1
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
2
|
Zhang X, Wang F, Yan F, Huang D, Wang H, Gao B, Gao Y, Hou Z, Lou J, Li W, Yan J. Identification of a novel HOOK3-FGFR1 fusion gene involved in activation of the NF-kappaB pathway. Cancer Cell Int 2022; 22:40. [PMID: 35081975 PMCID: PMC8793161 DOI: 10.1186/s12935-022-02451-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Rearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene result in 8p11 myeloproliferative syndrome (EMS), which is a rare and aggressive hematological malignancy that is often initially diagnosed as myelodysplastic syndrome (MDS). Clinical outcomes are typically poor due to relative resistance to tyrosine kinase inhibitors (TKIs) and rapid transformation to acute leukemia. Deciphering the transcriptomic signature of FGFR1 fusions may open new treatment strategies for FGFR1 rearrangement patients. Methods DNA sequencing (DNA-seq) was performed for 20 MDS patients and whole exome sequencing (WES) was performed for one HOOK3-FGFR1 fusion positive patient. RNA sequencing (RNA-seq) was performed for 20 MDS patients and 8 healthy donors. Fusion genes were detected using the STAR-Fusion tool. Fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and Sanger sequencing were used to confirm the HOOK3-FGFR1 fusion gene. The phosphorylation antibody array was performed to validate the activation of nuclear factor-kappaB (NF-kappaB) signaling. Results We identified frequently recurrent mutations of ASXL1 and U2AF1 in the MDS cohort, which is consistent with previous reports. We also identified a novel in-frame HOOK3-FGFR1 fusion gene in one MDS case with abnormal monoclonal B-cell lymphocytosis and ring chromosome 8. FISH analysis detected the FGFR1 break-apart signal in myeloid blasts only. qRT-PCR and Sanger sequencing confirmed the HOOK3-FGFR1 fusion transcript with breakpoints located at the 11th exon of HOOK3 and 10th exon of FGFR1, and Western blot detected the chimeric HOOK3-FGFR1 fusion protein that is presumed to retain the entire tyrosine kinase domain of FGFR1. The transcriptional feature of HOOK3-FGFR1 fusion was characterized by the significant enrichment of the NF-kappaB pathway by comparing the expression profiling of FGFR1 fusion positive MDS with 8 healthy donors and FGFR1 fusion negative MDS patients. Further validation by phosphorylation antibody array also showed NF-kappaB activation, as evidenced by increased phosphorylation of p65 (Ser 536) and of IKBalpha (Ser 32). Conclusions The HOOK3-FGFR1 fusion gene may contribute to the pathogenesis of MDS and activate the NF-kappaB pathway. These findings highlight a potential novel approach for combination therapy for FGFR1 rearrangement patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02451-y.
Collapse
Affiliation(s)
- Xuehong Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Furong Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Haina Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Yuan Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 116044, Dalian, China
| | - Weiling Li
- Department of Biotechnology College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China. .,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.
| |
Collapse
|
3
|
Liu YT, Zhao JW, Feng J, Li QH, Chen YM, Qiu LG, Xiao ZJ, Li Y, Gong BF, Gong XY, Mi YC, Wang JX. [Myeloid/lymphoid neoplasms with eosinophilia and FGFR1 rearrangement: 5 cases report and literatures review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:848-852. [PMID: 31775485 PMCID: PMC7364987 DOI: 10.3760/cma.j.issn.0253-2727.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
目的 分析罕见疾病伴嗜酸性粒细胞增多和FGFR1重排的髓系/淋系肿瘤(即8p11骨髓增殖综合征,EMS)的临床特征、诊断及治疗。 方法 总结中国医学科学院血液病医院2014年1月至2018年5月收治的5例确诊EMS患者的临床表现、实验室特征、诊治经过及转归。 结果 5例EMS患者外周血白细胞计数均明显升高,伴有嗜酸性粒细胞绝对值增高(均值18.89×109/L);骨髓髓系极度增生,原始细胞均<5%,嗜酸性粒细胞比例增高(均值17.24%)。5例患者染色体核型各不相同,但FISH检查均存在FGFR1基因重排。发病至确诊平均时间为4.8个月,中位生存期仅14个月。 结论 EMS是一种罕见病,恶性程度高,对常规化疗反应差,生存期短,且易发生误诊漏诊,细胞遗传学及分子生物学检查有助于早期诊断。
Collapse
Affiliation(s)
- Y T Liu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Garcia-Montojo M, Doucet-O'Hare T, Henderson L, Nath A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 2018; 44:715-738. [PMID: 30318978 DOI: 10.1080/1040841x.2018.1501345] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human genome contains a large number of retroviral elements acquired over the process of evolution, some of which are specific to primates. However, as many of these are defective or silenced through epigenetic changes, they were historically considered "junk DNA" and their potential role in human physiology or pathological circumstances have been poorly studied. The most recently acquired, human endogenous retrovirus-K (HERV-K), has multiple copies in the human genome and some of them have complete open reading frames that are transcribed and translated, especially in early embryogenesis. Phylogenetically, HERV-K is considered a supergroup of viruses. One of the subtypes, termed HML-2, seems to be the most active and hence, it is the best studied. Aberrant expression of HML-2 in adult tissues has been associated with certain types of cancer and with neurodegenerative diseases. This review discusses the discovery of these viruses, their classification, structure, regulation and potential for replication, physiological roles, and their involvement in disease pathogenesis. Finally, it presents different therapeutic approaches being considered to target these viruses.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Tara Doucet-O'Hare
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Lisa Henderson
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Avindra Nath
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
5
|
Rajagopalan D, Jha S. An epi(c)genetic war: Pathogens, cancer and human genome. Biochim Biophys Acta Rev Cancer 2018; 1869:333-345. [DOI: 10.1016/j.bbcan.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
|
6
|
Myeloid and Lymphoid Neoplasms with Eosinophilia and Abnormalities of PDGFRA, PDGFRB, FGFR1, or t(8;9)(p22;p24.1);PCM1-JAK2. MOLECULAR PATHOLOGY LIBRARY 2018. [DOI: 10.1007/978-3-319-62146-3_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Landberg N, Dreimane A, Rissler M, Billström R, Ågerstam H. Primary cells inBCR/FGFR1-positive 8p11 myeloproliferative syndrome are sensitive to dovitinib, ponatinib, and dasatinib. Eur J Haematol 2017; 99:442-448. [DOI: 10.1111/ejh.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas Landberg
- Department of Clinical Genetics; Lund University; Lund Sweden
| | - Arta Dreimane
- Department of Haematology; Linköping University Hospital; Linköping Sweden
| | | | - Rolf Billström
- Department of Medicine; Central Hospital Skövde; Skövde Sweden
| | - Helena Ågerstam
- Department of Clinical Genetics; Lund University; Lund Sweden
| |
Collapse
|
8
|
Babaian A, Mager DL. Endogenous retroviral promoter exaptation in human cancer. Mob DNA 2016; 7:24. [PMID: 27980689 PMCID: PMC5134097 DOI: 10.1186/s13100-016-0080-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs) with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs) provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.
