1
|
Tizu M, Calenic B, Constantinescu AE, Bratei AA, Stoia RA, Popa MCG, Constantinescu I. Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance. Curr Issues Mol Biol 2024; 46:10008-10025. [PMID: 39329950 PMCID: PMC11430089 DOI: 10.3390/cimb46090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a distinct category of lymphoproliferative disorder characterized by the clonal expansion of mature B cells, followed by their accumulation in primary and secondary lymphoid organs. Cluster of differentiation (CD) markers such as CD79b, CD45, CD23, CD22 and CD81 serve as reliable prognostic indicators in CLL as well as the human leukocyte antigen (HLA) with its well-documented associations with various cancers. This study aims to investigate, for the first time, potential connections between HLA typing and CD marker expression in CLL. Although it is one of the most prevalent neoplasms, there is a need for biomarkers that can improve survival. This study included 66 CLL patients and 100 controls, with all samples analyzed using biochemical methods, flow cytometry, and cytomorphology. Next-generation sequencing was performed for HLA typing. The results indicate that several CD markers are statistically associated with different HLA alleles, specifically CD45 with HLA-C*07:01:01; CD79b with HLA-DPA1*02:01:02; CD23 with HLA-B*39:01:01; CD22 with HLA-B*49:01:01, HLA-C*07:01:01, HLA-DPB1*02:01:02, and HLA-DRB1*07:01:01; and CD81 with HLA-DPB1*04:02:01, HLA-DQA1*01:04:01, and HLA-DQB1*05:03:01. In conclusion, this research demonstrates significant statistical links between HLA genes and immunophenotypic markers in CLL patients, shedding new light on the immunological context of CLL.
Collapse
Affiliation(s)
- Maria Tizu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
| | - Alexandra-Elena Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
- “Emil Palade” Centre of Excellence for Initiating Young People in Scientific Research, 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
| | | | - Razvan Antonio Stoia
- Hematology Center, Fundeni Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania;
| | - Mihnea Catalin-Gabriel Popa
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
- “Emil Palade” Centre of Excellence for Initiating Young People in Scientific Research, 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Souchak J, Mohammed NBB, Lau LS, Dimitroff CJ. The role of galectins in mediating the adhesion of circulating cells to vascular endothelium. Front Immunol 2024; 15:1395714. [PMID: 38840921 PMCID: PMC11150550 DOI: 10.3389/fimmu.2024.1395714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of β-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.
Collapse
Affiliation(s)
- Joseph Souchak
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Uy GL, DeAngelo DJ, Lozier JN, Fisher DM, Jonas BA, Magnani JL, Becker PS, Lazarus HM, Winkler IG. Targeting hematologic malignancies by inhibiting E-selectin: A sweet spot for AML therapy? Blood Rev 2024; 65:101184. [PMID: 38493006 PMCID: PMC11051645 DOI: 10.1016/j.blre.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
E-selectin, a cytoadhesive glycoprotein, is expressed on venular endothelial cells and mediates leukocyte localization to inflamed endothelium, the first step in inflammatory cell extravasation into tissue. Constitutive marrow endothelial E-selectin expression also supports bone marrow hematopoiesis via NF-κB-mediated signaling. Correspondingly, E-selectin interaction with E-selectin ligand (sialyl Lewisx) on acute myeloid leukemia (AML) cells leads to chemotherapy resistance in vivo. Uproleselan (GMI-1271) is a carbohydrate analog of sialyl Lewisx that blocks E-selectin binding. A Phase 2 trial of MEC chemotherapy combined with uproleselan for relapsed/refractory AML showed a median overall survival of 8.8 months and low (2%) rates of severe oral mucositis. Clinical trials seek to confirm activity in AML and mitigation of neutrophil-mediated adverse events (mucositis and diarrhea) after intensive chemotherapy. In this review we summarize E-selectin biology and the rationale for uproleselan in combination with other therapies for hematologic malignancies. We also describe uproleselan pharmacology and ongoing clinical trials.
Collapse
Affiliation(s)
- Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Brian A Jonas
- Department of Internal Medicine, Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Davis, CA, USA
| | | | - Pamela S Becker
- Leukemia Division, Department of Hematology and Hematopoietic Cell Transplantation, Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Duarte, CA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Woolloongabba, QLD, Australia
| |
Collapse
|
4
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Olivera I, Bolaños E, Gonzalez-Gomariz J, Hervas-Stubbs S, Mariño KV, Luri-Rey C, Etxeberria I, Cirella A, Egea J, Glez-Vaz J, Garasa S, Alvarez M, Eguren-Santamaria I, Guedan S, Sanmamed MF, Berraondo P, Rabinovich GA, Teijeira A, Melero I. mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med 2023; 4:100978. [PMID: 36933554 PMCID: PMC10040457 DOI: 10.1016/j.xcrm.2023.100978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose Gonzalez-Gomariz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Josune Egea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Li YY, Wang XY, Li Y, Wang XM, Liao J, Wang YZ, Hong H, Yi W, Chen J. Targeting CD43 optimizes cancer immunotherapy through reinvigorating antitumor immune response in colorectal cancer. Cell Oncol (Dordr) 2023; 46:777-791. [PMID: 36920728 DOI: 10.1007/s13402-023-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common malignancies worldwide, with dramatically increasing incidence and mortality for decades. However, current therapeutic strategies for CRC, including chemotherapies and immunotherapies, have only demonstrated limited efficacy. Here, we report a novel immune molecule, CD43, that can regulate the tumor immune microenvironment (TIME) and serves as a promising target for CRC immunotherapy. METHODS The correlation of CD43 expression with CRC patient prognosis was revealed by public data analysis. CD43 knockout (KO) CRC cell lines were generated by CRISPR-Cas9 technology, and a syngenetic murine CRC model was established to investigate the in vivo function of CD43. The TIME was analyzed via immunohistochemical staining, flow cytometry and RNA-seq. Immune functions were investigated by depletion of immune subsets in vivo and T-cell functional assays in vitro, including T-cell priming, cytotoxicity, and chemotaxis experiments. RESULTS In this study, we found that high expression of CD43 was correlated with poor survival of CRC patients and the limited infiltration of CD8+ T cells in human CRC tissues. Importantly, CD43 expressed on tumor cells, rather than host cells, promoted tumor progression in a syngeneic tumor model. Loss of CD43 facilitated the infiltration of immune cells and immunological memory in the TIME of CRC tumors. Mechanistically, the protumor effect of CD43 depends on T cells, thereby attenuating T-cell-mediated cytotoxicity and cDC1-mediated antigen-specific T-cell activation. Moreover, targeting CD43 synergistically improved PD-L1 blockade immunotherapy for CRC. CONCLUSION Our findings revealed that targeting tumor-intrinsic CD43 could activate the antitumor immune response and provide particular value for optimized cancer immunotherapy by regulating the TIME in CRC patients.
