimentally affect diverse biological systems and organs. Elevated toxic chemicals negatively impact on neonatal growth indices and hormone level alterations in e-waste exposed populations. We recorded possible connections between chronic exposure to e-waste and DNA lesions, telomere attrition, inhibited vaccine responsiveness, elevated oxidative stress, and altered immune function. The existence of various toxic chemicals in e-waste recycling areas impose plausible adverse health outcomes. Novel cost-effective methods for safe recycling operations need to be employed in e-waste sites to ensure the health and safety of vulnerable populations.
Collapse
Affiliation(s)
- Sarker M Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Farjana Jahan
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Marie-Noel Brune
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | - Julia F Gorman
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Musarrat J Rahman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Carpenter
- School of Public Health, Environmental Health Sciences, University at Albany, Albany, NY, USA
| | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Mahbubur Rahman
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Dong JJ, Ruan MC, Hang JG, Nakayama SF, Jung CR, Kido T, Wang Z, Ma CC, Sun XL. The relationship between perinatal exposure to dioxins and serum steroid hormone levels in preschool-aged children at an e-waste region in China. Int J Hyg Environ Health 2020; 229:113580. [PMID: 32917367 DOI: 10.1016/j.ijheh.2020.113580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Perinatal exposure to dioxins affects steroid hormone synthesis. The purpose of the present study was to evaluate the associations between perinatal exposure to dioxins and serum steroid hormone levels in preschool-aged children from an e-waste recycling region in China. In the present study, we enrolled 50 pairs of mothers and infants from the Taizhou, Luqiao region in 2015. Of the 50 pairs of mothers and infants, 42 pairs participated in this study when the children were 4 years old. We measured breast milk dioxin concentrations using high-resolution gas chromatography/mass spectrometry. Additionally, we used liquid chromatography-tandem mass spectrometry to measure the concentrations of progesterone, testosterone, androstenedione (A-dione), and dehydroepiandrosterone (DHEA) in serum samples from the 4-year-old children. We used multivariate linear regressions to assess the associations between dioxin congeners and steroid hormones. Results were reported as beta estimates and 95% confidence intervals by bootstrapping. We observed sex-related differences between breast milk dioxins and serum steroid hormone levels in 4-year-old children. An increase in breast milk dioxins was associated with a decrease in testosterone in serum samples from boys. Similarly, an increase in breast milk dioxins was associated with a decrease in progesterone levels in serum samples from girls. However, dioxins were not associated with changes in the levels of testosterone, DHEA, or A-dione in girls. Based on these results, we conclude that perinatal exposure to dioxins modifies steroidogenesis in preschool-aged children. However, the long-term impact of dioxins requires further large-scale studies to assess these effects in school-going children and adolescents.
Collapse
Affiliation(s)
- Jing Jian Dong
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Mei Chao Ruan
- The Second People's Hospital of Luqiao District, Taizhou, 317200, China
| | - Jin Guo Hang
- Taizhou Enze Medical Center Enze Hospital, Taizhou, 318050, China
| | - Shoji F Nakayama
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Chau-Ren Jung
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
| | - Zheng Wang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Chao Chen Ma
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Xian Liang Sun
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China; Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan; JSPS International Research Fellow, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan.
| |
Collapse
|
6
|
Huo X, Liu C. Reply I. Cord blood androgen measurement: the importance of assay validation. Hum Reprod 2017; 32:1361-1362. [PMID: 28453787 DOI: 10.1093/humrep/dex077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Chunhua Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, China
- Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Xu X, Zeng X, Boezen HM, Huo X. E-waste environmental contamination and harm to public health in China. Front Med 2015; 9:220-8. [PMID: 25808646 DOI: 10.1007/s11684-015-0391-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/02/2015] [Indexed: 02/05/2023]
Abstract
The adverse effects of electronic waste (e-waste) on the human body have stirred up concern in recent years. China is one of the countries that confront serious pollution and human exposure of e-waste, and the majority of the population is exposed to potentially hazardous substances that are derived from informal e-waste recycling processes. This study reviews recent reports on human exposure to e-waste in China, with particular focus on exposure routes (e.g., inhalation and ingestion) and several toxicities of human (e.g., endocrine system, respiratory system, reproductive system, developmental toxicity, neurotoxicity, and genetic toxicity). Pieces of evidence that associate e-waste exposure with human health effects in China are assessed. The role of toxic heavy metals (e.g., lead, cadmium, chromium, mercury, and nickel) and organic pollutants (e.g., polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenyls (PBBs), polyhalogenated aromatic hydrocarbons (PHAHs), bisphenol A (BPA)) on human health is also briefly discussed.
Collapse
Affiliation(s)
- Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China
| | | | | | | |
Collapse
|