Collapse
Affiliation(s)
- Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
9
|
Gallo LH, Nelson KN, Meyer AN, Donoghue DJ. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev 2015; 26:425-49. [PMID: 26003532 DOI: 10.1016/j.cytogfr.2015.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
Abstract
The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.
Collapse
Affiliation(s)
- Leandro H Gallo
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - April N Meyer
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| |
Collapse
|
10
|
Xu L, Zhao F, Ren H, Li L, Lu J, Liu J, Zhang S, Liu GE, Song J, Zhang L, Wei C, Du L. Co-expression analysis of fetal weight-related genes in ovine skeletal muscle during mid and late fetal development stages. Int J Biol Sci 2014; 10:1039-50. [PMID: 25285036 PMCID: PMC4183924 DOI: 10.7150/ijbs.9737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/16/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep. RESULTS We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene expression changes associated with fetal longissimus muscles during different fetal stages in two sheep breeds. Totally, we identified 1472 differentially expressed genes during various fetal stages using time-series expression analysis. A systems biology approach, weighted gene co-expression network analysis (WGCNA), was used to detect modules of correlated genes among these 1472 genes. Dramatically different gene modules were identified in four merged datasets, corresponding to the mid fetal stage in Texel and Ujumqin sheep, the late fetal stage in Texel and Ujumqin sheep, respectively. We further detected gene modules significantly correlated with fetal weight, and constructed networks and pathways using genes with high significances. In these gene modules, we identified genes like TADA3, LMNB1, TGF-β3, EEF1A2, FGFR1, MYOZ1, and FBP2 correlated with fetal weight. CONCLUSION Our study revealed the complex network characteristics involved in muscle development and lipid metabolism during fetal development stages. Diverse patterns of the network connections observed between breeds and fetal stages could involve some hub genes, which play central roles in fetal development, correlating with fetal weight. Our findings could provide potential valuable biomarkers for selection of body weight-related traits in sheep and other livestock.
Collapse
Affiliation(s)
- Lingyang Xu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 4. Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Services, Beltsville, Maryland 20705, USA; ; 5. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Fuping Zhao
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hangxing Ren
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 2. Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Li Li
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 3. College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jian Lu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiasen Liu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shifang Zhang
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - George E Liu
- 4. Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Services, Beltsville, Maryland 20705, USA
| | - Jiuzhou Song
- 5. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Li Zhang
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Caihong Wei
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixin Du
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
11
|
Sarahx OJO, Anthony AO, Titilope AA, Alani SA. The 8p12 myeloproliferative syndrome. Niger Med J 2014. [PMID: 24791056 DOI: 10.4103/0300-1652.129669.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The occurrence of a myeloproliferative disorder in association with an aggressive lymphoproliferative disorder is a distinctly unusual phenomenon. We report a case of concurrent leukaemia-lymphoma syndrome characterized by a BCR/ABL-negative myeloproliferative disease, eosinophilia and a lymphoma. The bone marrow chromosome analysis showed the karyotype 46, XY, t(8;9) (q12; p33), which indicated presence of FGFR1 gene translocations. 8p12 myeloproliferative syndrome (EMS) / stem cell leukaemia-lymphoma syndrome (SCLL) belongs to the tyrosine kinase fusion genes chronic myeloproliferative diseases. The patient was managed conservatively with hydroxyurea, allopurinol and blood component therapy. The patient eventually died of intracerebral haemorrhage due to severe thrombocytopaenia. Based on our experience the overlap in the clinical presentation of this disease with lymphomas, can lead to a delay in diagnosis of EMS/SCLL. Given the aggressive nature of this disease, an accurate clinical and molecular diagnosis of this entity has become increasingly important.
Collapse
Affiliation(s)
- O John-Olabode Sarahx
- Department of Haematology, Ben Carson School of Medicine, Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - A Oyekunle Anthony
- Department of Haematolgy and Immunology, Faculty of Health Sciences, Obafemi Awolowo University and Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - A Adeyemo Titilope
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| | - S Akanmu Alani
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
12
|
Abstract
The occurrence of a myeloproliferative disorder in association with an aggressive lymphoproliferative disorder is a distinctly unusual phenomenon. We report a case of concurrent leukaemia-lymphoma syndrome characterized by a BCR/ABL-negative myeloproliferative disease, eosinophilia and a lymphoma. The bone marrow chromosome analysis showed the karyotype 46, XY, t(8;9) (q12; p33), which indicated presence of FGFR1 gene translocations. 8p12 myeloproliferative syndrome (EMS) / stem cell leukaemia-lymphoma syndrome (SCLL) belongs to the tyrosine kinase fusion genes chronic myeloproliferative diseases. The patient was managed conservatively with hydroxyurea, allopurinol and blood component therapy. The patient eventually died of intracerebral haemorrhage due to severe thrombocytopaenia. Based on our experience the overlap in the clinical presentation of this disease with lymphomas, can lead to a delay in diagnosis of EMS/SCLL. Given the aggressive nature of this disease, an accurate clinical and molecular diagnosis of this entity has become increasingly important.
Collapse
Affiliation(s)
- O. John-Olabode Sarahx
- Department of Haematology, Ben Carson School of Medicine, Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - A. Oyekunle Anthony
- Department of Haematolgy and Immunology, Faculty of Health Sciences, Obafemi Awolowo University and Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - A. Adeyemo Titilope
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| | - S. Akanmu Alani
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
13
|
|
14
|
Patnaik MM, Tefferi A. Molecular diagnosis of myeloproliferative neoplasms. Expert Rev Mol Diagn 2014; 9:481-92. [DOI: 10.1586/erm.09.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Abstract
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Li Yen Mah
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Trimaldi J, Carballido EM, Bowers JW, Anguiano AL, Zhang ZJ, Shah BD, Bruno S, List AF, Moscinski LC, Grady T, Agosti SJ, Kang L, Zhang L. B-lymphoblastic leukemia/lymphoma associated with t(8;13)(p11;q12)/ ZMYM2 (ZNF198)-FGFR1 : rare case and review of the literature. Acta Haematol 2013; 130:127-34. [PMID: 23594707 DOI: 10.1159/000347030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/20/2012] [Indexed: 12/29/2022]
Abstract
Myeloid and lymphoid neoplasms with fibroblastic growth factor receptor-1 (FGFR1) abnormalities originate from mutated pluripotent stem cells and have a heterogeneous clinical presentation. There are 12 identified partner genes commonly involved in FGFR1 translocation at an 8p11 breakpoint. In FGFR1-related neoplasms, T-lymphoblastic lymphoma with eosinophilia is the most common clinical scenario, whereas acute B-lymphoblastic leukemia/lymphoma (B-ALL/LBL) is rare. To date, only 7 cases of B-ALL/LBL with FGFR1 abnormalities have been reported. Here, we report an additional case of a 64-year-old gentleman with leukocytosis, eosinophilia and diffuse mediastinal and general lymphadenopathy. Bone marrow examination showed patchy infiltrates of immature precursors/blasts, along with myeloid/eosinophilic hyperplasia. Immunophenotyping confirmed increased B lymphoblasts (30-40%). Karyotyping revealed cytogenetic abnormalities, including t(8;13)(p11;q12)/ZMYM2 (ZNF198)-FGFR1 and trisomy 21. The patient did not respond to hyper-CVAD chemotherapy and within 4 months developed acute myelomonocytic leukemia and expired 11 months after the initial diagnosis. Similar cases from the literature are reviewed.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 8/genetics
- Cyclophosphamide/administration & dosage
- DNA-Binding Proteins/genetics
- Dexamethasone/administration & dosage
- Down Syndrome
- Doxorubicin/administration & dosage
- Fatal Outcome
- Humans
- Leukemia, Monocytic, Acute/drug therapy
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- Male
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasms, Second Primary/drug therapy
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/pathology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Transcription Factors/genetics
- Translocation, Genetic
- Vincristine/administration & dosage
Collapse
Affiliation(s)
- Janese Trimaldi
- Department of Pathology, College of Medicine, University of South Florida, Tampa, Fla., USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 2010; 8:1439-52. [PMID: 21047773 DOI: 10.1158/1541-7786.mcr-10-0168] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factor receptors (FGFR) play essential roles both during development and in the adult. Upon ligand binding, FGFRs induce intracellular signaling networks that tightly regulate key biological processes, such as cell proliferation, survival, migration, and differentiation. Deregulation of FGFR signaling can thus alter tissue homeostasis and has been associated with several developmental syndromes as well as with many types of cancer. In human cancer, FGFRs have been found to be deregulated by multiple mechanisms, including aberrant expression, mutations, chromosomal rearrangements, and amplifications. In this review, we will give an overview of the main FGFR alterations described in human cancer to date and discuss their contribution to cancer progression.
