1
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
2
|
In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection 2022; 50:569-581. [PMID: 34982411 DOI: 10.1007/s15010-021-01748-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Pending approval of new antimicrobials, synergistic combinations are the only treatment option against pandrug-resistant A. baumannii (PDRAB). Considering the lack of a standardized methodology, the aim of this manuscript is to systematically review the methodology and discuss unique considerations for assessing antimicrobial combinations against PDRAB. METHODS Post-hoc analysis of a systematic review (conducted in PubMed and Scopus from inception to April 2021) of studies evaluating antimicrobial combination against A. baumannii, based on antimicrobials that are inactive in vitro alone. RESULTS Eighty-four publications were reviewed, using a variety of synergy testing methods, including; gradient-based methods (n = 11), disk-based methods (n = 6), agar dilution (n = 2), checkerboard assay (n = 44), time-kill assay (n = 50), dynamic in vitro PK/PD models (n = 6), semi-mechanistic PK/PD models (n = 5), and in vivo animal models (n = 11). Several variations in definitions of synergy and interpretation of each method were observed and are discussed. Challenges related to testing combinations of antimicrobials that are inactive alone (with regards to concentrations at which the combinations are assessed), as well as other considerations (assessment of stasis vs killing, clinical relevance of re-growth in vitro after initial killing, role of in vitro vs in vivo conditions, challenges of clinical testing of antimicrobial combinations against PDRAB infections) are discussed. CONCLUSION This review demonstrates the need for consensus on a standardized methodology and clinically relevant definitions for synergy. Modifications in the methodology and definitions of synergy as well as a roadmap for further development of antimicrobial combinations against PDRAB are proposed.
Collapse
|
3
|
Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10111344. [PMID: 34827282 PMCID: PMC8615225 DOI: 10.3390/antibiotics10111344] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial combinations are at the moment the only potential treatment option for pandrug-resistant A. baumannii. A systematic review was conducted in PubMed and Scopus for studies reporting the activity of antimicrobial combinations against A. baumannii resistant to all components of the combination. The clinical relevance of synergistic combinations was assessed based on concentrations achieving synergy and PK/PD models. Eighty-four studies were retrieved including 818 eligible isolates. A variety of combinations (n = 141 double, n = 9 triple) were tested, with a variety of methods. Polymyxin-based combinations were the most studied, either as double or triple combinations with cell-wall acting agents (including sulbactam, carbapenems, glycopeptides), rifamycins and fosfomycin. Non-polymyxin combinations were predominantly based on rifampicin, fosfomycin, sulbactam and avibactam. Several combinations were synergistic at clinically relevant concentrations, while triple combinations appeared more active than the double ones. However, no combination was consistently synergistic against all strains tested. Notably, several studies reported synergy but at concentrations unlikely to be clinically relevant, or the concentration that synergy was observed was unclear. Selecting the most appropriate combinations is likely strain-specific and should be guided by in vitro synergy evaluation. Furthermore, there is an urgent need for clinical studies on the efficacy and safety of such combinations.
Collapse
|
4
|
Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G, Cattaneo P, Giske CG, Lodise T, Sanguinetti M, Piddock LJV, Franceschi F, Ellis S, Carrara E, Savoldi A, Tacconelli E. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344. [PMID: 33857539 DOI: 10.1016/j.ijantimicag.2021.106344] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35 < ES < 0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Luigia Scudeller
- Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Margherita Chiamenti
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Damiano Bragantini
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Cattaneo
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Christian G Giske
- Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - François Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| |
Collapse
|
5
|
Short and long term impact of combining restrictive and enabling interventions to reduce aztreonam consumption in a community hospital. Int J Clin Pharm 2021; 43:1345-1351. [PMID: 33677793 PMCID: PMC7937360 DOI: 10.1007/s11096-021-01257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/22/2021] [Indexed: 10/28/2022]
Abstract
Background Antimicrobial stewardship initiatives combining restrictive and enabling components may be an effective strategy to achieve short- and long-term objectives. Aztreonam, a relatively high-cost antipseudomonal antibiotic, is an appropriate target for stewardship initiatives based on propensity for overuse in penicillin allergy, an activity profile often warranting additional empiric gram-negative and gram-positive coverage, and a unique durability to Ambler class B metallo-beta-lactamases. Objective Analyze the immediate and long-term impact on aztreonam prescribing of combining restrictive and enabling interventions. Setting Single 233-bed community hospital with 45 adult intensive care unit beds in Nashville, Tennessee. Method Retrospective, interrupted time series analysis comparing all patients receiving aztreonam prior to intervention between January 1, 2010 and September 30, 2011 and following intervention between October 1, 2011 and September 30, 2019. Quarterly defined daily doses/1000 adjusted patient days and microbiology laboratory annual surveillance data were utilized for analysis. Main outcome measure Post-intervention change in trend of aztreonam consumption. Results Following intervention, a significant decline in aztreonam consumption was observed (- 1.97 defined daily doses/1000 adjusted patient days; p = 0.003) resulting in a sustained decrease in aztreonam consumption from 2011 (3rd quarter) to 2019 (3rd quarter) from 15.2 to 0.26 defined daily doses/1000 adjusted patient days. Short-term group 2 carbapenem consumption increased (p = 0.044). Pseudomonas aeruginosa susceptibility to aztreonam improved from 2011 to 2018 (72% vs. 84%; p = 0.0004) without deleterious effects to alternative antipseudomonal beta-lactams. Conclusion Combining restrictive and enabling interventions had immediate and sustained impact on aztreonam consumption with P. aeruginosa susceptibility improvement.
