1
|
Whitney D, Shestopalov I, Fincker M, d’Anjou M, Kral K, Gayron M, Pierciey FJ, Colvin RA. Drug product attributes predict clinical efficacy in betibeglogene autotemcel gene therapy for β-thalassemia. Mol Ther Methods Clin Dev 2023; 31:101155. [PMID: 38074412 PMCID: PMC10709156 DOI: 10.1016/j.omtm.2023.101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/08/2023] [Indexed: 10/16/2024]
Abstract
Ex vivo autologous hematopoietic stem cell lentiviral-based gene therapy with betibeglogene autotemcel has been studied in patients with transfusion-dependent β-thalassemia in Phase III clinical trials (HGB-207 and HGB-212), with 90% of patients reaching transfusion independence (TI). Here, we explore manufacturing parameters, drug product quality attributes, and limited patient characteristics that had an impact on clinical efficacy in HGB-207 and HGB-212. Retrospective analysis revealed that the peripheral blood vector copy number (VCN) was related to TI, with a strong correlation between peripheral blood VCN at 6 months and gene therapy-derived therapeutic protein (HbAT87Q) expression at 6 months (correlation coefficient, 0.8681; p < 0.0001; R2 = 0.7536). A peripheral blood VCN threshold of ≥0.75 copies per diploid genome at 6 months post betibeglogene autotemcel infusion provided a stringent surrogate biomarker for TI and was used as the outcome variable for multivariate analysis using a random forest classifier. The top predictive feature of clinical efficacy was found to be the percentage of lentiviral vector-positive cells in the drug product. This retrospective analysis is critical to understanding the key product quality attributes that can predict clinical efficacy in lentiviral vector gene therapy within this clinical trial population.
Collapse
Affiliation(s)
| | | | | | | | - Kelly Kral
- bluebird bio, Inc., Somerville, MA 02145, USA
| | | | | | | |
Collapse
|
2
|
Jie Q, Lei S, Qu C, Wu H, Liu Y, Huang P, Teng S. 利用CRISPR/Cas9基因编辑技术治疗β-地中海贫血的最新进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
MicroRNAs miR-451a and Let-7i-5p Profiles in Circulating Exosomes Vary among Individuals with Different Sickle Hemoglobin Genotypes and Malaria. J Clin Med 2022; 11:jcm11030500. [PMID: 35159951 PMCID: PMC8837188 DOI: 10.3390/jcm11030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Sickle cell disease (SCD) occurs when two alleles of mutated hemoglobin (HbS or HbC) are inherited (HbSS and HbSC) rather than one (HbAS or HbAC), which indicates a person carries the sickle cell trait. The high prevalence of these two alleles in Africa have been associated with reduced malaria susceptibility. Recent in vitro research has been shown that microRNAs (miRNAs) miR-451a and let-7i-5p are differentially expressed in HbSS erythrocytes compared to healthy controls (HbAA) and are overexpressed in Plasmodium-infected malaria erythrocytes. However, these miRNAs have not been fully examined in the plasma of people with different sickle hemoglobin genotypes. Plasma circulating miRNAs are commonly encapsulated in extracellular vesicles, such as exosomes, and are thought to play a role in disease development. Circulating exosomal miR-451a and let-7i-5p were quantified from individuals with various hemoglobin genotypes (HbAA, HbAS, HbAC, HbSS, HbSC, and HbCC) with (+) and without (-) malaria. The results showed a higher level of exosomal let-7i-5p and miR-451a in HbSS-. Exosomal let-7i-5p and miR-451a levels were lower in HbSS+ compared to other genotypes. Based on the area under the curve (AUC) of the Receiver Operating Characteristics (ROCs), both exosomal miRNAs may be useful disease biomarkers for SCD with malaria. Finally, miR-451a and let-7i-5p modulate genes involved in inflammation, making them potential biomarkers of pathogenesis for both diseases.