Collapse
Affiliation(s)
- Ellen Margrethe Haugsten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | |
Collapse
|
18
|
Abstract
Constitutive activation of protein tyrosine kinases plays a central role in the pathogenesis of myeloproliferative disorders, including BCR-ABL-negative chronic myeloid leukemia. Current research is focused on elucidating the full spectrum of causative mutations in this rare, heterogeneous disease. Activated tyrosine kinases are excellent targets for signal transduction therapy, and an accurate diagnosis including morphology, karyotyping, and molecular genetics will become increasingly important to direct individualized treatment. In addition, new molecular findings need to be incorporated into disease classification systems.
Collapse
MESH Headings
- Aged
- Aneuploidy
- Enzyme Activation
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/classification
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/enzymology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Middle Aged
- Mutation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Kinases/genetics
- Protein Kinases/physiology
- Risk Factors
- Signal Transduction/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Sonja Burgstaller
- Wessex Regional Genetics Laboratory, University of Southampton,Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | | | | |
Collapse
|
19
|
Patnaik MM, Gangat N, Knudson RA, Keefe JG, Hanson CA, Pardanani A, Ketterling RP, Tefferi A. Chromosome 8p11.2 translocations: prevalence, FISH analysis for FGFR1 and MYST3, and clinicopathologic correlates in a consecutive cohort of 13 cases from a single institution. Am J Hematol 2010; 85:238-42. [PMID: 20143402 DOI: 10.1002/ajh.21631] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosome 8p11.2 translocations result in diverse oncogenic fusion genes involving FGFR1 or MYST3. Among 24,262 unique patient cytogenetic studies performed at the Mayo Clinic, 8p11.2 translocations were identified in 14 cases ( approximately 0.06%). FISH analysis was performed in 13 patients (12 had myeloid neoplasms) and revealed abnormalities of MYST3 (n = 4) or FGFR1 (n = 4) in eight patients. MYST3 abnormalities were associated with acute myeloid leukemia (AML), M4 in three and M6 in one. Three of the four FGFR1-rearranged cases were associated with myeloproliferative neoplasms but none, including the two with sole 8p11.2, displayed the typical phenotype for stem cell leukemia/lymphoma (SCLL) and only one had eosinophilia; the fourth case had AML-M4. FISH did not reveal FGFR1 involvement in the one patient with SCLL. We conclude that neither the SCLL phenotype nor blood eosinophilia is a consistent feature of FGFR1-associated 8p11.2 translocations; conversely, FISH might not always reveal FGFR1 involvement in typical SCLL.
Collapse
|
20
|
Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 4: HERVs in cancer. J R Soc Med 2010; 102:474-80. [PMID: 19875536 DOI: 10.1258/jrsm.2009.090289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Frank P Ryan
- Sheffield Primary Care Trust and Department of Animal and Plant Sciences, Sheffield University, UK.
| |
Collapse
|
21
|
Abstract
The 8p11 myeloproliferative syndrome is a rare hematologic malignancy derived from a pluripotent hematopoietic stem cell associated with rearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene located on chromosome 8p11. The most common translocation, t(8;13) (p11;q13), results in a ZNF198-FGFR1 fusion gene and constitutively active FGFR1 tyrosine kinase activity. Typical pathologic findings include myeloid hyperplasia, lymphadenopathy, precursor T-lymphoblastic lymphoma, and eosinophilia. The disease is usually associated with an aggressive course and progression to acute myeloid leukemia is frequent. We report here the first case of 8p11 myeloproliferative syndrome in an infant and demonstrate the value of molecular testing in the diagnosis and minimal disease monitoring of this rare disease.
Collapse
|
22
|
Kasyapa C, Gu TL, Nagarajan L, Natarajan L, Polakiewicz R, Cowell JK. Phosphorylation of the SSBP2 and ABL proteins by the ZNF198-FGFR1 fusion kinase seen in atypical myeloproliferative disorders as revealed by phosphopeptide-specific MS. Proteomics 2009; 9:3979-88. [PMID: 19658100 DOI: 10.1002/pmic.200800852] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ZNF198-fibroblast growth factor receptor-1 (FGFR1) fusion kinase is a constitutively activated tyrosine kinase associated with a specific atypical myeloproliferative disease. The chimeric protein localizes to the cytoplasm, unlike the wild type FGFR1 receptor kinase, and presumably inappropriately phosphorylates specific targets as part of the oncogenic signaling cascade. Other than known targets of the FGFR1 kinase itself, few specific targets of ZNF198-FGFR1 have been identified. Using a genetically engineered HEK 293 cell system, we have identified proteins that are specifically phosphorylated in the presence of the fusion kinase using anti-phosphotyrosine immunoprecipitation and MS. Compared with 293 cells expressing exongenous wild type FGFR1, ZNF198-FGFR1 is associated with phosphorylation of several proteins including SSBP2, ABL, FLJ14235, CALM and TRIM4 proteins. The specificity of the phosphorylation events in the SSBP2 and ABL proteins, which have previously been implicated in leukemogenesis, was further confirmed independently using immunoprecipitation with protein-specific antibodies and Western blotting. The MS analysis also identified the phosphorylation events in the ZNF198 moiety in the chimeric protein that might be related to its function. These studies identify the intersection of several different leukemia-related pathways in the development of this myeloproliferative disorder and provide new insights into the substrates of FGFR1 under defined conditions.