Collapse
Affiliation(s)
- Yi-Yi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Mei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Hong
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Abstract
Both the cascade whereby a blood-borne cell enters a tissue and the anchoring of hematopoietic stem/progenitor cells (HSPCs) within bone marrow critically pivots on cell-cell interactions mediated by E-selectin binding to its canonical carbohydrate ligand, the tetrasaccharide termed "sialylated Lewis X" (sLeX). E-selectin, a member of the selectin class of adhesion molecules that is exclusively expressed by vascular endothelium, engages sLeX-bearing glycoconjugates that adorn mature leukocytes and HSPCs, as well as malignant cells, thereby permitting these cells to extravasate into various tissues. E-selectin expression is induced on microvascular endothelial cells within inflammatory loci at all tissues. However, conspicuously, E-selectin is constitutively expressed within microvessels in skin and marrow and, additionally, is inducibly expressed at these sites. Within the marrow, E-selectin receptor/ligand interactions promote lodgment of HSPCs and their malignant counterparts within hematopoietic growth-promoting microenvironments, collectively known as "vascular niches". Indeed, E-selectin receptor/ligand interactions have been reported to regulate both hematopoietic stem, and leukemic, cell proliferative dynamics. As such, signaling induced via engagement of E-selectin ligands is gaining interest as a critical mediator of homeostatic and malignant hematopoiesis, and this review will present current perspectives on the glycoconjugates mediating E-selectin receptor/ligand interactions and their currently defined role(s) in leukemogenesis.
Collapse
Affiliation(s)
- Evan Ales
- Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Robert Sackstein
- Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
8
|
Sudarsanam H, Buhmann R, Henschler R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 2022; 10:886637. [PMID: 35845425 PMCID: PMC9277485 DOI: 10.3389/fbioe.2022.886637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Collapse
Affiliation(s)
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Kaur K, Velázquez FE, Anastasiou M, Ngwenyama N, Smolgovsky S, Aronovitz M, Alcaide P. Sialomucin CD43 Plays a Deleterious Role in the Development of Experimental Heart Failure Induced by Pressure Overload by Modulating Cardiac Inflammation and Fibrosis. Front Physiol 2021; 12:780854. [PMID: 34925069 PMCID: PMC8678270 DOI: 10.3389/fphys.2021.780854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Sialomucin CD43 is a transmembrane protein differentially expressed in leukocytes that include innate and adaptive immune cells. Among a variety of cellular processes, CD43 participates in T cell adhesion to vascular endothelial cells and contributes to the progression of experimental autoimmunity. Sequential infiltration of myeloid cells and T cells in the heart is a hallmark of cardiac inflammation and heart failure (HF). Here, we report that CD43-/- mice have improved survival to HF induced by transverse aortic constriction (TAC). This enhanced survival is associated with improved systolic function, decreased cardiac fibrosis, and significantly reduced T cell cardiac infiltration in response to TAC compared to control wild-type (WT) mice. Lack of CD43 did not alter the number of myeloid cells in the heart, but resulted in decreased cardiac CXCL10 expression, a chemoattractant for T cells, and in a monocyte shift to anti-inflammatory macrophages in vitro. Collectively, these findings unveil a novel role for CD43 in adverse cardiac remodeling in pressure overload induced HF through modulation of cardiac T cell inflammation.
Collapse
Affiliation(s)
- Kuljeet Kaur
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Francisco E. Velázquez
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Marina Anastasiou
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States,Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Njabulo Ngwenyama
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Sasha Smolgovsky
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Mark Aronovitz
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Pilar Alcaide
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, MA, United States,*Correspondence: Pilar Alcaide,
| |
Collapse
|
10
|
Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proc Natl Acad Sci U S A 2021; 118:2015024118. [PMID: 33495350 DOI: 10.1073/pnas.2015024118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glyco-immune checkpoint receptors, molecules that inhibit immune cell activity following binding to glycosylated cell-surface antigens, are emerging as attractive targets for cancer immunotherapy. Defining biologically relevant ligands that bind and activate such receptors, however, has historically been a significant challenge. Here, we present a CRISPRi genomic screening strategy that allowed unbiased identification of the key genes required for cell-surface presentation of glycan ligands on leukemia cells that bind the glyco-immune checkpoint receptors Siglec-7 and Siglec-9. This approach revealed a selective interaction between Siglec-7 and the mucin-type glycoprotein CD43. Further work identified a specific N-terminal glycopeptide region of CD43 containing clusters of disialylated O-glycan tetrasaccharides that form specific Siglec-7 binding motifs. Knockout or blockade of CD43 in leukemia cells relieves Siglec-7-mediated inhibition of immune killing activity. This work identifies a potential target for immune checkpoint blockade therapy and represents a generalizable approach to dissection of glycan-receptor interactions in living cells.
Collapse
|
11
|
Tantalo DG, Oliver AJ, von Scheidt B, Harrison AJ, Mueller SN, Kershaw MH, Slaney CY. Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. J Immunother Cancer 2021; 9:jitc-2021-002555. [PMID: 34035114 PMCID: PMC8154965 DOI: 10.1136/jitc-2021-002555] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Rapid advances in immunotherapy have identified adoptive cell transfer as one of the most promising approaches for the treatment of cancers. Large numbers of cancer reactive T lymphocytes can be generated ex vivo from patient blood by genetic modification to express chimeric antigen receptors (CAR) specific for tumor-associated antigens. CAR T cells can respond strongly against cancer cells, and adoptive transferred CAR T cells can induce dramatic responses against certain types of cancers. The ability of T cells to respond against disease depends on their ability to localize to sites, persist and exert functions, often in an immunosuppressive microenvironment, and these abilities are reflected in their phenotypes. There is currently intense interest in generating CAR T cells possessing the ideal phenotypes to confer optimal antitumor activity. In this article, we review T cell phenotypes for trafficking, persistence and function, and discuss how culture conditions and genetic makeups can be manipulated to achieve the ideal phenotypes for antitumor activities.
Collapse
Affiliation(s)
| | - Amanda J Oliver
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Aaron J Harrison
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael H Kershaw
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Clare Y Slaney
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Stabilization of the Hinge Region of Human E-selectin Enhances Binding Affinity to Ligands Under Force. Cell Mol Bioeng 2021; 14:65-74. [PMID: 33633813 PMCID: PMC7878631 DOI: 10.1007/s12195-021-00666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction E-selectin is a member of the selectin family of cell adhesion molecules expressed on the plasma membrane of inflamed endothelium and facilitates initial leukocyte tethering and subsequent cell rolling during the early stages of the inflammatory response via binding to glycoproteins expressing sialyl LewisX and sialyl LewisA (sLeX/A). Existing crystal structures of the extracellular lectin/EGF-like domain of E-selectin complexed with sLeX have revealed that E-selectin can exist in two conformation states, a low affinity (bent) conformation, and a high affinity (extended) conformation. The differentiating characteristic of the two conformations is the interdomain angle between the lectin and the EGF-like domain. Methods Using molecular dynamics (MD) simulations we observed that in the absence of tensile force E-selectin undergoes spontaneous switching between the two conformational states at equilibrium. A single amino acid substitution at residue 2 (serine to tyrosine) on the lectin domain favors the extended conformation. Results Steered molecular dynamics (SMD) simulations of E-selectin and PSGL-1 in conjunction with experimental cell adhesion assays show a longer binding lifetime of E-selectin (S2Y) to PSGL-1 compared to wildtype protein. Conclusions The findings in this study advance our understanding into how the structural makeup of E-selectin allosterically influences its adhesive dynamics.
