1
|
Dube S, Dube DK, Abbott L, Glaser J, Poiesz BJ. Delayed Seroconversion to HTLV-II Is Associated with a Stop-Codon Mutation in the pol Gene. AIDS Res Hum Retroviruses 2017; 33:490-495. [PMID: 27899035 DOI: 10.1089/aid.2016.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A known HIV-1-positive intravenous drug user was found to be human T cell lymphoma/leukemia virus-II (HTLV-II) DNA positive by polymerase chain reaction but seronegative in a screening ELISA. He was consistently DNA positive but took 2 years to fully seroconvert. Sequencing of the HTLV-II strain in his cultured T lymphocytes indicated that it is a prototypical type A strain with no major differences in the long terminal repeat DNA sequence, nor major amino acid differences in the Gag, Env, Tax, and Rex proteins. However, a mutation in its pol gene created a stop codon at amino acid 543 of the Pol protein, a region that encodes for the RNase function. This mutation may account for the subject's slow seroconversion.
Collapse
Affiliation(s)
- Syamalima Dube
- Department of Medicine, Upstate Medical University, Syracuse, New York
| | - Dipak K. Dube
- Department of Medicine, Upstate Medical University, Syracuse, New York
| | - Lynn Abbott
- Department of Medicine, Upstate Medical University, Syracuse, New York
| | - Jordan Glaser
- Department of Infectious Diseases, Staten Island Hospital, Staten Island, New York
| | - Bernard J. Poiesz
- Department of Medicine, Upstate Medical University, Syracuse, New York
| |
Collapse
|
2
|
Abstract
Infection with human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in a minority of infected individuals after long periods of viral persistence. The various stages of HTLV-I infection and leukemia development are studied by using several different animal models: (1) the rabbit (and mouse) model of persistent HTLV-I infection, (2) transgenic mice to model tumorigenesis by HTLV-I specific protein expression, (3) ATL cell transfers into immune-deficient mice, and (4) infection of humanized mice with HTLV-I. After infection, virus replicates without clinical disease in rabbits and to a lesser extent in mice. Transgenic expression of both the transactivator protein (Tax) and the HTLV-I bZIP factor (HBZ) protein have provided insight into factors important in leukemia/lymphoma development. To investigate factors relating to tumor spread and tissue invasion, a number of immune-deficient mice based on the severe combined immunodeficiency (SCID) or non-obese diabetic/SCID background have been used. Inoculation of adult T cell leukemia cell (lines) leads to lymphoma with osteolytic bone lesions and to a lesser degree to leukemia development. These mice have been used extensively for the testing of anticancer drugs and virotherapy. A recent development is the use of so-called humanized mice, which, upon transfer of CD34(+)human umbilical cord stem cells, generate human lymphocytes. Infection with HTLV-I leads to leukemia/lymphoma development, thus providing an opportunity to investigate disease development with the aid of molecularly cloned viruses. However, further improvements of this mouse model, particularly in respect to the development of adaptive immune responses, are necessary.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Stefan Niewiesk, DVM, PhD, is a professor in the Department of Veterinary Biosciences in the College of Veterinary Medicine at the Ohio State University in Columbus, Ohio
| |
Collapse
|
3
|
Haines RA, Urbiztondo RA, Haynes RAH, Simpson E, Niewiesk S, Lairmore MD. Characterization of New Zealand White Rabbit Gut-Associated Lymphoid Tissues and Use as Viral Oncology Animal Model. ILAR J 2017; 57:34-43. [PMID: 27034393 DOI: 10.1093/ilar/ilw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rabbits have served as a valuable animal model for the pathogenesis of various human diseases, including those related to agents that gain entry through the gastrointestinal tract such as human T cell leukemia virus type 1. However, limited information is available regarding the spatial distribution and phenotypic characterization of major rabbit leukocyte populations in mucosa-associated lymphoid tissues. Herein, we describe the spatial distribution and phenotypic characterization of leukocytes from gut-associated lymphoid tissues (GALT) from 12-week-old New Zealand White rabbits. Our data indicate that rabbits have similar distribution of leukocyte subsets as humans, both in the GALT inductive and effector sites and in mesenteric lymph nodes, spleen, and peripheral blood. GALT inductive sites, including appendix, cecal tonsil, Peyer's patches, and ileocecal plaque, had variable B cell/T cell ratios (ranging from 4.0 to 0.8) with a predominance of CD4 T cells within the T cell population in all four tissues. Intraepithelial and lamina propria compartments contained mostly T cells, with CD4 T cells predominating in the lamina propria compartment and CD8 T cells predominating in the intraepithelial compartment. Mesenteric lymph node, peripheral blood, and splenic samples contained approximately equal percentages of B cells and T cells, with a high proportion of CD4 T cells compared with CD8 T cells. Collectively, our data indicate that New Zealand White rabbits are comparable with humans throughout their GALT and support future studies that use the rabbit model to study human gut-associated disease or infectious agents that gain entry by the oral route.