Collapse
Affiliation(s)
- Chitta Kasyapa
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lourenco GJ, Ortega MM, Freitas LLL, Bognone RAV, Fattori A, Lorand-Metze I, Lima CSP. The rare t(6;8) (q27;p11) translocation in a case of chronic myeloid neoplasm mimicking polycythemia vera. Leuk Lymphoma 2008; 49:1832-5. [PMID: 18608868 DOI: 10.1080/10428190802163347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med 2008; 13:215-37. [PMID: 19175693 PMCID: PMC3823350 DOI: 10.1111/j.1582-4934.2008.00559.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
Hermans KG, van der Korput HA, van Marion R, van de Wijngaart DJ, Ziel-van der Made A, Dits NF, Boormans JL, van der Kwast TH, van Dekken H, Bangma CH, Korsten H, Kraaij R, Jenster G, Trapman J. Truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res 2008; 68:7541-9. [PMID: 18794142 DOI: 10.1158/0008-5472.can-07-5930] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we describe the properties of novel ETV1 fusion genes, encoding N-truncated ETV1 (dETV1), and of full-length ETV1, overexpressed in clinical prostate cancer. We detected overexpression of novel ETV1 fusion genes or of full-length ETV1 in 10% of prostate cancers. Novel ETV1 fusion partners included FOXP1, an EST (EST14), and an endogenous retroviral repeat sequence (HERVK17). Like TMPRSS2, EST14 and HERVK17 were prostate-specific and androgen-regulated expressed. This unique expression pattern of most ETV1 fusion partners seems an important determinant in prostate cancer development. In transient reporter assays, full-length ETV1 was a strong transactivator, whereas dETV1 was not. However, several of the biological properties of dETV1 and full-length ETV1 were identical. On stable overexpression, both induced migration and invasion of immortalized nontumorigenic PNT2C2 prostate epithelial cells. In contrast to dETV1, full-length ETV1 also induced anchorage-independent growth of these cells. PNT2C2 cells stably transfected with dETV1 or full-length ETV1 expression constructs showed small differences in induced expression of target genes. Many genes involved in tumor invasion/metastasis, including uPA/uPAR and MMPs, were up-regulated in both cell types. Integrin beta3 (ITGB3) was clearly up-regulated by full-length ETV1 but much less by dETV1. Based on the present data and on previous findings, a novel concept of the role of dETV1 and of full-length ETV1 overexpression in prostate cancer is proposed.
Collapse
Affiliation(s)
- Karin G Hermans
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Five years since the discovery of FIP1L1–PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 2008; 22:1999-2010. [DOI: 10.1038/leu.2008.287] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Hidalgo-Curtis C, Chase A, Drachenberg M, Roberts MW, Finkelstein JZ, Mould S, Oscier D, Cross NCP, Grand FH. The t(1;9)(p34;q34) and t(8;12)(p11;q15) fuse pre-mRNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1. Genes Chromosomes Cancer 2008; 47:379-85. [PMID: 18205209 DOI: 10.1002/gcc.20541] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated two patients with acquired chromosomal rearrangements, a male presenting with a t(1;9)(p34;q34) and B cell progenitor acute lymphoid leukemia and a female presenting with a t(8;12)(p11;q15) and the 8p11 myeloproliferative syndrome. We determined that the t(1;9) fused ABL to SFPQ (also known as PSF), a gene mapping to 1p34 that encodes a polypyrimidine tract-binding protein-associated splicing factor. The t(8;12) fused CPSF6, a cleavage and polyadenylation specificity factor, to FGFR1. The fusions were confirmed by amplification of the genomic breakpoints and RT-PCR. The predicted oncogenic products of these fusions, SFPQ-ABL and CPSF6-FGFR1, are in-frame and encode the N-terminal domain of the partner protein and the entire tyrosine kinase domain and C-terminal sequences of ABL and FGFR1. SFPQ interacts with two FGFR1 fusion partners, ZNF198 and CPSF6, that are functionally related to the recurrent PDGFRalpha partner FIP1L1. Our findings thus identify a group of proteins that are important for pre-mRNA processing as fusion partners for tyrosine kinases in hematological malignancies.
Collapse
Affiliation(s)
- Claire Hidalgo-Curtis
- Wessex Regional Genetics Laboratory, Salisbury District Hospital and Human Genetics Division, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lelièvre H, Chevrier V, Tassin AM, Birnbaum D. Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cgamma at the centrosome. Mol Cancer 2008; 7:30. [PMID: 18412956 PMCID: PMC2373309 DOI: 10.1186/1476-4598-7-30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/15/2008] [Indexed: 01/28/2023] Open
Abstract
Background The t(6;8) translocation found in rare and agressive myeloproliferative disorders results in a chimeric gene encoding the FOP-FGFR1 fusion protein. This protein comprises the N-terminal region of the centrosomal protein FOP and the tyrosine kinase of the FGFR1 receptor. FOP-FGFR1 is localized at the centrosome where it exerts a constitutive kinase activity. Results We show that FOP-FGFR1 interacts with the large centrosomal protein CAP350 and that CAP350 is necessary for FOP-FGFR1 localisation at centrosome. FOP-FGFR1 activates the phosphoinositide-3 kinase (PI3K) pathway. We show that p85 interacts with tyrosine 475 of FOP-FGFR1, which is located in a YXXM consensus binding sequence for an SH2 domain of p85. This interaction is in part responsible for PI3K activation. Ba/F3 cells that express FOP-FGFR1 mutated at tyrosine 475 have reduced proliferative ability. Treatment with PI3K pathway inhibitors induces death of FOP-FGFR1 expressing cells. FOP-FGFR1 also recruits phospholipase Cγ1 (PLCγ1) at the centrosome. We show that this enzyme is recruited by FOP-FGFR1 at the centrosome during interphase. Conclusion These results delineate a particular type of oncogenic mechanism by which an ectopic kinase recruits its substrates at the centrosome whence unappropriate signaling induces continuous cell growth and MPD.
Collapse
Affiliation(s)
- Hélène Lelièvre
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, Marseille, France.
| | | | | | | |
Collapse
|
29
|
|
30
|
Bain BJ, Fletcher SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am 2007; 27:377-88. [PMID: 17868855 DOI: 10.1016/j.iac.2007.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Among patients with hypereosinophilia, a myeloproliferative variant is recognized. In many of these patients a diagnosis of eosinophilic leukemia can be made. The molecular mechanism is often a fusion gene, incorporating part of PDGFRA or PDGFRB, encoding anaberrant tyrosine kinase. Prompt diagnosis of such cases is important since specific tyrosine kinase inhibitor therapy is indicated.
Collapse
Affiliation(s)
- Barbara J Bain
- Department of Haematology, St Mary's Hospital Campus of Imperial College Faculty of Medicine, St Mary's Hospital, Praed Street, London, W2 1NY, UK.
| | | |
Collapse
|
31
|
Citores L, Bai L, Sørensen V, Olsnes S. Fibroblast growth factor receptor-induced phosphorylation of STAT1 at the Golgi apparatus without translocation to the nucleus. J Cell Physiol 2007; 212:148-56. [PMID: 17311277 DOI: 10.1002/jcp.21014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
STAT transcription factors signal from the plasma membrane to the nucleus in response to growth factors and cytokines, but little is known about activation of STAT1 from intracellular sites. Here we show that transient transfection of COS cells with fibroblast growth factor receptors (FGFRs) led to ligand-independent phosphorylation of the receptors, including intracellular immature forms. FGF-independent activation of STAT1 was demonstrated at the Golgi apparatus where it was colocalized with FGFRs. Both FGFR1 and FGFR2 induced strong phosphorylation of STAT1 causing redistribution of the Golgi apparatus, while FGFR3 and FGFR4 induced less phosphorylation of STAT1 and little or no redistribution of the Golgi apparatus. Upon expression of a cytosolic mutant of FGFR4 lacking the transmembrane as well as the extracellular region (CytR4), STAT1 was phosphorylated and transferred to the nucleus. The results indicate that immature forms of FGFRs form incomplete signaling complexes on Golgi membranes trapping phospho-STAT1 on this organelle.