Collapse
|
6
|
Jiang Z, He X, Li J. Synergy effect of meropenem-based combinations against Acinetobacter baumannii: a systematic review and meta-analysis. Infect Drug Resist 2018; 11:1083-1095. [PMID: 30122965 PMCID: PMC6086107 DOI: 10.2147/idr.s172137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The main objective of our meta-analysis was to examine the in vitro synergistic effect of meropenem-based combination therapies against Acinetobacter baumannii through a systematic review of the existing literature. METHODS An extensive search was performed with no restrictions on date of publication, language, and publication type. Our study evaluated the main conclusions drawn from various studies describing the synergistic activity of combination therapies in vitro. RESULTS In this review, 56 published studies were included. Our report included data on 20 types of antibiotics combined with meropenem in 1,228 Acinetobacter baumannii isolates. In time-kill studies, meropenem combined with polymyxin B and rifampicin showed synergy rates of 98.3% (95% CI, 83.7%-100.0%) and 89.4% (95% CI, 57.2%-100.0%), respectively, for Acinetobacter baumannii, modest synergy rates were found for meropenem combined with several antibiotics such as colistin and sulbactam, and no synergy effect was displayed in the combination of meropenem and ciprofloxacin, whereas in checkerboard method, the synergy rates of polymyxin B and rifampicin were 37.0% (95% CI, 0.00%-100.0%) and 56.3% (95% CI, 8.7%-97.8%), respectively. CONCLUSION We found that time-kill studies generally identified the greatest synergy, while checkerboard and Etest methods yielded relatively poor synergy rates. Further well-designed in vivo studies should be carried out to confirm these findings.
Collapse
Affiliation(s)
- Zhihui Jiang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China,
| | - Xianxia He
- Department of Drug Certification, Center for Certification and Evaluation, Guangzhou Food and Drug Administration, Guangzhou, China
| | - Jian Li
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China,
| |
Collapse
|
7
|
Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Executive Summary: Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2017; 63:575-82. [PMID: 27521441 DOI: 10.1093/cid/ciw504] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/12/2022] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.
Collapse
Affiliation(s)
- Andre C Kalil
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha
| | - Mark L Metersky
- Division of Pulmonary and Critical Care Medicine, University of Connecticut School of Medicine, Farmington
| | - Michael Klompas
- Brigham and Women's Hospital and Harvard Medical School Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - John Muscedere
- Department of Medicine, Critical Care Program, Queens University, Kingston, Ontario, Canada
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego
| | - Lucy B Palmer
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, State University of New York at Stony Brook
| | - Lena M Napolitano
- Department of Surgery, Division of Trauma, Critical Care and Emergency Surgery, University of Michigan, Ann Arbor
| | - Naomi P O'Grady
- Department of Critical Care Medicine, National Institutes of Health, Bethesda
| | - John G Bartlett
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute, Spanish Network for Research in Infectious Diseases, University of Barcelona, Spain
| | - Ali A El Solh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University at Buffalo, Veterans Affairs Western New York Healthcare System, New York
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Kranken-Anstalt Bochum, Germany
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | | | - Marcos I Restrepo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, South Texas Veterans Health Care System and University of Texas Health Science Center at San Antonio
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland Royal Brisbane and Women's Hospital, Queensland
| | - Grant W Waterer
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Peggy Cruse
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Jan L Brozek
- Department of Clinical Epidemiology and Biostatistics and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63:e61-e111. [PMID: 27418577 PMCID: PMC4981759 DOI: 10.1093/cid/ciw353] [Citation(s) in RCA: 2209] [Impact Index Per Article: 245.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.