Collapse
Affiliation(s)
- Robyn A Haines
- Robyn A. Haines, DVM, was a PhD student; Rebeccah A. Urbiztondo, DVM, was a Master's student; Rashade A. H. Haynes, PhD, was a postdoctoral fellow; and Elaine Simpson, DVM, was a summer research student in the Department of Veterinary Biosciences at The Ohio State University in Columbus, Ohio. Stefan Niewiesk, PhD, DVM, is professor in the Department of Veterinary Biosciences at The Ohio State University is Columbus, Ohio. Michael D. Lairmore, DVM, PhD, is dean, in the School of Veterinary Medicine at the University of California, Davis in Davis, California
| | - Rebeccah A Urbiztondo
- Robyn A. Haines, DVM, was a PhD student; Rebeccah A. Urbiztondo, DVM, was a Master's student; Rashade A. H. Haynes, PhD, was a postdoctoral fellow; and Elaine Simpson, DVM, was a summer research student in the Department of Veterinary Biosciences at The Ohio State University in Columbus, Ohio. Stefan Niewiesk, PhD, DVM, is professor in the Department of Veterinary Biosciences at The Ohio State University is Columbus, Ohio. Michael D. Lairmore, DVM, PhD, is dean, in the School of Veterinary Medicine at the University of California, Davis in Davis, California
| | - Rashade A H Haynes
- Robyn A. Haines, DVM, was a PhD student; Rebeccah A. Urbiztondo, DVM, was a Master's student; Rashade A. H. Haynes, PhD, was a postdoctoral fellow; and Elaine Simpson, DVM, was a summer research student in the Department of Veterinary Biosciences at The Ohio State University in Columbus, Ohio. Stefan Niewiesk, PhD, DVM, is professor in the Department of Veterinary Biosciences at The Ohio State University is Columbus, Ohio. Michael D. Lairmore, DVM, PhD, is dean, in the School of Veterinary Medicine at the University of California, Davis in Davis, California
| | - Elaine Simpson
- Robyn A. Haines, DVM, was a PhD student; Rebeccah A. Urbiztondo, DVM, was a Master's student; Rashade A. H. Haynes, PhD, was a postdoctoral fellow; and Elaine Simpson, DVM, was a summer research student in the Department of Veterinary Biosciences at The Ohio State University in Columbus, Ohio. Stefan Niewiesk, PhD, DVM, is professor in the Department of Veterinary Biosciences at The Ohio State University is Columbus, Ohio. Michael D. Lairmore, DVM, PhD, is dean, in the School of Veterinary Medicine at the University of California, Davis in Davis, California
| | - Stefan Niewiesk
- Robyn A. Haines, DVM, was a PhD student; Rebeccah A. Urbiztondo, DVM, was a Master's student; Rashade A. H. Haynes, PhD, was a postdoctoral fellow; and Elaine Simpson, DVM, was a summer research student in the Department of Veterinary Biosciences at The Ohio State University in Columbus, Ohio. Stefan Niewiesk, PhD, DVM, is professor in the Department of Veterinary Biosciences at The Ohio State University is Columbus, Ohio. Michael D. Lairmore, DVM, PhD, is dean, in the School of Veterinary Medicine at the University of California, Davis in Davis, California
| | - Michael D Lairmore
- Robyn A. Haines, DVM, was a PhD student; Rebeccah A. Urbiztondo, DVM, was a Master's student; Rashade A. H. Haynes, PhD, was a postdoctoral fellow; and Elaine Simpson, DVM, was a summer research student in the Department of Veterinary Biosciences at The Ohio State University in Columbus, Ohio. Stefan Niewiesk, PhD, DVM, is professor in the Department of Veterinary Biosciences at The Ohio State University is Columbus, Ohio. Michael D. Lairmore, DVM, PhD, is dean, in the School of Veterinary Medicine at the University of California, Davis in Davis, California