Collapse
Affiliation(s)
- Lucía Citores
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular, Universidad de Valladolid, Valladolid, Spain.
| | | | | | | |
Collapse
|
32
|
Dong S, Kang S, Gu TL, Kardar S, Fu H, Lonial S, Khoury HJ, Khuri F, Chen J. 14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells. Blood 2007; 110:360-9. [PMID: 17389761 PMCID: PMC1896121 DOI: 10.1182/blood-2006-12-065615] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human 8p11 stem cell leukemia/lymphoma syndrome usually presents as a myeloproliferative disorder (MPD) that evolves to acute myeloid leukemia and/or lymphoma. The syndrome associated with t(8;13)(p11;q12) results in expression of the ZNF198-FGFR1 fusion tyrosine kinase that plays a pathogenic role in hematopoietic transformation. We found that ZNF198-FGFR1 activated both the AKT and mitogen activated protein kinase (MAPK) prosurvival signaling pathways, resulting in elevated phosphorylation of the AKT target FOXO3a at T32 and BAD at S112, respectively. These phosphorylated residues subsequently sequestered the proapoptotic FOXO3a and BAD to 14-3-3 to prevent apoptosis. We used a peptide-based 14-3-3 competitive antagonist, R18, to disrupt 14-3-3-ligand association. Expression of R18 effectively induced apoptosis in hematopoietic Ba/F3 cells transformed by ZNF198-FGFR1 compared with control cells. Moreover, purified recombinant transactivator of transcription (TAT)-conjugated R18 proteins effectively transduced into human leukemia cells and induced significant apoptosis in KG-1a cells expressing FGFR1OP2-FGFR1 fusion tyrosine kinase but not in control HL-60 and Jurkat T cells. Surprisingly, R18 was only able to dissociate FOXO3a, but not BAD as previously proposed, from 14-3-3 binding and induced apoptosis partially through liberation and reactivation of FOXO3a. Our findings suggest that 14-3-3 integrates prosurvival signals in FGFR1 fusion-transformed hematopoietic cells. Disrupting 14-3-3-ligand association may represent an effective therapeutic strategy to treat 8p11 stem cell MPD.
Collapse
Affiliation(s)
- Shaozhong Dong
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu J, Zhou GB, Wang ZY, Chen SJ, Chen Z. Mutant Transcription Factors and Tyrosine Kinases as Therapeutic Targets for Leukemias: From Acute Promyelocytic Leukemia to Chronic Myeloid Leukemia and Beyond. Adv Cancer Res 2007; 98:191-220. [PMID: 17433911 DOI: 10.1016/s0065-230x(06)98006-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mutations in transcription factors (TFs) and protein tyrosine kinases (PTKs), which result in inhibition of differentiation/apoptosis or enhanced proliferative/survival advantage of hematopoietic stem/progenitor cells, are two classes of the most frequently detected genetic abnormalities in leukemias. The critical roles for mutant TFs and/or PTKs to play in leukemogenesis, and the absence of mutant TFs/PTKs in normal hematopoietic cells, suggest that the two types of aberrant molecules may serve as ideal therapeutic targets. The great success of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) in treating acute promyelocytic leukemia through modulation of the causative PML-RARalpha oncoprotein represents the first two paradigms of mutant TFs-targeting therapeutic strategies for leukemia. More recently, tyrosine kinase inhibitor STI-571/Imatinib mesylate/Gleevec in the treatment of Breakpoint Cluster Region-Abelson (BCR-ABL) positive leukemia elicits paradigm of mutant PTKs as ideal antileukemia targets. Thus to further improve clinical outcome of leukemia patients, elucidation of pathogenesis of leukemia, screening for oncoprotein-targeting small molecules, as well as rationally designed combination of drugs with potential synergy are of importance.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Mutation/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jiong Hu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU) and Shanghai Center for Systems Biomedicine, SJTU, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
34
|
Agerstam H, Lilljebjörn H, Lassen C, Swedin A, Richter J, Vandenberghe P, Johansson B, Fioretos T. Fusion gene-mediated truncation ofRUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007; 46:635-43. [PMID: 17394134 DOI: 10.1002/gcc.20442] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 8p11 myeloproliferative syndrome (EMS) is a chronic myeloproliferative disorder molecularly characterized by fusion of various 5' partner genes to the 3' part of the fibroblast growth factor receptor 1 (FGFR1) gene at 8p, resulting in constitutive activation of the tyrosine kinase activity contained within FGFR1. EMS is associated with a high risk of transformation to acute myeloid leukemia (AML), but the mechanisms underlying the disease progression are unknown. In the present study, we have investigated a case of EMS harboring a t(8;22)(p11;q11)/BCR-FGFR1 rearrangement as well as a t(9;21)(q34;q22) at the time of AML transformation. FISH and RT-PCR analyses revealed that the t(9;21) leads to a fusion gene consisting of the 5' part of RUNX1 (exons 1-4) fused to repetitive sequences of a gene with unknown function on chromosome 9, adding 70 amino acids to RUNX1 exon 4. The t(9;21) hence results in a truncation of RUNX1. No point mutations were found in the other RUNX1 allele. The most likely functional outcome of the rearrangement was haploinsufficiency of RUNX1, which thus may be one mechanism by which EMS transforms to AML.
