1
|
Chopra R, Sadok A, Collins I. A critical evaluation of the approaches to targeted protein degradation for drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:5-13. [PMID: 31200859 PMCID: PMC6559946 DOI: 10.1016/j.ddtec.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
Abstract
There is a great deal of excitement around the concept of targeting proteins for degradation as an alternative to conventional inhibitory small molecules and antibodies. Protein degradation can be undertaken by bifunctional molecules that bind the target for ubiquitin mediated degradation by complexing them with Cereblon (CRBN), von Hippel-Lindau or other E-3 ligases. Alternatively, E-3 ligase receptors such as CRBN or DCAF15 can also be used as a 'template' to bind IMiD or sulphonamide like compounds to degrade multiple context specific proteins by the selected E-3 ligases. The 'template approach' results in the degradation of neo-substrates, some of which would be difficult to drug using conventional approaches. The chemical properties necessary for drug discovery, the rules by which neo-substrates are selected by E-3 ligase receptors and defining the optimal components of the ubiquitin proteasome for protein degradation are still to be fully elucidate. Theis review will aim to critically evaluate the different approaches and principles emerging for targted protein degradation.
Collapse
Affiliation(s)
- Rajesh Chopra
- Cancer Research UK Cancer Therapeutics Unit and Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| | - Amine Sadok
- Cancer Research UK Cancer Therapeutics Unit and Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit and Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
2
|
Stroo E, Koopman M, Nollen EAA, Mata-Cabana A. Cellular Regulation of Amyloid Formation in Aging and Disease. Front Neurosci 2017; 11:64. [PMID: 28261044 PMCID: PMC5306383 DOI: 10.3389/fnins.2017.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Alejandro Mata-Cabana
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|
3
|
Cai Z, Zeng W, Tao K, E Z, Wang B, Yang Q. Chaperone-mediated autophagy: roles in neuroprotection. Neurosci Bull 2015. [PMID: 26206599 DOI: 10.1007/s12264-015-1540-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chaperone-mediated autophagy (CMA), one of the main pathways of lysosomal proteolysis, is characterized by the selective targeting and direct translocation into the lysosomal lumen of substrate proteins containing a targeting motif biochemically related to the pentapeptide KFERQ. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA is essential for maintaining cellular homeostasis and survival by selectively degrading misfolded, oxidized, or damaged cytosolic proteins. CMA plays an important role in pathologies such as cancer, kidney disorders, and neurodegenerative diseases. Neurons are post-mitotic and highly susceptible to dysfunction of cellular quality-control systems. Maintaining a balance between protein synthesis and degradation is critical for neuronal functions and homeostasis. Recent studies have revealed several new mechanisms by which CMA protects neurons through regulating factors critical for their viability and homeostasis. In the current review, we summarize recent advances in the understanding of the regulation and physiology of CMA with a specific focus on its possible roles in neuroprotection.
Collapse
Affiliation(s)
- Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | |
Collapse
|
4
|
Benke D, Balakrishnan K, Zemoura K. Regulation of Cell Surface GABAB Receptors. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:41-70. [DOI: 10.1016/bs.apha.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J. Autophagy in stem cells. Autophagy 2013; 9:830-49. [PMID: 23486312 DOI: 10.4161/auto.24132] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.
Collapse
Affiliation(s)
- Jun-Lin Guan
- Division of Molecular Medicine, Department of Internal Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marzano V, Santini S, Rossi C, Zucchelli M, D'Alessandro A, Marchetti C, Mingardi M, Stagni V, Barilà D, Urbani A. Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity. J Proteomics 2012; 75:4632-46. [PMID: 22641158 PMCID: PMC3426930 DOI: 10.1016/j.jprot.2012.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 11/24/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Valeria Marzano
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cardoso J, Lima CDP, Leal T, Gradia DF, Fragoso SP, Goldenberg S, De Sá RG, Krieger MA. Analysis of proteasomal proteolysis during the in vitro metacyclogenesis of Trypanosoma cruzi. PLoS One 2011; 6:e21027. [PMID: 21698116 PMCID: PMC3117861 DOI: 10.1371/journal.pone.0021027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/18/2011] [Indexed: 12/15/2022] Open
Abstract
Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell.