Collapse
|
14
|
Krautter F, Iqbal AJ. Glycans and Glycan-Binding Proteins as Regulators and Potential Targets in Leukocyte Recruitment. Front Cell Dev Biol 2021; 9:624082. [PMID: 33614653 PMCID: PMC7890243 DOI: 10.3389/fcell.2021.624082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Leukocyte recruitment is a highly controlled cascade of interactions between proteins expressed by the endothelium and circulating leukocytes. The involvement of glycans and glycan-binding proteins in the leukocyte recruitment cascade has been well-characterised. However, our understanding of these interactions and their regulation has expanded substantially in recent years to include novel lectins and regulatory pathways. In this review, we discuss the role of glycans and glycan-binding proteins, mediating the interactions between endothelium and leukocytes both directly and indirectly. We also highlight recent findings of key enzymes involved in glycosylation which affect leukocyte recruitment. Finally, we investigate the potential of glycans and glycan binding proteins as therapeutic targets to modulate leukocyte recruitment and transmigration in inflammation.
Collapse
Affiliation(s)
- Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Hoffmann J, Rother M, Kaiser U, Thrun MC, Wilhelm C, Gruen A, Niebergall U, Meissauer U, Neubauer A, Brendel C. Determination of CD43 and CD200 surface expression improves accuracy of B-cell lymphoma immunophenotyping. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:476-482. [PMID: 32716606 DOI: 10.1002/cyto.b.21936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The Matutes score (MS) was proposed to differentiate chronic lymphocytic leukemia (CLL) from other B-cell non-Hodgkin lymphomas (B-NHLs). However, ambiguous immunophenotypes are common and remain a diagnostic challenge. Therefore, we evaluated the diagnostic benefit of measuring CD200 and CD43 expression together with the standard MS antigens. METHODS 138 lymphoma patient samples and a validation cohort of 138 additive samples were classified according to the standard MS and further assigned with one or two additional points, for high CD200 and/or CD43 expression levels. The "classical" MS and the "Matutes score-extended" (MS-e) were categorized as high (4-5/6-7), intermediate (2-3/4-5), and low (0-1/0-3). Samples were reclassified into the MS-e with focus on ambiguous cases with an intermediate "classical" MS. RESULTS A total of 35 of 138 (25.4%) patient samples were assigned to the intermediate MS group and confirmed by histopathological reports as CLL (14/40.0%) and B-NHLs other than CLL (21/60%). MS-e analysis identified 13 of 14 (92.9%) of CLL cases (MS-e 4-5) and 18/21 (85.7%) non-CLL cases (MS-e ≤ 3) correctly. Overall, the sensitivity of the CLL diagnosis was significantly increased by application of MS-e compared to the "classical" MS (98.8% vs. 82.7%; p = 0.0009), while specificity of both methods was almost equal (94.7% vs. 98.3%; p = 0.4795). Of note, sole measurement of CD43 and CD200 on B-cells sufficiently differentiated CLL from non-CLL with a test accuracy superior to the "classical" MS (F1 score 96.2 vs. 93.6). CONCLUSION CD200 and CD43 have a high informative value in diagnostic immunophenotyping and facilitate the separation of CLL from other B-NHLs particularly in ambiguous cases.
Collapse
Affiliation(s)
- Joerg Hoffmann
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Marissa Rother
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | | | - Michael C Thrun
- Databionics, Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Christian Wilhelm
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Andrea Gruen
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Ute Niebergall
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Ute Meissauer
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| |
Collapse
|
16
|
Genome-scale CRISPR activation screen uncovers tumor-intrinsic modulators of CD3 bispecific antibody efficacy. Sci Rep 2019; 9:20068. [PMID: 31882897 PMCID: PMC6934601 DOI: 10.1038/s41598-019-56670-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (bsAb) that bridge tumor cells and CD3-positive effector T cells are being developed against many tumor cell targets. While tumor cell factors other than target expression level appear to play a role in determining the efficacy of CD3 bsAb, the identity of such factors remains largely unknown. Using a co-culture system of primary human T cells and B lymphoma cell lines, we demonstrate a range of sensitivities to CD20xCD3 bsAb that is independent of CD20 surface expression. To identify genes that modulate tumor cell sensitivity to CD3 bsAb, we employed a genome-scale CRISPR activation screen in a CD20xCD3-sensitive human B lymphoma cell line. Among the most highly enriched sgRNAs were those targeting genes with predicted effects on cell-cell adhesion, including sialophorin (SPN). Increased expression of SPN impeded tumor cell clustering with T cells, thereby limiting CD3 bsAb-mediated tumor cell lysis. This inhibitory effect of SPN appeared to be dependent on sialylated core 2 O-glycosylation of the protein. While SPN is not endogenously expressed in the majority of B cell lymphomas, it is highly expressed in acute myeloid leukemia. CRISPR-mediated SPN knockout in AML cell lines facilitated T cell-tumor cell clustering and enhanced CD3 bsAb-mediated AML cell lysis. In sum, our data establish that the cell cross-linking mechanism of CD3 bsAb is susceptible to subversion by anti-adhesive molecules expressed on the tumor cell surface. Further evaluation of anti-adhesive pathways may provide novel biomarkers of clinical response and enable the development of effective combination regimens for this promising therapeutic class.
Collapse
|
17
|
Velázquez FE, Anastasiou M, Carrillo-Salinas FJ, Ngwenyama N, Salvador AM, Nevers T, Alcaide P. Sialomucin CD43 regulates T helper type 17 cell intercellular adhesion molecule 1 dependent adhesion, apical migration and transendothelial migration. Immunology 2019; 157:52-69. [PMID: 30690734 DOI: 10.1111/imm.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
T helper type 17 lymphocytes (Th17 cells) infiltrate the central nervous system (CNS), induce inflammation and demyelination and play a pivotal role in the pathogenesis of multiple sclerosis. Sialomucin CD43 is highly expressed in Th17 cells and mediates adhesion to endothelial selectin (E-selectin), an initiating step in Th17 cell recruitment to sites of inflammation. CD43-/- mice have impaired Th17 cell recruitment to the CNS and are protected from experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. However, E-selectin is dispensable for the development of EAE, in contrast to intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). We report that CD43-/- mice have decreased demyelination and T-cell infiltration, but similar up-regulation of ICAM-1 and VCAM-1 in the spinal cord, compared with wild-type (WT) mice, at the initiation of EAE. CD43-/- Th17 cells have impaired adhesion to ICAM-1 under flow conditions in vitro, despite having similar expression of LFA-1, the main T-cell ligand for ICAM-1, as WT Th17 cells. Regardless of the route of integrin activation, CD43-/- Th17 cell firm arrest on ICAM-1 was comparable to that of WT Th17 cells, but CD43-/- Th17 cells failed to optimally apically migrate on immobilized ICAM-1-coated coverslips and endothelial cells, and to transmigrate under shear flow conditions in an ICAM-1-dependent manner. Collectively, these findings unveil novel roles for CD43, facilitating adhesion of Th17 cells to ICAM-1 and modulating apical and transendothelial migration, as mechanisms potentially responsible for Th17 cell recruitment to sites of inflammation such as the CNS.