Collapse
|
4
|
Bottardi S, Milot E. An early start of Coup-TFII promotes γ-globin gene expression in adult erythroid cells. Haematologica 2021; 106:335-336. [PMID: 33522785 PMCID: PMC7849336 DOI: 10.3324/haematol.2020.266791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Stefania Bottardi
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l'Île de Montréal, Montréal
| | - Eric Milot
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l'Île de Montréal, Montréal; Department of Medicine, University of Montreal, Montréal, Québec.
| |
Collapse
|
5
|
Shangaris P, Loukogeorgakis SP, Subramaniam S, Flouri C, Jackson LH, Wang W, Blundell MP, Liu S, Eaton S, Bakhamis N, Ramachandra DL, Maghsoudlou P, Urbani L, Waddington SN, Eddaoudi A, Archer J, Antoniou MN, Stuckey DJ, Schmidt M, Thrasher AJ, Ryan TM, De Coppi P, David AL. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci Rep 2019; 9:11592. [PMID: 31406195 PMCID: PMC6690943 DOI: 10.1038/s41598-019-48078-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
In utero gene therapy (IUGT) to the fetal hematopoietic compartment could be used to treat congenital blood disorders such as β-thalassemia. A humanised mouse model of β-thalassemia was used, in which heterozygous animals are anaemic with splenomegaly and extramedullary hematopoiesis. Intrahepatic in utero injections of a β globin-expressing lentiviral vector (GLOBE), were performed in fetuses at E13.5 of gestation. We analysed animals at 12 and 32 weeks of age, for vector copy number in bone marrow, peripheral blood liver and spleen and we performed integration site analysis. Compared to noninjected heterozygous animals IUGT normalised blood haemoglobin levels and spleen weight. Integration site analysis showed polyclonality. The left ventricular ejection fraction measured using magnetic resonance imaging (MRI) in treated heterozygous animals was similar to that of normal non-β-thalassemic mice but significantly higher than untreated heterozygous thalassemia mice suggesting that IUGT ameliorated poor cardiac function. GLOBE LV-mediated IUGT normalised the haematological and anatomical phenotype in a heterozygous humanised model of β-thalassemia.
Collapse
Affiliation(s)
- Panicos Shangaris
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- UCL Institute of Child Health, UCL, London, United Kingdom.
| | | | | | - Christina Flouri
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | | | - Wei Wang
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Shanrun Liu
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Simon Eaton
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Nahla Bakhamis
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | | | | | - Luca Urbani
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Simon N Waddington
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ayad Eddaoudi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Joy Archer
- Central Diagnostic Services, Queen's Vet School Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, UCL, London, United Kingdom
| | - Manfred Schmidt
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Thomas M Ryan
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Paolo De Coppi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
6
|
Stratopoulos A, Kolliopoulou A, Karamperis K, John A, Kydonopoulou K, Esftathiou G, Sgourou A, Kourakli A, Vlachaki E, Chalkia P, Theodoridou S, Papadakis MN, Gerou S, Symeonidis A, Katsila T, Ali BR, Papachatzopoulou A, Patrinos GP. Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients. Pharmacogenomics 2019; 20:791-801. [PMID: 31393228 DOI: 10.2217/pgs-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.