Collapse
Affiliation(s)
| | | | - Tiago Leal
- Universidade Federal de Ouro Preto/UFOP, Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | | - Marco A. Krieger
- Instituto Carlos Chagas/FIOCRUZ, Curitiba, Parana, Brazil
- * E-mail:
| |
Collapse
|
8
|
Fioravante D, Byrne JH. Protein degradation and memory formation. Brain Res Bull 2011; 85:14-20. [PMID: 21078374 PMCID: PMC3079012 DOI: 10.1016/j.brainresbull.2010.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/21/2010] [Accepted: 11/03/2010] [Indexed: 11/16/2022]
Abstract
Long-term memories are created when labile short-term memory traces are converted to more enduring forms. This process, called consolidation, is associated with changes in the synthesis of proteins that alter the biophysical properties of neurons and the strength of their synaptic connections. Recently, it has become clear that the consolidation process requires not only protein synthesis but also degradation. Here, we discuss recent findings on the roles of ubiquitination and protein degradation in synaptic plasticity and learning and memory.
Collapse
Affiliation(s)
| | - John H. Byrne
- Dept. Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston TX 77030
| |
Collapse
|
9
|
Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 2010; 9:1229-40. [PMID: 21056014 PMCID: PMC7105183 DOI: 10.1016/j.dnarep.2010.09.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2010] [Indexed: 01/22/2023]
Abstract
Protein ubiquitylation has emerged as an important regulatory mechanism that impacts almost every aspect of the DNA damage response. In this review, we discuss how DNA repair and checkpoint pathways utilize the diversity offered by the ubiquitin conjugation system to modulate the response to genotoxic lesions in space and time. In particular, we will highlight recent work done on the regulation of DNA double-strand breaks signalling and repair by the RNF8/RNF168 E3 ubiquitin ligases, the Fanconi anemia pathway and the role of protein degradation in the enforcement and termination of checkpoint signalling. We also discuss the various functions of deubiquitylating enzymes in these processes along with potential avenues for exploiting the ubiquitin conjugation/deconjugation system for therapeutic purposes.
Collapse
Affiliation(s)
- Abdallah Al-Hakim
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Orenstein SJ, Cuervo AM. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 2010; 21:719-26. [PMID: 20176123 PMCID: PMC2914824 DOI: 10.1016/j.semcdb.2010.02.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/07/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Chaperone-mediated autophagy (CMA) is a selective lysosomal pathway for the degradation of cytosolic proteins. We review in this work some of the recent findings on this pathway regarding the molecular mechanisms that contribute to substrate targeting, binding and translocation across the lysosomal membrane. We have placed particular emphasis on the critical role that changes in the lipid composition of the lysosomal membrane play in the regulation of CMA, as well as the modulatory effect of other novel CMA components. In the second part of this review, we describe the physiological relevance of CMA and its role as one of the cellular mechanisms involved in the response to stress. Changes with age in CMA activity and the contribution of failure of CMA to the phenotype of aging and to the pathogenesis of several age-related pathologies are also described.
Collapse
Affiliation(s)
- Samantha J. Orenstein
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA, 10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA, 10461
| |
Collapse
|
11
|
Selective inhibition of chymotrypsin-like activity of the immunoproteasome and constitutive proteasome in Waldenstrom macroglobulinemia. Blood 2010; 115:4051-60. [PMID: 20110419 DOI: 10.1182/blood-2009-09-243402] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteasome inhibition represents a valid antitumor approach and its use has been validated in Waldenström macroglobulinemia (WM), where bortezomib has been successfully tested in clinical trials. Nevertheless, a significant fraction of patients relapses, and many present toxicity due to its off-target effects. Selective inhibition of the chymotrypsin-like (CT-L) activity of constitutive proteasome 20S (c20S) and immunoproteasome 20S (i20S) represents a sufficient and successful strategy to induce antineoplastic effect in hematologic tumors. We therefore studied ONX0912, a novel selective, irreversible inhibitor of the CT-L activity of i20S and c20S. Primary WM cells express higher level of i20S compared with c20S, and that ONX0912 inhibited the CT-L activity of both i20S and c20S, leading to induction of toxicity in primary WM cells, as well as of apoptosis through c-Jun N-terminal kinase activation, nuclear factor kappaB (NF-kappaB) inhibition, caspase cleavage, and initiation of the unfolded protein response. Importantly, ONX0912 exerted toxicity in WM cells, by reducing bone marrow (BM)-derived interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1) secretion, thus inhibiting BM-induced p-Akt and phosphorylated extracellular signal-related kinase (p-ERK) activation in WM cells. These findings suggest that targeting i20S and c20S CT-L activity by ONX0912 represents a valid antitumor therapy in WM.
Collapse
|
12
|
Baugh JM, Viktorova EG, Pilipenko EV. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J Mol Biol 2009; 386:814-27. [PMID: 19162040 DOI: 10.1016/j.jmb.2008.12.081] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 12/13/2022]
Abstract
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.
