Kung SKP, Bonifacino A, Metzger ME, Ringpis GE, Donahue RE, Chen ISY. Lentiviral Vector-Transduced Dendritic Cells Induce Specific T Cell Response in a Nonhuman Primate Model.
Hum Gene Ther 2005;
16:527-32. [PMID:
15871684 DOI:
10.1089/hum.2005.16.527]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Dendritic cells (DCs) are effective in stimulating and controlling the outcome of T cell responses. Human immunodeficiency virus type 1-based lentiviral vectors can achieve sustained transduction of genes/antigens in dividing and nondividing cells, thus representing a candidate vector for stable expression of antigens in DCs. We previously established conditions for transduction of purified cytokine mobilized rhesus CD34(+) cells in vitro, and transplantation of the autologous transduced cells in a nonhuman primate model in vivo. In the present study, we transplanted DCs derived from EGFP-transduced CD34(+) cells into nonmyeloablated rhesus macaques. Transplantation of DCs stably expressing EGFP into autologous animals induces persistent, long-lived (up to 100 weeks) EGFP-specific T cell responses. Of note, no humoral responses against EGFP are detected in the transplanted animals. These studies provide, to our knowledge, the first demonstration that lentiviral transduction of CD34(+) progenitor cells subsequently differentiated to DCs is capable of priming a specific T cell response in a nonhuman primate in vivo. Taken together, our data provide formal in vivo evidence that lentivirus-transduced dendritic cells represent a potential approach in eliciting cellular immune responses in primates.
Collapse