Collapse
Affiliation(s)
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,Laboratory of Autoimmunity and Inflammation, University of Crete Medical School, Crete, Greece
| | | | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Ane M Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Tania Nevers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Oh MS, Hong JY, Kim MN, Kwak EJ, Kim SY, Kim EG, Lee KE, Kim YS, Jee HM, Kim SH, Sol IS, Park CO, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Modulates Th2 Immune Response in Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:677-690. [PMID: 31332979 PMCID: PMC6658408 DOI: 10.4168/aair.2019.11.5.677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/05/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily, is highly expressed on dendritic cells. ALCAM and its receptor CD6 are co-stimulatory molecules in the immunological synapse; their interaction is required for T cell activation. While atopic dermatitis (AD) is recognized as a T helper 2 (Th2)-mediated allergic disease, the role of ALCAM in its pathogenesis is unclear. METHODS ALCAM levels were measured in the serum of AD patients and AD-induced murine model by ovalbumin treatment. We next investigated transepidermal water loss, clinical score, Th2-immune responses, skin barrier gene expression and T-cell activation using wild-type (WT) and ALCAM deficiency mice. An oxazolone-induced AD-like model was also established and analyzed using WT- and ALCAM-deficient mice. RESULTS We found that serum ALCAM levels were elevated in pediatric AD patients as well as WT AD mice, whereas Th2-type cytokine production and AD symptoms were suppressed in ALCAM-deficient mice. In addition, CD4⁺ effector T-cell counts in murine skin and skin-draining lymph nodes were lower in ALCAM-deficient mice than in their WT counterparts. ALCAM deficiency was also linked to higher expression of skin barrier genes and number of lamellar bodies. CONCLUSIONS These findings indicate that ALCAM may contribute to AD pathogenesis by meditating a Th2-dominant immune response and disrupting the barrier function of the skin.
Collapse
Affiliation(s)
- Mi Seon Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Kwak
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Eun Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Seon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Seo Hyeong Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - In Suk Sol
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Lafouresse F, Groom JR. A Task Force Against Local Inflammation and Cancer: Lymphocyte Trafficking to and Within the Skin. Front Immunol 2018; 9:2454. [PMID: 30405637 PMCID: PMC6207597 DOI: 10.3389/fimmu.2018.02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The skin represents a specialized site for immune surveillance consisting of resident, inflammatory and memory populations of lymphocytes. The entry and retention of T cells, B cells, and ILCs is tightly regulated to facilitate detection of pathogens, inflammation and tumors cells. Loss of individual or multiple populations in the skin may break tolerance or increase susceptibility to tumor growth and spread. Studies have significantly advanced our understanding of the role of skin T cells and ILCs at steady state and in inflammatory settings such as viral challenge, atopy, and autoimmune inflammation. The knowledge raised by these studies can benefit to our understanding of immune cell trafficking in primary melanoma, shedding light on the mechanisms of tumor immune surveillance and to improve immunotherapy. This review will focus on the T cells, B cells, and ILCs of the skin at steady state, in inflammatory context and in melanoma. In particular, we will detail the core chemokine and adhesion molecules that regulate cell trafficking to and within the skin, which may provide therapeutic avenues to promote tumor homing for a team of lymphocytes.
Collapse
Affiliation(s)
- Fanny Lafouresse
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
López-Lucas MD, Pachón-Peña G, García-Hernández AM, Parrado A, Sánchez-Salinas D, García-Bernal D, Algueró MDC, Martinez FI, Blanquer M, Cabañas-Perianes V, Molina-Molina M, Asín-Aguilar C, Moraleda JM, Sackstein R. Production via good manufacturing practice of exofucosylated human mesenchymal stromal cells for clinical applications. Cytotherapy 2018; 20:1110-1123. [PMID: 30170815 DOI: 10.1016/j.jcyt.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/25/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The regenerative and immunomodulatory properties of human mesenchymal stromal cells (hMSCs) have raised great hope for their use in cell therapy. However, when intravenously infused, hMSCs fail to reach sites of tissue injury. Fucose addition in α(1,3)-linkage to terminal sialyllactosamines on CD44 creates the molecule known as hematopoietic cell E-/L-selectin ligand (HCELL), programming hMSC binding to E-selectin that is expressed on microvascular endothelial cells of bone marrow (BM), skin and at all sites of inflammation. Here we describe how this modification on BM-derived hMSCs (BM-hMSCs) can be adapted to good manufacturing practice (GMP) standards. METHODS BM-hMSCs were expanded using xenogenic-free media and exofucosylated using α(1,3)-fucosyltransferases VI (FTVI) or VII (FTVII). Enforced fucosylation converted CD44 into HCELL, and HCELL formation was assessed using Western blot, flow cytometry and cell-binding assays. Untreated (unfucosylated), buffer-treated and exofucosylated BM-hMSCs were each analyzed for cell viability, immunophenotype and differentiation potential, and E-selectin binding stability was assessed at room temperature, at 4°C, and after cryopreservation. Cell product safety was evaluated using microbiological testing, karyotype analysis, and c-Myc messenger RNA (mRNA) expression, and potential effects on genetic reprogramming and in cell signaling were analyzed using gene expression microarrays and receptor tyrosine kinase (RTK) phosphorylation arrays. RESULTS Our protocol efficiently generates HCELL on clinical-scale batches of BM-hMSCs. Exofucosylation yields stable HCELL expression for 48 h at 4°C, with retained expression after cell cryopreservation. Cell viability and identity are unaffected by exofucosylation, without changes in gene expression or RTK phosphorylation. DISCUSSION The described exofucosylation protocol using xenogenic-free reagents enforces HCELL expression on hMSCs endowing potent E-selectin binding without affecting cell viability or native phenotype. This described protocol is readily scalable for GMP-compliant clinical production.
Collapse
Affiliation(s)
- María Dolores López-Lucas
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Gisela Pachón-Peña
- The Program of Excellence in Glycosciences, Harvard Medical School, Boston, Massachusetts, and the Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana María García-Hernández
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Antonio Parrado
- Immunology Service, Virgen de la Arrixaca Clinic University Hospital, Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Darío Sánchez-Salinas
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - David García-Bernal
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Maria Del Carmen Algueró
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Francisca Iniesta Martinez
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Miguel Blanquer
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Valentín Cabañas-Perianes
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Mar Molina-Molina
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Cira Asín-Aguilar
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - José M Moraleda
- Red de Terapia Celular (TerCel), Instituto de Salud Carlos III. University of Murcia; Stem Cell Transplant and Cell Therapy Unit, Virgen de la Arrixaca Clinic University Hospital and Institute for Biohealth Research (IMIB-Arrixaca), Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain.
| | - Robert Sackstein
- The Program of Excellence in Glycosciences, Harvard Medical School, Boston, Massachusetts, and the Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
21
|
Patrushev AV, Samtsov AV, Nikitin VY, Ivanov AМ, Gumilevskaya OР, Sukharev AV, Sukhina IA. Origin, function and role in the development of skin diseases CLA+T-lymphocytes. VESTNIK DERMATOLOGII I VENEROLOGII 2018. [DOI: 10.25208/0042-4609-2018-94-3-20-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The idea of CLA+T-lymphocytes, which are a special subpopulation of cells with a tropic to the skin, is given. The issues of maturation, migration and functional features of CLA+T-cells are considered. Special attention is paid to the different phenotype of memory T-cells. Modern data concerning the role of CLA+T-cells in the pathogenesis of autoimmune and allergic dermatoses, as well as malignant skin tumors are also presented. The conclusion about the necessity of further study of CLA +T-lymphocytes for detailed understanding of pathogenesis and search of variants of targeted therapy in psoriasis, atopic dermatitis, skin lymphomas and other skin diseases is made.