Collapse
Affiliation(s)
- James M Baugh
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
13
|
Kinyamu HK, Collins JB, Grissom SF, Hebbar PB, Archer TK. Genome wide transcriptional profiling in breast cancer cells reveals distinct changes in hormone receptor target genes and chromatin modifying enzymes after proteasome inhibition. Mol Carcinog 2008; 47:845-85. [PMID: 18381591 DOI: 10.1002/mc.20440] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Steroid hormone receptors, like glucocorticoid (GR) and estrogen receptors (ER), are master regulators of genes that control many biological processes implicated in health and disease. Gene expression is dependent on receptor levels which are tightly regulated by the ubiquitin-proteasome system. Previous studies have shown that proteasome inhibition increases GR, but decreases ER-mediated gene expression. At the gene expression level this divergent role of the proteasome in receptor-dependent transcriptional regulation is not well understood. We have used a genomic approach to examine the impact of proteasome activity on GR- and ER-mediated gene expression in MCF-7 breast cancer cells treated with dexamethasone (DEX) or 17beta-estradiol (E2), the proteasome inhibitor MG132 (MG) or MG132 and either hormone (MD or ME2) for 24 h. Transcript profiling reveals that inhibiting proteasome activity modulates gene expression by GR and ER in a similar manner in that several GR and ER target genes are upregulated and downregulated after proteasome inhibition. In addition, proteasome inhibition modulates receptor-dependent genes involved in the etiology of a number of human pathological states, including multiple myeloma, leukemia, breast/prostate cancer, HIV/AIDS, and neurodegenerative disorders. Importantly, our analysis reveals that a number of transcripts encoding histone and DNA modifying enzymes, prominently histone/DNA methyltransferases and demethylases, are altered after proteasome inhibition. As proteasome inhibitors are currently in clinical trials as therapy for multiple myeloma, HIV/AIDS and leukemia, the possibility that some of the target molecules are hormone regulated and chromatin modifying enzymes is intriguing in this era of epigenetic therapy.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
14
|
Doucet A, Butler GS, Rodriáguez D, Prudova A, Overall CM. Metadegradomics. Mol Cell Proteomics 2008; 7:1925-51. [DOI: 10.1074/mcp.r800012-mcp200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Sarmiento N, Sánchez-Bernal C, Ayra M, Pérez N, Hernández-Hernández A, Calvo JJ, Sánchez-Yagüe J. Changes in the expression and dynamics of SHP-1 and SHP-2 during cerulein-induced acute pancreatitis in rats. Biochim Biophys Acta Mol Basis Dis 2008; 1782:271-9. [PMID: 18294464 DOI: 10.1016/j.bbadis.2008.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/23/2008] [Accepted: 01/23/2008] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of cell functions but data on different PTP expression and dynamics in acute pancreatitis (AP) are very scarce. Additionally, both c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK1/2), together with intracellular cAMP levels in inflammatory cells, play an essential role in AP. In this study we have detected an increase in PTP SHP-1 and SHP-2 in the pancreas at the level of both protein and mRNA as an early event during the development of Cerulein (Cer)-induced AP in rats. Nevertheless, while SHP-2 protein returned to baseline levels in the intermediate or later phases of AP, SHP-1 protein expression remained increased throughout the development of the disease. The increase in SHP-2 protein expression was associated with changes in its subcellular distribution, with higher percentages located in the fractions enriched in lysosomes+mitochondria or microsomes. Furthermore, while the increase in SHP-2 protein was also observed in sodium-taurocholate duct infusion or bile-pancreatic duct obstruction AP, that of SHP-1 was specific to the Cer-induced model. Neutrophil infiltration did not affect the increase in SHP-1 protein, but favoured the return of SHP-2 protein to control levels, as indicated when rats were rendered neutropenic by the administration of vinblastine sulfate. Inhibition of JNK and ERK1/2 with SP600125 pre-treatment further increased the expression of both SHP-1 and SHP-2 proteins in the early phase of Cer-induced AP, while the inhibition of type IV phosphodiesterase with rolipram only suppressed the increase in SHP-2 protein expression during the same phase. Our results show that AP is associated with increases in the expression of SHP-1 and SHP-2 and changes in the dynamics of SHP-2 subcellular distribution in the early phase of Cer-induced AP. Finally, both JNK and ERK1/2 and intracellular cAMP levels are able to modulate the expression of these PTPs.
Collapse
Affiliation(s)
- Nancy Sarmiento
- Department of Biochemistry and Molecular Biology, University of Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HA. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics 2007; 32:105-16. [PMID: 17925483 DOI: 10.1152/physiolgenomics.00188.2007] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.