Collapse
Affiliation(s)
- Helena Agerstam
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gu TL, Goss VL, Reeves C, Popova L, Nardone J, Macneill J, Walters DK, Wang Y, Rush J, Comb MJ, Druker BJ, Polakiewicz RD. Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia. Blood 2006; 108:4202-4. [PMID: 16946300 DOI: 10.1182/blood-2006-06-026666] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The 8p11 myeloproliferative syndrome (EMS) is associated with translocations that disrupt the FGFR1 gene. To date, 8 fusion partners of FGFR1 have been identified. However, no primary leukemia cell lines were identified that contain any of these fusions. Here, we screened more than 40 acute myeloid leukemia cell lines for constitutive phosphorylation of STAT5 and applied an immunoaffinity profiling strategy to identify tyrosine-phosphorylated proteins in the KG-1 cell line. Mass spectrometry analysis of KG-1 cells revealed aberrant tyrosine phosphorylation of FGFR1. Subsequent analysis led to the identification of a fusion of the FGFR1OP2 gene to the FGFR1 gene. Small interfering RNA (siRNA) against FGFR1 specifically inhibited the growth and induced apoptosis of KG-1 cells. Thus, the KG-1 cell line provides an in vitro model for the study of FGFR1 fusions associated with leukemia and for the analysis of small molecule inhibitors against FGFR1 fusions.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Line, Tumor
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Models, Biological
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- STAT5 Transcription Factor/biosynthesis
- STAT5 Transcription Factor/genetics
Collapse
Affiliation(s)
- Ting-Lei Gu
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA 01923, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gotlib J, Cross NCP, Gilliland DG. Eosinophilic disorders: molecular pathogenesis, new classification, and modern therapy. Best Pract Res Clin Haematol 2006; 19:535-69. [PMID: 16781488 DOI: 10.1016/j.beha.2005.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Before the 1990s, lack of evidence for a reactive cause of hypereosinophilia or chronic eosinophilic leukemia (e.g. presence of a clonal cytogenetic abnormality or increased blood or bone marrow blasts) resulted in diagnosticians characterizing such nebulous cases as 'idiopathic hypereosinophilic syndrome (HES)'. However, over the last decade, significant advances in our understanding of the molecular pathophysiology of eosinophilic disorders have shifted an increasing proportion of cases from this idiopathic HES 'pool' to genetically defined eosinophilic diseases with recurrent molecular abnormalities. The majority of these genetic lesions result in constitutively activated fusion tyrosine kinases, the phenotypic consequence of which is an eosinophilia-associated myeloid disorder. Most notable among these is the recent discovery of the cryptic FIP1L1-PDGFRA gene fusion in karyotypically normal patients with systemic mast cell disease with eosinophilia or idiopathic HES, redefining these diseases as clonal eosinophilias. Rearrangements involving PDGFRA and PDGFRB in eosinophilic chronic myeloproliferative disorders, and of fibroblast growth factor receptor 1 (FGFR1) in the 8p11 stem cell myeloproliferative syndrome constitute additional examples of specific genetic alterations linked to clonal eosinophilia. The identification of populations of aberrant T-lymphocytes secreting eosinophilopoietic cytokines such as interleukin-5 establish a pathophysiologic basis for cases of lymphocyte-mediated hypereosinophilia. This recent revival in understanding the biologic basis of eosinophilic disorders has permitted more genetic specificity in the classification of these diseases, and has translated into successful therapeutic approaches with targeted agents such as imatinib mesylate and recombinant anti-IL-5 antibody.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Center, 875 Blake Wilbur Drive, Room 2327B, Stanford, CA 94305-5821, USA.
| | | | | |
Collapse
|
37
|
Chase A, Cross NCP. Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases. Clin Sci (Lond) 2006; 111:233-49. [PMID: 16961463 DOI: 10.1042/cs20060035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tyrosine kinases play key roles in cell proliferation, survival and differentiation. Their aberrant activation, caused either by the formation of fusion genes by chromosome translocation or by intragenic changes, such as point mutations or internal duplications, is of major importance in the development of many haematological malignancies. An understanding of the mechanisms by which BCR-ABL contributes to the pathogenesis of chronic myeloid leukaemia led to the development of imatinib, the first of several tyrosine kinase inhibitors to enter clinical trials. Although the development of resistance has been problematic, particularly in aggressive disease, the development of novel inhibitors and combination with other forms of therapy shows promise.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Salisbury District Hospital, Salisbury SP2 8BJ, U.K
| | | |
Collapse
|
38
|
Tefferi A, Gilliland G. Classification of chronic myeloid disorders: From Dameshek towards a semi-molecular system. Best Pract Res Clin Haematol 2006; 19:365-85. [PMID: 16781478 DOI: 10.1016/j.beha.2005.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematological malignancies are phenotypically organized into lymphoid and myeloid disorders, although such a distinction might not be precise from the standpoint of lineage clonality. In turn, myeloid malignancies are broadly categorized into either acute myeloid leukemia (AML) or chronic myeloid disorder (CMD), depending on the presence or absence, respectively, of AML-defining cytomorphologic and cytogenetic features. The CMD are traditionally classified by their morphologic appearances into discrete clinicopathologic entities based primarily on subjective technologies. It has now become evident that most CMD represent clonal stem cell processes where the primary oncogenic event has been characterized in certain instances; Bcr/Abl in chronic myeloid leukemia, FIP1L1-PDGFRA or c-kit(D816V) in systemic mastocytosis, rearrangements of PDGFRB in chronic eosinophilic leukemia, and rearrangements of FGFR1 in stem cell leukemia/lymphoma syndrome. In addition, Bcr/Abl-negative classic myeloproliferative disorders are characterized by recurrent JAK2(V617F) mutations, whereas other mutations affecting the RAS signaling pathway molecules have been associated with juvenile myelomonocytic leukemia. Such progress is paving the way for a transition from a histologic to a semi-molecular classification system that preserves conventional terminology, while incorporating new information on molecular pathogenesis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic College of Medicine, Rochester 55905, USA.
| | | |
Collapse
|
39
|
Kunapuli P, Kasyapa CS, Chin SF, Caldas C, Cowell JK. ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML. Exp Cell Res 2006; 312:3739-51. [PMID: 17027752 DOI: 10.1016/j.yexcr.2006.06.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 11/23/2022]
Abstract
The ZNF198/FGFR1 fusion gene in atypical myeloproliferative disease produces a constitutively active cytoplasmic tyrosine kinase, unlike ZNF198 which is normally a nuclear protein. We have now shown that the ZNF198/FGFR1 fusion kinase interacts with the endogenous ZNF198 protein suggesting that the function of ZNF198 may be compromised in cells expressing it. Little is currently known about the endogenous function of ZNF198 and to investigate this further we performed a yeast two-hybrid analysis and identified SUMO-1 as a binding partner of ZNF198. These observations were confirmed using co-immunoprecipitation which demonstrated that ZNF198 is covalently modified by SUMO-1. Since many of the SUMO-1-modified proteins are targeted to the PML nuclear bodies we used confocal microscopy to show that SUMO-1, PML and ZNF198 colocalize to punctate structures, shown by immunocytochemistry to be PML bodies. Using co-immunoprecipitation we now show that PML and sumoylated ZNF198 can be found in a protein complex in the cell. Mutation of the SUMO-1 binding site in wild-type ZNF198 resulted in loss of distinct PML bodies, reduced PML levels and a more dispersed nuclear localization of the PML protein. In cells expressing ZNF198/FGFR1, which also lack the SUMO-1 binding site, SUMO-1 is preferentially localized in the cytoplasm, which is associated with loss of distinct PML bodies. Recently, arsenic trioxide (ATO) was proposed as an alternative therapy for APL that was resistant to traditional therapy. Treatment of cells expressing ZNF198/FGFR1 with ATO demonstrated reduced autophosphorylation of the ZNF198/FGFR1 protein and induced apoptosis, which is not seen in cells expressing wild-type ZNF198. Overall our results suggest that the sumoylation of ZNF198 is important for PML body formation and that the abrogation of sumoylation of ZNF198 in ZNF198/FGFR1 expressing cells may be an important mechanism in cellular transformation.