Collapse
|
22
|
Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. J Transl Med 2017; 97:669-697. [PMID: 28346400 PMCID: PMC5446300 DOI: 10.1038/labinvest.2017.25] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell 'homing deficit' may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict Teff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of Teff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of Teff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of immune checkpoint blockers on Teff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting Teff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Program of Excellence in Glycosciences, Harvard Medical School, 77 Avenue Louis Pasteur, Rm 671, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Barthel
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Correspondence to: Dr. Steven R. Barthel, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115;
| |
Collapse
|
23
|
Hobbs SJ, Nolz JC. Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans. Front Immunol 2017; 8:600. [PMID: 28596771 PMCID: PMC5442166 DOI: 10.3389/fimmu.2017.00600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L) controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
24
|
Ali AJ, Abuelela AF, Merzaban JS. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells. Front Immunol 2017; 8:492. [PMID: 28515724 PMCID: PMC5413510 DOI: 10.3389/fimmu.2017.00492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/10/2017] [Indexed: 01/26/2023] Open
Abstract
Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.
Collapse
Affiliation(s)
- Amal J Ali
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Ayman F Abuelela
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Jasmeen S Merzaban
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Silva M, Fung RKF, Donnelly CB, Videira PA, Sackstein R. Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology. THE JOURNAL OF IMMUNOLOGY 2017; 198:3576-3587. [PMID: 28330896 DOI: 10.4049/jimmunol.1601636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. In this study, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and Western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human PBMCs. Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sialyl Lewis X (sLeX) and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T cells but no binding by B cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds, including P-selectin glycoprotein ligand-1, CD43, and CD44 (rendering the E-selectin ligands cutaneous lymphocyte Ag, CD43E, and hematopoietic cell E-selectin/L-selectin ligand, respectively), and B cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites.
Collapse
Affiliation(s)
- Mariana Silva
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.,Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Ronald Kam Fai Fung
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Medical Training and Administration Unit, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia; and
| | - Conor Brian Donnelly
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Paula Alexandra Videira
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.,Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115; .,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Sackstein R. Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology. Glycobiology 2016; 26:560-70. [PMID: 26933169 DOI: 10.1093/glycob/cww026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
Glycoscience-based research that is performed expressly to address medical necessity and improve patient outcomes is called "translational glycobiology". In the 19th century, Robert Koch proposed a set of postulates to rigorously establish causality in microbial pathogenesis, and these postulates can be reshaped to guide knowledge into how naturally-expressed glycoconjugates direct molecular processes critical to human well-being. Studies in the 1990s indicated that E-selectin, an endothelial lectin that binds sialofucosylated carbohydrate determinants, is constitutively expressed on marrow microvessels, and investigations in my laboratory indicated that human hematopoietic stem cells (HSCs) uniquely express high levels of a specialized glycoform of CD44 called "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a highly potent E-selectin ligand. To assess the role of HCELL in directing HSC migration to marrow, a method called "glycosyltransferase-programmed stereosubstitution" (GPS) was developed to custom-modify CD44 glycans to enforce HCELL expression on viable cell surfaces. Human mesenchymal stem cells (MSCs) are devoid of E-selectin ligands, but GPS-based glycoengineering of CD44 on MSCs licenses homing of these cells to marrow in vivo, providing direct evidence that HCELL serves as a "bone marrow homing receptor". This review will discuss the molecular basis of cell migration in historical context, will describe the discovery of HCELL and its function as the bone marrow homing receptor, and will inform on how glycoengineering of CD44 serves as a model for adapting Koch's postulates to elucidate the key roles that glycoconjugates play in human biology and for realizing the immense impact of translational glycobiology in clinical medicine.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology and Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA Harvard Skin Disease Research Center Program of Excellence in Glycosciences, Harvard Medical School, 77 Avenue Louis Pasteur, Room 671, Boston, MA 02115, USA
| |
Collapse
|
27
|
Velázquez F, Grodecki-Pena A, Knapp A, Salvador AM, Nevers T, Croce K, Alcaide P. CD43 Functions as an E-Selectin Ligand for Th17 Cells In Vitro and Is Required for Rolling on the Vascular Endothelium and Th17 Cell Recruitment during Inflammation In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:1305-1316. [PMID: 26700769 DOI: 10.4049/jimmunol.1501171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Endothelial E- and P-selectins mediate lymphocyte trafficking in inflammatory processes by interacting with lymphocyte selectin ligands. These are differentially expressed among different T cell subsets and function alone or in cooperation to mediate T cell adhesion. In this study, we characterize the expression and functionality of E-selectin ligands in Th type 17 lymphocytes (Th17 cells) and report that CD43 functions as a Th17 cell E-selectin ligand in vitro that mediates Th17 cell rolling on the vascular endothelium and recruitment in vivo. We demonstrate Th17 cells express CD44, P-selectin glycoprotein ligand (PSGL)-1, and CD43. Few PSGL-1(-/-)CD43(-/-) Th17 cells accumulated on E-selectin under shear flow conditions compared with wild-type cells. CD43(-/-) Th17 cell accumulation on E-selectin was impaired as compared with wild-type and PSGL-1(-/-), and similar to that observed for PSGL-1(-/-)CD43(-/-) Th17 cells, indicating that CD43 alone is a dominant ligand for E-selectin. Notably, this finding is Th17 cell subset specific because CD43 requires cooperation with PSGL-1 in Th1 cells for binding to E-selectin. In vivo, Th17 cell recruitment into the air pouch was reduced in CD43(-/-) mice in response to CCL20 or TNF-α, and intravital microscopy studies demonstrated that CD43(-/-) Th17 cells had impaired rolling on TNF-α-treated microvessels. Furthermore, CD43(-/-) mice were protected from experimental autoimmune encephalomyelitis and had impaired recruitment of Th17 cells in the spinal cord. Our findings demonstrate that CD43 is a major E-selectin ligand in Th17 cells that functions independent of PSGL-1, and they suggest that CD43 may hold promise as a therapeutic target to modulate Th17 cell recruitment.