| |
Collapse
|
4
|
Lairmore MD. Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2013; 2:189-208. [PMID: 25384140 DOI: 10.1146/annurev-animal-022513-114117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine leukemia virus (BLV) and human T-lymphotrophic virus type-1 (HTLV-1) are related retroviruses associated with persistent and lifelong infections and a low incidence of lymphomas within their hosts. Both viruses can be spread through contact with bodily fluids containing infected cells, most often from mother to offspring through breast milk. Each of these complex retroviruses contains typical gag, pol, and env genes but also unique, nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the pathogenesis of each virus. Comparisons of BLV and HTLV-1 provide insights into mechanisms of spread and tumor formation, as well as potential approaches to therapeutic intervention against the infections.
Collapse
Affiliation(s)
- Michael D Lairmore
- School of Veterinary Medicine, University of California, Davis, California, 95616;
| |
Collapse
|
5
|
Human T lymphotropic virus type 1 SU residue 195 plays a role in determining the preferential CD4+ T cell immortalization/transformation tropism. J Virol 2013; 87:9344-52. [PMID: 23785214 DOI: 10.1128/jvi.01079-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) mainly causes adult T cell leukemia and predominantly immortalizes/transforms CD4(+) T cells in culture. HTLV-2 is aleukemic and predominantly immortalizes/transforms CD8(+) T cells in culture. We have shown previously that the viral envelope is the genetic determinant of the differential T cell tropism in culture. The surface component (SU) of the HTLV-1 envelope is responsible for binding to the cellular receptors for entry. Here, we dissect the HTLV-1 SU further to identify key domains that are involved in determining the immortalization tropism. We generated HTLV-1 envelope recombinant virus containing the HTLV-2 SU domain. HTLV-1/SU2 was capable of infecting and immortalizing freshly isolated peripheral blood mononuclear cells in culture. HTLV-1/SU2 shifted the CD4(+) T cell immortalization tropism of wild-type HTLV-1 (wtHTLV-1) to a CD8(+) T cell preference. Furthermore, a single amino acid substitution, N195D, in HTLV-1 SU (Ach.195) resulted in a shift to a CD8(+) T cell immortalization tropism preference. Longitudinal phenotyping analyses of the in vitro transformation process revealed that CD4(+) T cells emerged as the predominant population by week 5 in wtHTLV-1 cultures, while CD8(+) T cells emerged as the predominant population by weeks 4 and 7 in wtHTLV-2 and Ach.195 cultures, respectively. Our results indicate that SU domain independently influences the preferential T cell immortalization tropism irrespective of the envelope counterpart transmembrane (TM) domain. We further showed that asparagine at position 195 in HTLV-1 SU is involved in determining this CD4(+) T cell immortalization tropism. The slower emergence of the CD8(+) T cell predominance in Ach.195-infected cultures suggests that other residues/domains contribute to this tropism preference.