Collapse
Affiliation(s)
- Andre C. Kalil
- Departmentof Internal Medicine, Division of Infectious Diseases,
University of Nebraska Medical Center,
Omaha
| | - Mark L. Metersky
- Division of Pulmonary and Critical Care Medicine,
University of Connecticut School of Medicine,
Farmington
| | - Michael Klompas
- Brigham and Women's Hospital and Harvard Medical School
- Harvard Pilgrim Health Care Institute, Boston,
Massachusetts
| | - John Muscedere
- Department of Medicine, Critical Care Program,Queens University, Kingston, Ontario,
Canada
| | - Daniel A. Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine,
University of California, San
Diego
| | - Lucy B. Palmer
- Department of Medicine, Division of Pulmonary Critical Care and Sleep
Medicine, State University of New York at Stony
Brook
| | - Lena M. Napolitano
- Department of Surgery, Division of Trauma, Critical Care and Emergency
Surgery, University of Michigan, Ann
Arbor
| | - Naomi P. O'Grady
- Department of Critical Care Medicine, National
Institutes of Health, Bethesda
| | - John G. Bartlett
- Johns Hopkins University School of Medicine,
Baltimore, Maryland
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari
de Bellvitge, Bellvitge Biomedical Research Institute, Spanish Network for Research in
Infectious Diseases, University of Barcelona,
Spain
| | - Ali A. El Solh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep
Medicine, University at Buffalo, Veterans Affairs Western New
York Healthcare System, New York
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious
Diseases, EVK Herne and Augusta-Kranken-Anstalt
Bochum, Germany
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of
Nebraska Medical Center, Omaha
| | | | - Marcos I. Restrepo
- Department of Medicine, Division of Pulmonary and Critical Care
Medicine, South Texas Veterans Health Care System and University
of Texas Health Science Center at San Antonio
| | - Jason A. Roberts
- Burns, Trauma and Critical Care Research Centre, The
University of Queensland
- Royal Brisbane and Women's Hospital,
Queensland
| | - Grant W. Waterer
- School of Medicine and Pharmacology, University of
Western Australia, Perth,
Australia
| | - Peggy Cruse
- Library and Knowledge Services, National Jewish
Health, Denver, Colorado
| | - Shandra L. Knight
- Library and Knowledge Services, National Jewish
Health, Denver, Colorado
| | - Jan L. Brozek
- Department of Clinical Epidemiology and Biostatistics and Department of
Medicine, McMaster University, Hamilton,
Ontario, Canada
| |
Collapse
|
9
|
Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther 2014; 11:1355-62. [DOI: 10.1586/14787210.2013.846215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, Rossolini GM, Souli M, Giamarellou H. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect 2010; 16:102-11. [PMID: 20085604 DOI: 10.1111/j.1469-0691.2009.03115.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the rapid spread of carbapenemase-producing Gram-negatives (CPGNs) is providing the scientific community with a great deal of information about the molecular epidemiology of these enzymes and their genetic background, data on how to treat multidrug-resistant or extended drug-resistant carbapenemase-producing Enterobacteriaceae and how to contain their spread are still surprisingly limited, in spite of the rapidly increasing prevalence of these organisms and of their isolation from patients suffering from life-threatening infections. Limited clinical experience and several in vitro synergy studies seem to support the view that antibiotic combinations should be preferred to monotherapies. But, in light of the data available to date, it is currently impossible to quantify the real advantage of drug combinations in the treatment of these infections. Comprehensive clinical studies of the main therapeutic options, broken down by pathogen, enzyme and clinical syndrome, are definitely lacking and, as carbapenemases keep spreading, are urgently needed. This spread is unveiling the substantial unpreparedness of European public health structures to face this worrisome emergency, although experiences from different countries-chiefly Greece and Israel-have shown that CPGN transmission and cross-infection can cause a substantial threat to the healthcare system. This unpreparedness also affects the treatment of individual patients and infection control policies, with dramatic scarcities of both therapeutic options and infection control measures. Although correct implementation of such measures is presumably cumbersome and expensive, the huge clinical and public health problems related to CPGN transmission, alongside the current scarcity of therapeutic options, seem to fully justify this choice.