Collapse
Affiliation(s)
- Padmaja Kunapuli
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Blood eosinophilia signifies either a cytokine-mediated reactive phenomenon (secondary) or an integral phenotype of an underlying haematological neoplasm (primary). Secondary eosinophilia is usually associated with parasitosis in Third World countries and allergic conditions in the West. Primary eosinophilia is operationally classified as being clonal or idiopathic, depending on the respective presence or absence of a molecular, cytogenetic or histological evidence for a myeloid malignancy. The current communication features a comprehensive clinical summary of both secondary and primary eosinophilic disorders with emphasis on recent developments in molecular pathogenesis and treatment.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
41
|
Walz C, Sattler M. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 2006; 57:145-64. [PMID: 16213151 DOI: 10.1016/j.critrevonc.2005.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 02/06/2023] Open
Abstract
Imatinib mesylate (Gleevec) was developed as the first molecularly targeted therapy that specifically inhibits the BCR-ABL tyrosine kinase activity in patients with Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML). Due to its excellent hematologic and cytogenetic responses, particularly in patients with chronic phase CML, imatinib has moved towards first-line treatment for newly diagnosed CML. Nevertheless, resistance to the drug has been frequently reported and is attributed to the fact that transformation of hematopoietic stem cells by BCR-ABL is associated with genomic instability. Point mutations within the ABL tyrosine kinase of the BCR-ABL oncoprotein are the major cause of resistance, though overexpression of the BCR-ABL protein and novel acquired cytogenetic aberrations have also been reported. A variety of strategies derived from structural studies of the ABL-imatinib complex have been developed, resulting in the design of novel ABL inhibitors, including AMN107, BMS-354825, ON012380 and others. The major goal of these efforts is to create new drugs that are more potent than imatinib and/or more effective against imatinib-resistant BCR-ABL clones. Some of these drugs have already been successfully tested in preclinical studies where they show promising results. Additional approaches are geared towards targeting the expression or stability of the BCR-ABL kinase itself or targeting signaling pathways that are chronically activated and required for transformation. In this review, we will discuss the underlying mechanisms of resistance to imatinib and novel targeted approaches to overcome imatinib resistance in CML.
Collapse
Affiliation(s)
- Christoph Walz
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Abstract
Chronic myeloproliferative diseases (CMPDs) are characterized by the abnormal proliferation and survival of one or more myeloid cell types. The archetype of this class of hematological diseases is chronic myeloid leukemia (CML), characterized by the presence of the Philadelphia (Ph) chromosome, the result of t(9;22)(q34;q11), and the associated BCR-ABL1 oncogene. Some of the Ph-negative myeloproliferative diseases are characterized by other chromosomal translocations involving a variety of tyrosine kinase genes, including ABL1, ABL2, PDGFRA, PDGFRB, FGFR1, and JAK2. The majority of Ph-negative CMPDs, however, such as chronic eosinophilic leukemia, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are not characterized by the presence of recurrent chromosomal abnormalities. Recent studies have identified the FIP1L1-PDGFRA fusion gene, generated due to a small cryptic deletion on chromosome 4q12, and the activating V617F mutation in JAK2 in a significant fraction of Ph-negative CMPDs. These results show that abnormalities in tyrosine kinase genes are central to the molecular pathogenesis of CMPDs. Genome-wide screenings to identify novel tyrosine kinase abnormalities in CMPDs may contribute to further improvement of the diagnosis and the treatment of these diseases.
Collapse
Affiliation(s)
- K De Keersmaecker
- Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, Leuven, Belgium
| | | |
Collapse
|
43
|
Tefferi A, Gilliland DG. The JAK2V617F tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis. Mayo Clin Proc 2005; 80:947-58. [PMID: 16007902 DOI: 10.4065/80.7.947] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Janus kinase 2 (JAK2) is a cytoplasmic protein-tyrosine kinase that catalyzes the transfer of the gamma-phosphate group of adenosine triphosphate to the hydroxyl groups of specific tyrosine residues in signal transduction molecules. JAK2 mediates signaling downstream of cytokine receptors after ligand-induced autophosphorylation of both receptor and enzyme. The main downstream effectors of JAK2 are a family of transcription factors known as signal transducers and activators of transcription (STAT) proteins. The myeloproliferative disorders (MPD), a subgroup of myeloid malignancies, are clonal stem cell diseases characterized by an expansion of morphologically mature granulocyte, erythroid, megakaryocyte, or monocyte lineage cells. Among the traditionally classified MPD, the disease-causing mutation has been delineated, thus far, for only chronic myeloid leukemia (ie, bcr/abl). In the past 3 months, 7 different studies have Independently described a close association between an activating JAK2 mutation (JAK2V617F) and the classic bcr/abi-negative MPD (ie, polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia) as well as the less frequent occurrence of the same mutation in both atypical MPD and the myelodysplastic syndrome. The particular finding is consistent with previous observations that have implicated the JAK/STAT signal transduction pathway in the pathogenesis of bcr/abl-negative MPD, Including the phenotype of growth factor independence and/or hypersensitivity. The current article summarizes this new information and discusses its implications for both classification and diagnosis of MPD.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Department of Internal Medicine and Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA
| | | |
Collapse
|
44
|
Walz C, Chase A, Schoch C, Weisser A, Schlegel F, Hochhaus A, Fuchs R, Schmitt-Gräff A, Hehlmann R, Cross NCP, Reiter A. The t(8;17)(p11;q23) in the 8p11 myeloproliferative syndrome fuses MYO18A to FGFR1. Leukemia 2005; 19:1005-9. [PMID: 15800673 DOI: 10.1038/sj.leu.2403712] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 8p11 myeloproliferative syndrome (EMS) also known as stem cell leukemia-lymphoma syndrome (SCLL) is associated with translocations that disrupt FGFR1. The resultant fusion proteins are constitutively active tyrosine kinases, and different FGFR1 fusions are associated with subtly different disease phenotypes. We report here a patient with a t(8;17)(p11;q23) and an unusual myelodysplastic/myeloproliferative disease (MDS/MPD) characterized by thrombocytopenia due to markedly reduced size and numbers of megakaryocytes, with elevated numbers of monocytes, eosinophils and basophils. A novel mRNA fusion between exon 32 of the myosin XVIIIA gene (MYO18A) at chromosome band 17q11 and exon 9 of FGFR1 was identified. Partial characterization of the genomic breakpoints in combination of bubble-PCR with fluorescence in situ hybridization revealed that the t(8;17) arose from a three-way translocation with breaks at 8p11, 17q11 and 17q23. MYO18A-FGFR1 is structurally similar to other fusion tyrosine kinases and is likely to be the causative transforming lesion in this unusual MDS/MPD.
Collapse
Affiliation(s)
- C Walz
- III. Medizinische Universitätsklinik, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, 68305 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Belloni E, Trubia M, Gasparini P, Micucci C, Tapinassi C, Confalonieri S, Nuciforo P, Martino B, Lo-Coco F, Pelicci PG, Di Fiore PP. 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer 2005; 42:320-5. [PMID: 15609342 DOI: 10.1002/gcc.20144] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
8p11 myeloproliferative syndrome (EMS) is a clinical-pathologic entity characterized by rearrangements involving the FGFR1 gene, which encodes a receptor tyrosine kinase. These rearrangements invariably lead to aberrant fusion proteins in which the kinase activity is constitutively turned on, with resulting oncogenic properties. In this article, we describe a new translocation in EMS, t(7;8)(q34;p11), in which the FGFR1 gene is fused to a previously unidentified partner, the TIF1 gene. We show that both the TIF1-FGFR1 and FGFR1-TIF1 fusion proteins have the potential to be translated as a result of the translocation. Thus, our data extend the involvement of FGFR1 in EMS and lend support to the concept that there is a precise correlation between genotype and phenotype in this disease.