Collapse
Affiliation(s)
- Apostolos Stratopoulos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Alexandra Kolliopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Kariofyllis Karamperis
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Anne John
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | | | - Argyro Sgourou
- School of Science & Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Alexandra Kourakli
- Thalassemia & Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Efthimia Vlachaki
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia & Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatia Theodoridou
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Argiris Symeonidis
- Medical Faculty, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Bassam R Ali
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
- United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
7
|
El-Beshlawy A, El-Ghamrawy M. Recent trends in treatment of thalassemia. Blood Cells Mol Dis 2019; 76:53-58. [DOI: 10.1016/j.bcmd.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
|
8
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
9
|
Ballas SK. Sickle cell disease: Classification of clinical complications and approaches to preventive and therapeutic management. Clin Hemorheol Microcirc 2018; 68:105-128. [PMID: 29614627 DOI: 10.3233/ch-189002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sickle cell disease (SCD) is an inherited disorder of hemoglobin structure that has no established cure in adult patients. Cure has been achieved in selected children with sickle cell anemia (SCA) using allogeneic bone marrow transplantation or cord blood transplantation. SCD is essentially a triumvirate of (1) pain syndromes, (2) anemia and its sequelae and (3) organ failure, including infection. Pain, however, is the hallmark of SCD and dominates its clinical picture throughout the life of the patients. The prevalence of these complications varies with age from infancy through adult life. However, pain, infections and anemia requiring blood transfusion occur throughout the life span of affected patients. The overall medical care of patients with SCD in developed countries has improved such that their life expectancy has almost doubled since 1951. Currently, there are at least five major approaches for the general management of SCD and its complications. These include (i) symptomatic management, (ii) supportive management, (iii) preventive management, (iv) abortive management, and (v) curative therapy.
Collapse
Affiliation(s)
- Samir K Ballas
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Sii-Felice K, Giorgi M, Leboulch P, Payen E. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice. Exp Hematol 2018; 64:12-32. [PMID: 29807062 DOI: 10.1016/j.exphem.2018.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/19/2023]
Abstract
The β-hemoglobinopathies, transfusion-dependent β-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. Therefore, gene therapy by one-time ex vivo modification of hematopoietic stem cells followed by autologous engraftment is an attractive new therapeutic modality. The first proof-of-principle of conversion to transfusion independence by means of a lentiviral vector expressing a marked and anti-sickling βT87Q-globin gene variant was reported a decade ago in a patient with transfusion-dependent β-thalassemia. In follow-up multicenter Phase II trials with an essentially identical vector (termed LentiGlobin BB305) and protocol, 12 of the 13 patients with a non-β0/β0 genotype, representing more than half of all transfusion-dependent β-thalassemia cases worldwide, stopped red blood cell transfusions with total hemoglobin levels in blood approaching normal values. Correction of biological markers of dyserythropoiesis was achieved in evaluated patients. In nine patients with β0/β0 transfusion-dependent β-thalassemia or equivalent severity (βIVS1-110), median annualized transfusion volume decreased by 73% and red blood cell transfusions were stopped in three patients. Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent β-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent β-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.
Collapse
Affiliation(s)
- Karine Sii-Felice
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France
| | - Marie Giorgi
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France
| | - Philippe Leboulch
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emmanuel Payen
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France; INSERM, Paris, France.
| |
Collapse
|
11
|
Bhukhai K, de Dreuzy E, Giorgi M, Colomb C, Negre O, Denaro M, Gillet-Legrand B, Cheuzeville J, Paulard A, Trebeden-Negre H, Borwornpinyo S, Sii-Felice K, Maouche L, Down JD, Leboulch P, Payen E. Ex Vivo Selection of Transduced Hematopoietic Stem Cells for Gene Therapy of β-Hemoglobinopathies. Mol Ther 2018; 26:480-495. [PMID: 29221807 PMCID: PMC5835017 DOI: 10.1016/j.ymthe.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase. When expressed from a ubiquitous promoter within a complex lentiviral vector comprising the βAT87Q-globin gene, viral titers and therapeutic gene expression were maintained at effective levels. Complete selection and preservation of transduced HSCs were achieved after brief exposure to puromycin in the presence of MDR1 blocking agents, suggesting the procedure's suitability for human clinical applications while affording the additional safety of conditional suicide.