Collapse
Affiliation(s)
- Francisco Velázquez
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111.,Sackler School of Biomedical Sciences Immunology program, Tufts University School of Medicine, Boston, MA 02111
| | - Anna Grodecki-Pena
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Andrew Knapp
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Ane M Salvador
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Tania Nevers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Kevin Croce
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Pilar Alcaide
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111.,Sackler School of Biomedical Sciences Immunology program, Tufts University School of Medicine, Boston, MA 02111.,800 Washington St, Box #80, Boston, MA 02111
| |
Collapse
|
28
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
29
|
Kupsa T, Horacek JM, Jebavy L. The role of adhesion molecules in acute myeloid leukemia and (hemato)oncology: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:1-11. [DOI: 10.5507/bp.2014.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
|
30
|
Sackstein R, Fuhlbrigge R. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay. Methods Mol Biol 2015; 1312:399-410. [PMID: 26044020 DOI: 10.1007/978-1-4939-2694-7_39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Western blotting has proven to be an important technique in the analysis of receptor-ligand interactions (i.e., by ligand blotting) and for identifying molecules mediating cell attachment (i.e., by cell blotting). Conventional ligand blotting and cell blotting methods employ non-dynamic (static) incubation conditions, whereby molecules or cells of interest are placed in suspension and overlaid on membranes. However, many cell-cell and cell-matrix adhesive interactions occur under fluid shear conditions, and shear stress itself mediates and/or facilitates the engagement of these physiologically appropriate receptors and ligands. Notably, shear forces critically influence the adhesion of circulating cells and platelets to vessel walls in physiologic cell migration and hemostasis, as well as in inflammatory and thrombotic disorders, cancer metastasis, and atherosclerosis. Use of non-dynamic blotting conditions to analyze such interactions can introduce bias, overtly missing relevant effectors and/or exaggerating the relative role(s) of non-physiologic adhesion molecules. To address this shortfall, we have developed a new technique for identifying binding interactions under fluid shear conditions, the "blot rolling assay." Using this method, molecules in a complex mixture are resolved by gel electrophoresis, transferred to a membrane that is rendered semitransparent, and the membrane is then incorporated into a parallel-plate flow chamber apparatus. Under controlled flow conditions, cells or particles bearing adhesion proteins of interest are then introduced into the chamber and interactions with individual immobilized molecules (bands) can be visualized in real time. The substrate molecule(s) supporting adhesion under fluid shear can then be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. This method thus allows for the identification, within a complex mixture and without prior isolation or purification, of both known and previously uncharacterized adhesion molecules operational under dynamic conditions.
Collapse
Affiliation(s)
- Robert Sackstein
- Program of Excellence in glycosciences, Harvard Medical School, Boston, MA, USA,
| | | |
Collapse
|
31
|
Shirure VS, Liu T, Delgadillo LF, Cuckler CM, Tees DFJ, Benencia F, Goetz DJ, Burdick MM. CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am J Physiol Cell Physiol 2014; 308:C68-78. [PMID: 25339657 DOI: 10.1152/ajpcell.00094.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adhesion of circulating tumor cells to vascular endothelium is mediated by specialized molecules that are functional under shear forces exerted by hematogenous flow. Endothelial E-selectin binding to glycoforms of CD44 mediates shear-resistant cell adhesion in numerous physiological and pathological conditions. However, this pathway is poorly understood in breast cancer and is the focus of the present investigation. All breast cancer cell lines used in this study strongly expressed CD44. In particular, BT-20 cells expressed CD44s and multiple CD44v isoforms, whereas MDA-MB-231 cells predominantly expressed CD44s but weakly expressed CD44v isoforms. CD44 expressed by BT-20, but not MDA-MB-231, cells possessed E-selectin ligand activity as detected by Western blotting and antigen capture assays. Importantly, CD44 expressed by intact BT-20 cells were functional E-selectin ligands, regulating cell rolling and adhesion under physiological flow conditions, as found by shRNA-targeted silencing of CD44. Antigen capture assays strongly suggest greater shear-resistant E-selectin ligand activity of BT-20 cell CD44v isoforms than CD44s. Surprisingly, CD44 was not recognized by the HECA-452 MAb, which detects sialofucosylated epitopes traditionally expressed by selectin ligands, suggesting that BT-20 cells express a novel glycoform of CD44v as an E-selectin ligand. The activity of this glycoform was predominantly attributed to N-linked glycans. Furthermore, expression of CD44v as an E-selectin ligand correlated with high levels of fucosyltransferase-3 and -6 and epithelial, rather than mesenchymal, cell phenotype. Together, these data demonstrate that expression of CD44 as a functional E-selectin ligand may be important in breast cancer metastasis.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Tiantian Liu
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Luis F Delgadillo
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Chaz M Cuckler
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - David F J Tees
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Department of Physics and Astronomy, College of Arts and Sciences, Ohio University, Athens, Ohio; and
| | - Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio;
| |
Collapse
|
32
|
G-CSF induces membrane expression of a myeloperoxidase glycovariant that operates as an E-selectin ligand on human myeloid cells. Proc Natl Acad Sci U S A 2014; 111:10696-701. [PMID: 25002508 DOI: 10.1073/pnas.1320833111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The host defense response critically depends on the production of leukocytes by the marrow and the controlled delivery of these cells to relevant sites of inflammation/infection. The cytokine granulocyte-colony stimulating factor (G-CSF) is commonly used therapeutically to augment neutrophil recovery following chemo/radiation therapy for malignancy, thereby decreasing infection risk. Although best known as a potent inducer of myelopoiesis, we previously reported that G-CSF also promotes the delivery of leukocytes to sites of inflammation by stimulating expression of potent E-selectin ligands, including an uncharacterized ∼65-kDa glycoprotein. To identify this ligand, we performed integrated biochemical analysis and mass spectrometry studies of G-CSF-treated primary human myeloid cells. Our studies show that this novel E-selectin ligand is a glycoform of the heavy chain component of the enzyme myeloperoxidase (MPO), a well-known lysosomal peroxidase. This specialized MPO glycovariant, referred to as "MPO-E-selectin ligand" (MPO-EL), is expressed on circulating G-CSF-mobilized leukocytes and is naturally expressed on blood myeloid cells in patients with febrile leukocytosis. In vitro biochemical studies show that G-CSF programs MPO-EL expression on human blood leukocytes and marrow myeloid cells via induction of N-linked sialofucosylations on MPO, with concomitant cell surface display of the molecule. MPO-EL is catalytically active and mediates angiotoxicity on human endothelial cells that express E-selectin. These findings thus define a G-CSF effect on MPO chemical biology that endows unsuspected functional versatility upon this enzyme, unveiling new perspectives on the biology of G-CSF and MPO, and on the role of E-selectin receptor/ligand interactions in leukocyte migration and vascular pathology.
Collapse
|
33
|
Allocca M, Fiorino G, Vermeire S, Reinisch W, Cataldi F, Danese S. Blockade of lymphocyte trafficking in inflammatory bowel diseases therapy: importance of specificity of endothelial target. Expert Rev Clin Immunol 2014; 10:885-95. [DOI: 10.1586/1744666x.2014.917962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Aberrant glycosylation as biomarker for cancer: focus on CD43. BIOMED RESEARCH INTERNATIONAL 2014; 2014:742831. [PMID: 24689054 PMCID: PMC3943294 DOI: 10.1155/2014/742831] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/10/2013] [Indexed: 11/23/2022]
Abstract
Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb) to identify aberrant CD43 glycoforms.
Collapse
|
35
|
Mathan TSMM, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 2013; 4:372. [PMID: 24282405 PMCID: PMC3825182 DOI: 10.3389/fimmu.2013.00372] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.
Collapse
Affiliation(s)
- Till S M Manuel Mathan
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | | | | |
Collapse
|
36
|
Tufail S, Badrealam KF, Sherwani A, Gupta UD, Owais M. Tissue specific heterogeneity in effector immune cell response. Front Immunol 2013; 4:254. [PMID: 23986763 PMCID: PMC3753596 DOI: 10.3389/fimmu.2013.00254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022] Open
Abstract
Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct “homing codes” (adhesion molecules and chemokine receptors) during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A) and sunlight (vitamin D3) prime dendritic cells, imprinting them to play centre stage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue-tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues along with giving an overview of tissue tropism in B cells.