Collapse
Affiliation(s)
- Elena Belloni
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Taruscio D, Mantovani A. Factors regulating endogenous retroviral sequences in human and mouse. Cytogenet Genome Res 2005; 105:351-62. [PMID: 15237223 DOI: 10.1159/000078208] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 12/23/2003] [Indexed: 11/19/2022] Open
Abstract
Endogenous retroviruses (ERVs) are stably integrated in the genome of vertebrates and inherited as Mendelian genes. The several human ERV (HERV) families and related elements represent up to 5-8% of the DNA of our species. ERVs may be involved in the regulation of adjacent genomic loci, especially promoting the tissue-specific expression of genes; some HERVs may have functional roles, e.g., coding for the placental fusogenic protein, syncytin. This paper reviews the growing evidence about factors that may modulate ERVs, including: cell and tissue types (with special attention to placenta and germ cells), processes related to differentiation and aging, cytokines, agents that disrupt cell functions (e.g., DNA hypomethylating agents) and steroids. Special attention is given to HERVs, due to their possible involvement in autoimmunity and reproduction, as well as altered expression in some cancer types; moreover, different HERV families may deserve specific attention, due to remarkable differences concerning, e.g., expression in tissues. A comparison with factors interacting with murine ERV-related sequences indicates that the mouse may be a useful model for studying some patterns of HERV regulation. Overall, the available evidence identifies the diverse, potential interactions with endogenous or exogenous factors as a promising field for investigating the roles of ERVs in physiology and disease.
Collapse
Affiliation(s)
- D Taruscio
- National Centre on Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
47
|
Abstract
Fibroblast growth factors and their signaling receptors have been associated with multiple biological activities, including proliferation, differentiation and motility. Consequently, they have evoked interest as candidate oncogenes with the potential to initiate and/or promote tumorigenesis. This has resulted in a large literature describing the presence of these growth factors and their receptors in cancer cell lines and primary tumors of diverse origin. However, it is only recently that compelling evidence has emerged to implicate the fibroblast growth factors (Fgfs) and their receptors in the genesis of human cancers. Here, we outline the model systems that demonstrate the potential oncogenic nature of Fgf signaling and summarise recent evidence that implicates aberrant Fgf signaling as important in the natural history of some common human cancers.
Collapse
Affiliation(s)
- Richard Grose
- Cancer Research UK London Research Institute, Viral Carcinogenesis, Laboratory 214, 61 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
48
|
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16:139-49. [PMID: 15863030 DOI: 10.1016/j.cytogfr.2005.01.001] [Citation(s) in RCA: 1441] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.
Collapse
Affiliation(s)
- V P Eswarakumar
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, P.O. Box 208066, SHM B-295, New Haven, CT 06520, USA
| | | | | |
Collapse
|
49
|
Coutré S, Gotlib J. Targeted treatment of hypereosinophilic syndromes and chronic eosinophilic leukemias with imatinib mesylate. Semin Cancer Biol 2005; 14:307-15. [PMID: 15305431 DOI: 10.1016/j.semcancer.2004.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Idiopathic hypereosinophilic syndrome (HES) and chronic eosinophilia leukemia (CEL) represent the most recent additions to the list of molecularly defined chronic myeloproliferative disorders. Beginning with the observation that imatinib mesylate (Gleevec) could elicit rapid and complete hematologic remissions in a proportion of patients with HES, a reverse bedside-to-bench translational research effort led to the discovery of FIP1L1-PDGFRA, a novel fusion gene on chromosome 4q12 whose product is an imatinib-sensitive protein tyrosine kinase. FIP1L1-PDGFRA is the first description of a gain-of-function fusion gene derived from an interstitial chromosomal deletion rather than a reciprocal translocation. Empiric use of imatinib in HES and CEL provides a dramatic example of how the development of targeted therapeutics can provide tremendous insight into the molecular etiology of what appear to be a diverse and otherwise indecipherable collection of diseases. In this review, we discuss the role of imatinib in HES/CEL and other malignancies characterized by constitutively activated tyrosine kinases, and examine molecular features of the FIP1L1-PDGFRA fusion.
Collapse
Affiliation(s)
- Steven Coutré
- Division of Hematology, Stanford University School of Medicine, CA 94305-5821, USA.
| | | |
Collapse
|
50
|
Gotlib J. Molecular classification and pathogenesis of eosinophilic disorders: 2005 update. Acta Haematol 2005; 114:7-25. [PMID: 15995322 DOI: 10.1159/000085559] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Use of the term "idiopathic hypereosinophilic syndrome (HES)" has highlighted our basic lack of understanding of the molecular pathophysiology of eosinophilic disorders. However, over the last 10 years, the study of hypereosinophilia has enjoyed a revival. This interest has been rekindled by two factors: (1) the development of increasingly sophisticated molecular biology techniques that have unmasked recurrent genetic abnormalities linked to eosinophilia, and (2) the successful application of targeted therapy with agents such as imatinib to treat eosinophilic diseases. To date, most of these recurrent molecular abnormalities have resulted in constitutively activated fusion tyrosine kinases whose phenotypic consequence is an eosinophilia-associated myeloid disorder. Most notable among these are rearrangements of platelet-derived growth factor receptors alpha and beta (PDGFRalpha, PDGFRbeta), which define a small subset of patients with eosinophilic chronic myeloproliferative disorders (MPDs) and/or overlap myelodysplastic syndrome/MPD syndromes, including chronic myelomonocytic leukemia. Discovery of the cryptic FIP1L1-PDGFRA gene fusion in cytogenetically normal patients with systemic mast cell disease with eosinophilia or idiopathic HES has redefined these diseases as clonal eosinophilias. A growing list of fibroblast growth factor receptor 1 fusion partners has similarly emerged in the 8p11 myeloproliferative syndromes, which are often characterized by elevated eosinophil counts. Herein the focus is on the molecular gains made in these MPD-type eosinophilias, and the classification and clinicopathological issues related to hypereosinophilic syndromes, including the lymphocyte variant. Success in establishing the molecular basis of a group of once seemingly heterogeneous diseases has now the laid the foundation for establishing a semi-molecular classification scheme of eosinophilic disorders.
Collapse
MESH Headings
- Humans
- Hypereosinophilic Syndrome/classification
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/pathology
- Leukemia, Myelomonocytic, Chronic/classification
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
- Mastocytosis, Systemic/classification
- Mastocytosis, Systemic/genetics
- Mastocytosis, Systemic/pathology
- Myeloproliferative Disorders/classification
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins/genetics
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Translocation, Genetic/genetics
- mRNA Cleavage and Polyadenylation Factors/genetics
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Center, 875 Blake Wilbur Drive, Rm. 2327B, Stanford, CA 94305-5821, USA.
| |
Collapse
|