Collapse
|
6
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Abstract
Azacitidine is a pyrimidine nucleoside analog of cytidine with hypomethylating and antileukemia activity. Azacitidine has been shown to have survival benefits in patients with high-risk myelodysplastic syndrome (MDS), and has activity in the treatment of acute myelogenous leukemia (AML). It is administered by subcutaneous (s.c.) or intravenous (i.v.) injection daily at a dose of 75 mg/m(2) for 7 days every 4 weeks. An oral formulation would facilitate dosing, reduce administration side effects and potentially maximize azacitidine pharmacologic action. Previously, oral formulations of this class of agent have failed due to rapid catabolism by cytidine deaminase and hydrolysis in aqueous environments. Development of a film-coated formulation has circumvented this difficulty. In a formulation feasibility pilot study, four subjects with solid malignant tumors, AML or MDS received single oral doses of 60 or 80 mg azacitidine. Subjects demonstrated measurable plasma concentrations of azacitidine, allowing bioavailability comparisons to be made to historical pharmacokinetic data for s.c. azacitidine. Subjects safely tolerated 80 mg, a dose for which the mean bioavailability was 17.4% of historic s.c. exposure. No severe drug-related toxicities were observed. These data suggest that oral azacitidine is bioavailable in humans and should be studied in formal phase 1 trials.
Collapse
|
9
|
Abstract
Improvements in survival in adult acute myeloid leukaemia (AML) have yet to be gleaned from either refinements in the understanding of the pathophysiology of the disease or from the expanding pool of targeted therapies. Outcomes have remained particularly dismal in older patients. Ongoing and planned trials will assess the effects of drugs targeting biological pathways whose clinical importance may vary as a function of the unique genotype and phenotype of each case of AML. The success of these ventures will ultimately require well-designed clinical trials in subsets of patients with risk being dependent not only on age and cytogenetics, but on additional, increasingly quantifiable biological variables. Inhibitors of fms-like tyrosine kinase-3, farnesyl transferase, apoptotic and angiogenic pathways are being studied alone and in combination with chemotherapy. Biological therapies, including monoclonal antibodies, peptide vaccines and interleukin-2, are undergoing evaluation. The role of autologous as well as allogeneic myeloablative and reduced-intensity transplantation continues to be defined. Several potentially useful new cytotoxic agents are being introduced. Critically important to advancing the field in light of such an increasing number of choices is a reassessment of traditional phase II trial designs so that more efficient evaluation of new therapies may take place, even as well-designed phase III trials continue to be performed.
Collapse
Affiliation(s)
- Jonathan E Kolitz
- Leukemia Service, Monter Cancer Center, North Shore University Hospital, New York University School of Medicine, Lake Success, NY, USA.
| |
Collapse
|
10
|
Sudan N, Rossetti JM, Shadduck RK, Latsko J, Lech JA, Kaplan RB, Kennedy M, Gryn JF, Faroun Y, Lister J. Treatment of acute myelogenous leukemia with outpatient azacitidine. Cancer 2006; 107:1839-43. [PMID: 16967444 DOI: 10.1002/cncr.22204] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients older than 55 years of age with acute myelogenous leukemia (AML) are less likely to achieve complete remission and more likely to experience toxicity with conventional induction chemotherapy than younger patients. Azacitidine administered in the outpatient setting is well tolerated and can induce complete hematological remission in patients with myelodysplastic syndromes (MDS). At higher doses, azacitidine has activity in AML. METHODS Twenty patients were retrospectively identified who had been treated with azacitidine with bone marrow blast counts between 21 and 38%. Patients with blast counts up to 29% were initially treated as MDS, but by WHO now meet criteria for AML. Patients with blast counts over 29% were treated with azacitidine after being deemed poor candidates for induction chemotherapy. Azacitidine 75 mg/m2/day was administered subcutaneously for 7 days every 4 weeks, which was defined as 1 cycle. RESULTS The overall response rate was 60% (12/20): complete response (CR; n = 4; 20%); partial response (PR; n = 5; 25%); hematologic improvement (HI; n = 3; 15%). The median survival of responders was 15+ months compared with 2.5 months for nonresponders (P = .009). During therapy, responders had an Eastern Cooperative Oncology Group (ECOG) performance status of 1 or 0. The most common toxic event was infection (n = 8). Four patients were hospitalized during the first cycle of treatment. CONCLUSIONS Azacitidine administered in the outpatient setting can induce remission in AML. The therapy is well tolerated and might be an alternative for patients unlikely to tolerate standard induction chemotherapy.
Collapse
Affiliation(s)
- Nimit Sudan
- Division of Hematology/Oncology, Western Pennsylvania Cancer Institute, Pittsburgh, Pennsylvania 15224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|