Collapse
Affiliation(s)
- Saba Tufail
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh , India
| | | | | | | | | |
Collapse
|
37
|
Abstract
Skin infiltration of circulating memory T cells with cutaneous tropism is considered one of the pathologic mechanisms in atopic dermatitis (AD). Skin-seeking circulating T lymphocytes can be identified by their expression of the cutaneous lymphocyte-associated antigen on the cell surface. Recent studies have contributed useful new information about the function and recirculation properties of those cells in AD patients. This review integrates the latest findings on peripheral cutaneous lymphocyte-associated antigen memory T cells in AD and highlights the relevance of this cell type and its importance to our understanding of the pathologic mechanisms of AD.
Collapse
|
38
|
HECA-452 is a non-function blocking antibody for isolated sialyl Lewis x adhesion to endothelial expressed E-selectin under flow conditions. J Immunol Methods 2012; 384:43-50. [PMID: 22820001 DOI: 10.1016/j.jim.2012.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/22/2022]
Abstract
E-selectin, expressed on inflamed endothelium, and sialyl Lewis x (sLe(x)), present on the surface of leukocytes, play a key role in leukocyte-endothelial interactions during leukocyte recruitment to sites of inflammation. HECA-452 is a monoclonal antibody (mAb) that recognizes sLe(x) and is routinely used by investigators from diverse fields who seek to unravel the mechanisms of leukocyte adhesion. The data regarding the ability of HECA-452 to inhibit carbohydrate-mediated leukocyte adhesion to E-selectin remains conflicted, in part due to the presence of a variety of potential E-selectin reactive moieties on leukocytes. Recognizing this, we utilized a complementary approach to gain insight into HECA-452 adhesion assays. Specifically, we used sLe(x) microspheres to investigate the hypothesis that HECA-452 is a non-function blocking mAb for isolated sLe(x) mediated adhesion to endothelial expressed E-selectin. Flow cytometric analysis revealed that HECA-452 recognizes and binds to the sLe(x) microspheres. Perfusion of the sLe(x) microspheres over human umbilical vein endothelial cells (HUVEC) at 1.5 dyn/cm² revealed that the microspheres attach to 4h interleukin (IL)-1β activated HUVEC specifically via E-selectin. Pretreatment of the sLe(x) microspheres with HECA-452 did not influence sLe(x) microsphere initial tethering and accumulation on IL-1β activated HUVEC. Neuraminidase and fucosidase treatments of sLe(x) microspheres revealed that sialic acid and fucose are required for E-selectin binding, whereas HECA-452 recognition of sLe(x) does not depend on the fucose moiety to the extent required for E-selectin recognition. This latter finding suggests there are potential subtle differences between the sLe(x) antigens for E-selectin and HECA-452. Combined, the data indicate that HECA-452 is a non-inhibitor of sLe(x)-mediated adhesion to endothelial expressed E-selectin.
Collapse
|
39
|
Tissue-Specific Homing of Immune Cells in Malignant Skin Tumors. Pathol Oncol Res 2012; 18:749-59. [DOI: 10.1007/s12253-012-9529-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/27/2012] [Indexed: 01/09/2023]
|
40
|
Moreno-Amaral AN, Gout E, Danella-Polli C, Tabarin F, Lesavre P, Pereira-da-Silva G, Thielens NM, Halbwachs-Mecarelli L. M-ficolin and leukosialin (CD43): new partners in neutrophil adhesion. J Leukoc Biol 2012; 91:469-74. [PMID: 22167719 DOI: 10.1189/jlb.0911460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
M-ficolin specificity for sialylated ligands prompted us to investigate its interactions with the main membrane sialoprotein of human neutrophils, CD43. rM-ficolin bound CD43 and prevented the access of anti-CD43 mAb. Moreover, rM-ficolin reacted exclusively with CD43 on Western blots of neutrophil lysate. We confirmed that M-ficolin is secreted by fMLP-activated neutrophils, and this endogenous M-ficolin also binds to CD43 and competes with anti-CD43 mAb. Anti-CD43 antibody cross-linking or fMLP resulted in M-ficolin and CD43 colocalization on polarized neutrophils. The binding of rM-ficolin to resting neutrophils induced cell polarization, adhesion, and homotypic aggregation as anti-CD43 mAb. The M-ficolin Y271F mutant, unable to bind sialic acid, neither reacted with neutrophils nor modulated their functions. Finally, rM-ficolin activated the lectin complement pathway on neutrophils. These results emphasize a new function of M-ficolin, different from ficolin pathogen recognition, i.e., a participation to neutrophil adhesion potentially important in early inflammation, as nanomolar agonist concentrations are sufficient to mobilize M-ficolin to the neutrophil surface. This multivalent lectin could then endow the antiadhesive CD43, essentially designed to prevent leukocyte aggregation in the blood flow, with new adhesive properties and explain, at least in part, dual-adhesive/antiadhesive roles of CD43 in neutrophil recruitment.
Collapse
|
41
|
Clark MC, Baum LG. T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann N Y Acad Sci 2012; 1253:58-67. [PMID: 22288421 DOI: 10.1111/j.1749-6632.2011.06304.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosylation affects many essential T cell processes and is intrinsically controlled throughout the lifetime of a T cell. CD43 and CD45 are the two most abundant glycoproteins on the T cell surface and are decorated with O- and N-glycans. Global T cell glycosylation and specific glycosylation of CD43 and CD45 are modulated during thymocyte development and T cell activation; T cells control the type and abundance of glycans decorating CD43 and CD45 by regulating expression of glycosyltransferases and glycosidases. Additionally, T cells regulate glycosylation of CD45 by expressing alternatively spliced isoforms of CD45 that have different glycan attachment sites. The glycophenotype of CD43 and CD45 on T cells influences how T cells interact with the extracellular environment, including how T cells interact with endogenous lectins. This review focuses on changes in glycosylation of CD43 and CD45 occurring throughout T cell development and activation and the role that glycosylation plays in regulating T cell processes, such as migration, T cell receptor signaling, and apoptosis.
Collapse
Affiliation(s)
- Mary C Clark
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|
42
|
Chase SD, Magnani JL, Simon SI. E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Ann Biomed Eng 2012; 40:849-59. [PMID: 22271244 DOI: 10.1007/s10439-011-0507-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022]
Abstract
Application of mechanical force to bonds between selectins and their ligands is a requirement for these adhesion receptors to optimally perform functions that include leukocyte tethering and activation of stable adhesion. Although all three selectins are reported to signal from the outside-in subsequent to ligand binding, E-selectin is unique in its capacity to bind multiple sialyl Lewis x presenting ligands and mediate slow rolling on the order of a micron per second. A diverse set of ligands are recognized by E-selectin in the mouse, including ESL-1, CD44 (HCELL), and PSGL-1 which are critical in transition from slow rolling to arrest and for efficient transendothelial migration. The molecular recognition process is different in humans as L-selectin is a major ligand, which along with glycolipids constitute more than half of the E-selectin receptors on human polymorphonuclear neutrophils (PMN). In addition, E-selectin is most efficient at raising the affinity and avidity of CD18 integrins that supports PMN deceleration and trafficking to sites of acute inflammation. The mechanism is only partially understood but known to involve a rise in cytosolic calcium and tyrosine phosphorylation that activates p38 MAP kinase and Syk kinase, both of which transduce signals from clustered E-selectin ligands. In this review we highlight the molecular recognition and mechanical requirements of this process to reveal how E-selectin confers selectivity and efficiency of signaling for extravasation at sites of inflammation and the mechanism of action of a new glycomimetic antagonist targeted to the lectin domain that has shown efficacy in blocking neutrophil activation and adhesion on inflamed endothelium.