Collapse
Affiliation(s)
- Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abayomi EA, Sissolak G, Jacobs P. Use of novel proteosome inhibitors as a therapeutic strategy in lymphomas current experience and emerging concepts. Transfus Apher Sci 2007; 37:85-92. [PMID: 17881293 DOI: 10.1016/j.transci.2007.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/24/2007] [Indexed: 11/22/2022]
Abstract
Precedent from preclinical experiments coupled with two pivotal phase 2 studies in myeloma has focused attention on a potential role for ubiquitin-proteasome pathway in modulating a number of events that occur commonly in the neoplastic process involving proteins in the regulation of cells cycling, growth and differentiation. This influence is vested in the proteasomes which are large complexes of proteolytic enzymes responsible for degradation of many of these intracellular messengers. Logically interest has centred on molecules having the capacity to influence, by degradation, such molecules and although a number of agents are in development bortezomib is the only one currently in clinical use. Velcade, formerly PS-341, is a novel dipeptide boronic acid capable of reversibly inhibiting the 26S proteasome through a range of activities. The latter are anti-proliferative and proapoptotic with the latter blocking nuclear transcription via NF-kappa B in addition to down regulating adhesion and inhibiting angiogenesis. Additional changes are mediated in protein folding within the endoplasmic reticulum and contribute to cell death. These concepts are given focus by considering their introduction into treatment of lymphoreticular malignancy.
Collapse
|
18
|
Bader N, Jung T, Grune T. The proteasome and its role in nuclear protein maintenance. Exp Gerontol 2007; 42:864-70. [PMID: 17532163 DOI: 10.1016/j.exger.2007.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
The cellular proteome is in a dynamic state of synthesis and degradation. Degradation of extracellular proteins is mainly mediated non-specifically by the lysosomes or due to released proteases, while the proteolysis of intracellular including nuclear proteins is catalyzed by the ubiquitin-proteasome pathway. Furthermore, the proteasomal system is largely responsible for the removal of unfolded and oxidatively damaged proteins. Taking into account the role of ubiquitin and proteasome system in protein metabolism, studies of its spatial organization within the cell are of great importance. For the understanding of cellular, including nuclear, protein maintenance the distribution of the proteasomes in both the nucleus and the cytosol and their response upon oxidative stress is of great interest. Although, the functional diversity of the cells is ensured by the three dimensional organization of the nucleus, nuclear proteins are also prone to oxidation and have to be removed from the cellular environment by the nuclear proteasome. Interestingly, nuclear proteins are partly degraded within the nucleus, whereas some are exported from the nucleus to the cytosol. Proteasomes are transported unidirectionally from the cytoplasm to the nucleus with a possible countervail during mitosis. This review is focused largely on the specifics of cellular proteasome distribution and on nuclear protein maintenance under physiological and oxidative stress conditions.
Collapse
Affiliation(s)
- Nicolle Bader
- University Hohenheim, Institute of Biological Chemistry and Nutrition, Department of Biofunctionality and Food Safety, 70593 Stuttgart, Germany
| | | | | |
Collapse
|
19
|
Specific blockage of ligand-induced degradation of the Ah receptor by proteasome but not calpain inhibitors in cell culture lines from different species. Biochem Pharmacol 2007; 74:131-43. [PMID: 17445780 DOI: 10.1016/j.bcp.2007.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/18/2007] [Accepted: 03/20/2007] [Indexed: 11/28/2022]
Abstract
To firmly establish the pathway involved in ligand-induced degradation of the AHR, cell lines derived from mouse rat or human tissues were exposed to inhibitors specific to the proteasome or calpain proteases and exposed to TCDD. The level of endogenous AHR and CYP1A1 protein was then evaluated by quantitative Western blotting. Treatment of cells with the calpain inhibitors: calpeptin, calpain inhibitor III, or PD150606 either individually or in combinations up to 75 microM did not reduce TCDD-induced degradation of the AHR, the induction of endogenous CYP1A1 or the nuclear accumulation of the AHR. The activity of the inhibitors was verified with an in vivo calpain assay. In contrast, exposure of cells to the specific proteasome inhibitors: epoxomicin (1-5 microM), proteasome inhibitor I (5-10 microM) or lactacystin (5-15 microM) completely inhibited TCDD-induced degradation of the AHR. Inhibition of AHR degradation with these compounds did not reduce the induction of endogenous CYP1A1. In addition, exposure of the Hepa-1 line to the various proteasome inhibitors caused an accumulation of the AHR in the nucleus in the absence of TCDD exposure. Finally, Western blot analysis of the DNA bound AHR showed that its molecular mass was unchanged in comparison to the unliganded (cytoplasmic) AHR. Thus, these studies conclusively implicate the proteasome and not calpain proteases in the ligand-induced degradation of the mouse, rat and human AHR and suggest that the pharmacological use of proteasome inhibitors may impact the time course and magnitude of gene regulatory events mediated through the AHR.
Collapse
|