Collapse
Affiliation(s)
- Y Carmeli
- Division of Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Metallo-β-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int J Antimicrob Agents 2009; 33:405.e1-7. [DOI: 10.1016/j.ijantimicag.2008.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 11/22/2022]
|
12
|
|
13
|
Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. THE LANCET. INFECTIOUS DISEASES 2009; 8:751-62. [PMID: 19022191 DOI: 10.1016/s1473-3099(08)70279-2] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Institutional outbreaks caused by Acinetobacter baumannii strains that have acquired multiple mechanisms of antimicrobial drug resistance constitute a growing public-health problem. Because of complex epidemiology, infection control of these outbreaks is difficult to attain. Identification of potential common sources of an outbreak, through surveillance cultures and epidemiological typing studies, can aid in the implementation of specific control measures. Adherence to a series of infection control methods including strict environmental cleaning, effective sterilisation of reusable medical equipment, attention to proper hand hygiene practices, and use of contact precautions, together with appropriate administrative guidance and support, are required for the containment of an outbreak. Effective antibiotic treatment of A baumannii infections, such as ventilator-associated pneumonia and bloodstream infections, is also of paramount importance. Carbapenems have long been regarded as the agents of choice, but resistance rates have risen substantially in some areas. Sulbactam has been successfully used in the treatment of serious A baumannii infections; however, the activity of this agent against carbapenem-resistant isolates is decreasing. Polymyxins show reliable antimicrobial activity against A baumannii isolates. Available clinical reports, although consisting of small-sized studies, support their effectiveness and mitigate previous concerns for toxicity. Minocycline, and particularly its derivative, tigecycline, have shown high antimicrobial activity against A baumannii, though relevant clinical evidence is still scarce. Several issues regarding the optimum therapeutic choices for multidrug-resistant A baumannii infections need to be clarified by future research.
Collapse
|
14
|
Abstract
Acinetobacter baumannii has emerged as a highly troublesome pathogen for many institutions globally. As a consequence of its immense ability to acquire or upregulate antibiotic drug resistance determinants, it has justifiably been propelled to the forefront of scientific attention. Apart from its predilection for the seriously ill within intensive care units, A. baumannii has more recently caused a range of infectious syndromes in military personnel injured in the Iraq and Afghanistan conflicts. This review details the significant advances that have been made in our understanding of this remarkable organism over the last 10 years, including current taxonomy and species identification, issues with susceptibility testing, mechanisms of antibiotic resistance, global epidemiology, clinical impact of infection, host-pathogen interactions, and infection control and therapeutic considerations.
Collapse
|
15
|
Safdar A, Rolston KV. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis 2008; 45:1602-9. [PMID: 18190323 DOI: 10.1086/522998] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Stenotrophomonas maltophilia colonization/infection in patients with cancer has significantly increased over the past 2 decades. Patients with prolonged neutropenia, exposure to broad-spectrum antibiotics, and those requiring mechanical ventilation have higher risk of infection. These micro-organisms are intrinsically resistant to carbapenems, and exposure to these agents has been linked to selection of S. maltophilia. Recently, these infections are being documented in patients without traditional risk factors. The spectrum of infection includes bacteremia, catheter-related infection, pneumonia, complicated biliary and urinary tract infection, and skin and skin-structure infection. Trimethoprim-sulfamethoxazole is the therapeutic agent of choice, but resistance is increasingly being reported. Susceptibility to alternative agents is unpredictable. Combination therapy and alternative routes of drug administration, such as aerosolized aminoglycoside, might be necessary. New insights into the mechanisms of drug resistance might lead to identification of new target sites. Agents that improve outer-membrane permeability and broad-spectrum beta-lactamase inhibitors may favorably impact difficult-to-treat (i.e., multidrug resistant) S. maltophilia infections.
Collapse
Affiliation(s)
- Amar Safdar
- Dept. of Infectious Diseases, Infection Control, and Employee Health, 402, The M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
16
|
Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51:3471-84. [PMID: 17646423 PMCID: PMC2043292 DOI: 10.1128/aac.01464-06] [Citation(s) in RCA: 855] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Federico Perez
- Division of Infectious Diseases and HIV Medicine, University Hospitals, Case Medical Centers, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|