Collapse
Affiliation(s)
- Kanit Bhukhai
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Edouard de Dreuzy
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Marie Giorgi
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Charlotte Colomb
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Olivier Negre
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio, Inc., Cambridge, MA 02141, USA; bluebird bio France, Fontenay aux Roses 92260, France
| | | | - Béatrix Gillet-Legrand
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | - Joëlle Cheuzeville
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | - Anaïs Paulard
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | | | | | - Karine Sii-Felice
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Leila Maouche
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; INSERM, Paris 75013, France
| | - Julian D Down
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillippe Leboulch
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; Ramathibodi Hospital, Bangkok 10400, Thailand; Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA.
| | - Emmanuel Payen
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; INSERM, Paris 75013, France.
| |
Collapse
|
12
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
13
|
Galy A. Major Advances in the Development of Vectors for Clinical Gene Therapy of Hematopoietic Stem Cells from European Groups over the Last 25 Years. Hum Gene Ther 2017; 28:964-971. [DOI: 10.1089/hum.2017.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anne Galy
- Integrare Research Unit UMR_S951, Genethon, Inserm, Univ Evry, EPHE, Evry, France
| |
Collapse
|
14
|
Wen J, Tao W, Hao S, Zu Y. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. J Hematol Oncol 2017; 10:119. [PMID: 28610635 PMCID: PMC5470227 DOI: 10.1186/s13045-017-0489-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background Sickle cell disease (SCD) is a disorder of red blood cells (RBCs) expressing abnormal hemoglobin-S (HbS) due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT) carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0489-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wenjing Tao
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suyang Hao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, Hongeng S, Hacein-Bey S, Cavazzana M, Leboulch P, Payen E. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene. Hum Gene Ther 2016; 27:148-65. [PMID: 26886832 PMCID: PMC4779296 DOI: 10.1089/hum.2016.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (β(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. β(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Olivier Negre
- 1 bluebird bio, Cambridge, Massachusetts.,2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France
| | | | - Yves Beuzard
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France
| | | | - Philippe Bourget
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Salima Hacein-Bey
- 6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Leboulch
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,5 Mahidol University , Bangkok, Thailand .,7 Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital , Boston, Massachusetts
| | - Emmanuel Payen
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,8 INSERM , Paris, France
| |
Collapse
|
16
|
Hu X. CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells Mol Dis 2016; 62:6-12. [PMID: 27736664 DOI: 10.1016/j.bcmd.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Xiaotang Hu
- Department of Biology, College of Arts & Sciences, Barry University, 11300 Northeast Second Avenue, Miami Shores, FL 33161, United States.
| |
Collapse
|
17
|
Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 2016; 135:993-1010. [PMID: 27314256 DOI: 10.1007/s00439-016-1696-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.
Collapse
|
18
|
Dai S, Zhuo M, Song L, Chen X, Yu Y, Zang G, Tang Z. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice. Immunobiology 2016; 221:813-21. [PMID: 26874581 DOI: 10.1016/j.imbio.2016.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/30/2016] [Accepted: 01/31/2016] [Indexed: 12/23/2022]
Abstract
Predominant T helper cell type 1 (Th1) immune responses accompanied by boosted HBV-specific cytotoxic T lymphocyte (CTL) activity are essential for the clearance of hepatitis B virus (HBV) in chronic hepatitis B (CHB) patients. Ubiquitin (Ub) serves as a signal for the target protein to be recognized and degraded through the ubiquitin-proteasome system (UPS). Ubiquitinated hepatitis B core antigen (Ub-HBcAg) has been proved to be efficiently degraded into the peptides, which can be presented by major histocompatibility complex (MHC) class I resulting in stimulating cell-mediated responses. In the present study, lentiviral vectors encoding Ub-HBcAg (LV-Ub-HBcAg) were designed and constructed as a therapeutic vaccine for immunotherapy. HBcAg-specific cellular immune responses and anti-viral effects induced by LV-Ub-HBcAg were evaluated in HBV transgenic mice. We demonstrated that immunization with LV-Ub-HBcAg promoted the secretion of cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), generated remarkably high percentages of IFN-γ-secreting CD8(+) T cells and CD4(+) T cells, and enhanced HBcAg-specific CTL activity in HBV transgenic mice. More importantly, vaccination with LV-Ub-HBcAg could efficiently decreased the levels of serum hepatitis B surface antigen (HBsAg), HBV DNA and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. In addition, LV-Ub-HBcAg could upregulate the expression of T cell-specific T-box transcription factor (T-bet) and downregulate the expression of GATA-binding protein 3 (GATA-3) in spleen T lymphocytes. The therapeutic vaccine LV-Ub-HBcAg could break immune tolerance, and induce potent HBcAg specific cellular immune responses and therapeutic effects in HBV transgenic mice.
Collapse
Affiliation(s)
- Shenglan Dai
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China.
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China.
| |
Collapse
|
19
|
de Dreuzy E, Bhukhai K, Leboulch P, Payen E. Current and future alternative therapies for beta-thalassemia major. Biomed J 2016; 39:24-38. [PMID: 27105596 PMCID: PMC6138429 DOI: 10.1016/j.bj.2015.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
Abstract
Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy), which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for β-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway.
Collapse
Affiliation(s)
- Edouard de Dreuzy
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Kanit Bhukhai
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; Department of Medicine, Harvard Medical School and Genetics Division, Brigham and Women's Hospital, Boston MA, USA; Mahidol University and Ramathibodi Hospital, Bangkok, Thailand
| | - Emmanuel Payen
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; INSERM, Paris, France.
| |
Collapse
|
20
|
Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15045. [PMID: 26665131 PMCID: PMC4667717 DOI: 10.1038/mtm.2015.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/24/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
Abstract
Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.0. Fetal hemoglobin (HbF) levels ranged from 20 to 44% of total hemoglobin and approximately two-thirds of circulating red blood cells expressed HbF detected by immunofluorescence (F-cells). Gene therapy treatment of SCD mice ameliorated anemia, reduced hyperleukocytosis, improved renal function, and reduced iron accumulation in liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans.
Collapse
|
21
|
Dai S, Zhuo M, Song L, Chen X, Yu Y, Tang Z, Zang G. Dendritic cell-based vaccination with lentiviral vectors encoding ubiquitinated hepatitis B core antigen enhances hepatitis B virus-specific immune responses in vivo. Acta Biochim Biophys Sin (Shanghai) 2015; 47:870-9. [PMID: 26373843 DOI: 10.1093/abbs/gmv093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022] Open
Abstract
The activity of hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) plays a predominant role in the clearance of HBV. Dendritic cells (DCs) are key antigen-presenting cells and play an important role in the initiation of immune responses. We previously verified that lentiviral vector encoding ubiquitinated hepatitis B core antigen (LV-Ub-HBcAg) effectively transduced DCs to induce maturation, and the mature DCs efficiently induced T cell polarization to Th1 and generated HBcAg-specific CTLs ex vivo. In this study, HBV-specific immune responses of LV-Ub-HBcAg in BALB/c mice (H-2Kd) were evaluated. It was shown that direct injection of LV-Ub-HBcAg increased the production of cytokines IL-2 and IFN-γ, elicited strong antibody responses, and remarkably generated a high percentage of IFN-γ+CD8+ T cells with HBV-specific CTL responses in BALB/c mice. In addition, direct injection of LV-Ub-HBcAg induced potent anti-HBV immune responses, similar to those elicited by in vitro-transduced DCs. In conclusion, the DC-based therapeutic vaccine LV-Ub-HBcAg elicited specific antibody immune responses and induced robust specific CTL activity in vivo.
Collapse
Affiliation(s)
- Shenglan Dai
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
22
|
Houghton BC, Booth C, Thrasher AJ. Lentivirus technologies for modulation of the immune system. Curr Opin Pharmacol 2015; 24:119-27. [PMID: 26363252 DOI: 10.1016/j.coph.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023]
Abstract
Lentiviral vectors (LVV) are important tools for the treatment of immune system disorders. Integration of therapeutic genetic material into the haematopoietic stem cell compartment using LVV can mediate long-term correction of haematopoietic lineages, thereby correcting disease phenotypes. Twenty years of vector development have successfully brought LVV to the clinic, with follow up studies of clinical trials treating primary immunodeficiencies now being reported. Results have demonstrated clear improvements in the quality of life for patients with a number of conditions in the absence of the severe adverse events observed in earlier retroviral gene therapy trials. Growing interest in gene modified adoptive T cell transfer as an alternative strategy has driven further technology innovation, including characterisation of novel viral envelopes. We will also discuss the progression of gene editing technology to preclinical investigations in models of immune deficiency.
Collapse
Affiliation(s)
- Benjamin C Houghton
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claire Booth
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK.
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
23
|
Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14055. [PMID: 26052523 PMCID: PMC4448740 DOI: 10.1038/mtm.2014.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/19/2014] [Indexed: 12/24/2022]
Abstract
Safely achieving long-term engraftment of genetically modified hematopoietic stem cells (HSCs) that maintain therapeutic transgene expression is the benchmark for successful application of gene therapy for hemoglobinopathies. We used the pigtailed macaque HSC transplantation model to ascertain the long-term safety and stability of a γ-globin lentivirus vector. We observed stable gene-modified cells and fetal hemoglobin expression for 3 years. Retrovirus integration site (RIS) analysis spanning 6 months to 3.1 years revealed vastly disparate integration profiles, and dynamic fluctuation of hematopoietic contribution from different gene-modified HSC clones without evidence for clonal dominance. There were no perturbations of the global gene-expression profile or expression of genes within a 300 kb region of RIS, including genes surrounding the most abundantly marked clones. Overall, a 3-year long follow-up revealed no evidence of genotoxicity of the γ-globin lentivirus vector with multilineage polyclonal hematopoiesis, and HSC clonal fluctuations that were not associated with transcriptome dysregulation.
Collapse
|
24
|
Chandrakasan S, Malik P. Gene therapy for hemoglobinopathies: the state of the field and the future. Hematol Oncol Clin North Am 2014; 28:199-216. [PMID: 24589262 DOI: 10.1016/j.hoc.2013.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After nearly two decades of struggle, gene therapy for hemoglobinopathies using vectors carrying β or γ-globin gene has finally reached the clinical doorsteps. This was made possible by advances made in our understanding of critical regulatory elements required for high level of globin gene expression and improved gene transfer vectors and methodologies. Development of gene editing technologies and reprogramming somatic cells for regenerative medicine holds the promise of genetic correction of hemoglobinopathies in the future. This article will review the state of the field and the upcoming technologies that will allow genetic therapeutic correction of hemoglobinopathies.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Division of Hematology, Oncology and Bone Marrow Transplant, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology/Cancer Biology, Cincinnati Children's Research Foundation, Cancer and Blood Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Hematology, Cincinnati Children's Research Foundation, Cancer and Blood Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
25
|
Serguera C, Bemelmans AP. Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain. Rev Neurol (Paris) 2014; 170:727-38. [PMID: 25459120 DOI: 10.1016/j.neurol.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/10/2014] [Indexed: 02/04/2023]
Abstract
The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors.
Collapse
Affiliation(s)
- C Serguera
- CEA, DSV, I(2)BM, Molecular Imaging Research Center (MIRCen) and CNRS, CEA URA 2210, 18, route du Panorama, 92265 Fontenay-aux-Roses, France
| | - A-P Bemelmans
- CEA, DSV, I(2)BM, Molecular Imaging Research Center (MIRCen) and CNRS, CEA URA 2210, 18, route du Panorama, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
26
|
Affiliation(s)
- Thomas G DeLoughery
- From the Hematology Section, Knight Cancer Institute; and the Departments of Medicine, Pathology, and Pediatrics, Oregon Health and Science University, Portland
| |
Collapse
|
27
|
Acuto S, Baiamonte E, Di Stefano R, Spina B, Barone R, Maggio A. Development and Recent Progresses of Gene Therapy for β-Thalassemia. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-thalassemias are among the most common inherited monogenic disorders worldwide due to mutations in the β-globin gene that reduce or abolish the production of the β-globin chain resulting in transfusion-dependent chronic anemia. Currently, the only curative treatment is allogeneic hematopoietic stem cells (HSCs) transplantation, but this option is limited by the a vailability of HLA-matched donor. Gene therapy, based on autologous transplantation of genetically corrected HSCs, holds the promise to treat patients lacking a compati ble bone marrow donor. I nit ial attempts of gene transfer have been unsuccessful due to limitations of available vectors to stably transfer a globin gene in HSCs and reach high and regulated expression in the erythroid progeny. With the advent of lentiviral vectors (LVs), based on human immunodeficiency virus, many of the initial limitations have been overcome. Since 2000 when Sadelain and co-workers first demonstrated successful globin gene transfer in murine thalassemia models with improvement of the phenotype using a recombinant β globin/LV, several other groups have developed different vectors encoding either β, γ or mutated globin genes and confirmed these results in both murine models and erythroid progeny derived from patient’s HSCs. In light of these encouraging results, research has recently moved into clinical trials that are ongoing or soon to begin. One participant in an ongoing gene transfer trial for β-thalassemia has achieved clinical benefit with elimination of his transfusi on re quirement. Here , dev elopmen t and recent progress of gene therapy for β-thalassemia is reviewed.
Collapse
|
28
|
Abstract
Cardiac hemochromatosis or primary iron-overload cardiomyopathy is an important and potentially preventable cause of heart failure. This is initially characterized by diastolic dysfunction and arrhythmias and in later stages by dilated cardiomyopathy. Diagnosis of iron overload is established by elevated transferrin saturation (>55%) and elevated serum ferritin (>300 ng/mL). Genetic testing for mutations in the HFE (high iron) gene and other proteins, such as hemojuvelin, transferrin receptor, and ferroportin, should be performed if secondary causes of iron overload are ruled out. Patients should undergo comprehensive 2D and Doppler echocardiography to evaluate their systolic and diastolic function. Newer modalities like strain imaging and speckle-tracking echocardiography hold promise for earlier detection of cardiac involvement. Cardiac magnetic resonance imaging with measurement of T2* relaxation times can help quantify myocardial iron overload. In addition to its value in diagnosis of cardiac iron overload, response to iron reduction therapy can be assessed by serial imaging. Therapeutic phlebotomy and iron chelation are the cornerstones of therapy. The average survival is less than a year in untreated patients with severe cardiac impairment. However, if treated early and aggressively, the survival rate approaches that of the regular heart failure population.
Collapse
Affiliation(s)
- Vinay Gulati
- From the *Department of Medicine, University of Connecticut Health Center, Farmington, CT; and †Division of Cardiology, Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | | | | | | | | | |
Collapse
|
29
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
30
|
Heterogeneity in hematopoietic stem cell populations: implications for transplantation. Curr Opin Hematol 2013; 20:257-64. [PMID: 23615054 DOI: 10.1097/moh.0b013e328360aaf6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Transplantation of hematopoietic cells is now a well established clinical procedure, although optimal outcomes are not always obtained. This reflects insufficient knowledge of the different subsets of primitive cells required to achieve a rapid and permanent recovery of mature blood cell production. Here we review recent findings that extend our understanding of these cells and their regulation, and implications for the ex-vivo expansion of these cells. RECENT FINDINGS Separate subsets of platelet and neutrophil lineage-restricted human hematopoietic cells with rapid but transient repopulating activities have been identified, thus adding to previous evidence of short-term repopulating cells that generate both of these lineages. New studies also suggest intrinsically determined heterogeneity in differentiation potentialities that are sustained at the stem cell level, and have revealed new ways their self-renewal can be influenced. SUMMARY Hematopoietic repopulation posttransplant is highly complex both in terms of the differing numbers and types of cells required for optimal hematopoietic recoveries and the factors that will determine the composition and behavior of a given inoculum. Successful ex-vivo expansion protocols will, thus, need to incorporate conditions that will produce adequate numbers of all cell types required with retention of their full functionality.
Collapse
|