Collapse
Affiliation(s)
- S D Chase
- University of California Davis, Davis, CA, USA
| | | | | |
Collapse
|
43
|
Glycoengineering of HCELL, the human bone marrow homing receptor: sweetly programming cell migration. Ann Biomed Eng 2011; 40:766-76. [PMID: 22068886 DOI: 10.1007/s10439-011-0461-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/28/2011] [Indexed: 01/13/2023]
Abstract
The successful clinical implementation of adoptive cell therapeutics, including bone marrow transplantation and other stem cell-based treatments, depends critically on the ability to deliver cells to sites where they are needed. E-selectin, an endothelial C-type lectin, binds sialofucosylated carbohydrate determinants on its pertinent ligands. This molecule is expressed in a constitutive manner on bone marrow and dermal microvascular endothelium, and inducibly on post-capillary venules at all sites of tissue injury. Engagement of E-selectin with relevant ligand(s) expressed on circulating cells mediates initial "tethering/rolling" endothelial adhesive interactions prerequisite for extravasation of blood-borne cells at any target tissue. Most mammalian cells express high levels of a transmembrane glycoprotein known as CD44. A specialized glycoform of CD44 called "Hematopoietic Cell E-/L-selectin Ligand" (HCELL) is a potent E-selectin ligand expressed on human cells. Under native conditions, HCELL expression is restricted to human hematopoietic stem/progenitor cells. We have developed a technology called "Glycosyltransferase-Programmed Stereosubstitution" (GPS) for custom-modifying CD44 glycans to create HCELL on the surface of living cells. GPS-based glycoengineering of HCELL endows cell migration to endothelial beds expressing E-selectin. Enforced HCELL expression targets human mesenchymal stem cell homing to marrow, licensing transendothelial migration without chemokine signaling via a VLA-4/VCAM-1-dependent "Step 2-bypass pathway." This review presents an historical framework of the homing receptor concept, and will describe the discovery of HCELL, its function as the bone marrow homing receptor, and how enforced expression of this molecule via chemical engineering of CD44 glycans could enable stem cell-based regenerative medicine and other adoptive cell therapeutics.
Collapse
|
44
|
The role of sugars in dendritic cell trafficking. Ann Biomed Eng 2011; 40:777-89. [PMID: 22045510 DOI: 10.1007/s10439-011-0448-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/18/2011] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are crucial components of the immune response, strategically positioned as immune sentinels. Complex trafficking and accurate positioning of DCs are indispensable for both immunity and tolerance. This is particularly evident for their therapeutic application where an unmet clinical need exists for DCs with improved migratory capacity upon adoptive transfer into patients. One critical step that directs the trafficking of DCs throughout the body is their egress from the vasculature, starting with their adhesive interactions with vascular endothelium under shear flow. Both tethering and rolling rely on interactions mediated by specific glycans attached to glycoproteins and glycolipids present on the DC surface. In DCs, surface glycosylation, including the expression of selectin ligands, changes significantly depending on the local microenvironment and the functional state of the cells. These changes have been documented and have potential implications in important cell functions such as migration. In this article, we review the glycobiological aspects in the context of DC interaction with endothelium, and offer insights on how it can be applied to modulate DC applicability in therapy.
Collapse
|
45
|
Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 2011; 118:6743-51. [PMID: 22021370 DOI: 10.1182/blood-2011-07-343566] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reversible interactions of glycoconjugates on leukocytes with P- and E-selectin on endothelial cells mediate tethering and rolling of leukocytes in inflamed vascular beds, the first step in their recruitment to sites of injury. Although selectin ligands on hematopoietic precursors have been identified, here we review evidence that PSGL-1, CD44, and ESL-1 on mature leukocytes are physiologic glycoprotein ligands for endothelial selectins. Each ligand has specialized adhesive functions during tethering and rolling. Furthermore, PSGL-1 and CD44 induce signals that activate the β2 integrin LFA-1 and promote slow rolling, whereas ESL-1 induces signals that activate the β2 integrin Mac-1 in adherent neutrophils. We also review evidence for glycolipids, CD43, L-selectin, and other glycoconjugates as potential physiologic ligands for endothelial selectins on neutrophils or lymphocytes. Although the physiologic characterization of these ligands has been obtained in mice, we also note reported similarities and differences with human selectin ligands.
Collapse
|
46
|
Peiser M, Tralau T, Heidler J, Api AM, Arts JHE, Basketter DA, English J, Diepgen TL, Fuhlbrigge RC, Gaspari AA, Johansen JD, Karlberg AT, Kimber I, Lepoittevin JP, Liebsch M, Maibach HI, Martin SF, Merk HF, Platzek T, Rustemeyer T, Schnuch A, Vandebriel RJ, White IR, Luch A. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci 2011; 69:763-81. [PMID: 21997384 PMCID: PMC3276771 DOI: 10.1007/s00018-011-0846-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 12/13/2022]
Abstract
Contact allergies are complex diseases, and one of the important challenges for public health and immunology. The German ‘Federal Institute for Risk Assessment’ hosted an ‘International Workshop on Contact Dermatitis’. The scope of the workshop was to discuss new discoveries and developments in the field of contact dermatitis. This included the epidemiology and molecular biology of contact allergy, as well as the development of new in vitro methods. Furthermore, it considered regulatory aspects aiming to reduce exposure to contact sensitisers. An estimated 15–20% of the general population suffers from contact allergy. Workplace exposure, age, sex, use of consumer products and genetic predispositions were identified as the most important risk factors. Research highlights included: advances in understanding of immune responses to contact sensitisers, the importance of autoxidation or enzyme-mediated oxidation for the activation of chemicals, the mechanisms through which hapten-protein conjugates are formed and the development of novel in vitro strategies for the identification of skin-sensitising chemicals. Dendritic cell cultures and structure-activity relationships are being developed to identify potential contact allergens. However, the local lymph node assay (LLNA) presently remains the validated method of choice for hazard identification and characterisation. At the workshop the use of the LLNA for regulatory purposes and for quantitative risk assessment was also discussed.
Collapse
Affiliation(s)
- M. Peiser
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Tralau
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - J. Heidler
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - A. M. Api
- Research Institute for Fragrance Materials, Hackensack, NJ USA
| | | | | | - J. English
- Nottingham University Hospitals, Nottingham, UK
| | - T. L. Diepgen
- Department of Social Medicine, Occupational and Environmental Dermatology, University of Heidelberg, Heidelberg, Germany
| | | | - A. A. Gaspari
- School of Medicine, University of Maryland, Baltimore, MD USA
| | - J. D. Johansen
- Department of Derma-allergology, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A. T. Karlberg
- Department of Chemistry, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - I. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - M. Liebsch
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - H. I. Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA USA
| | - S. F. Martin
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - H. F. Merk
- Department of Dermatology and Allergology, University Hospitals Aachen, Aachen, Germany
| | - T. Platzek
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Rustemeyer
- VU University Medical Center, Amsterdam, The Netherlands
| | - A. Schnuch
- Department of Dermatology, University of Göttingen, Göttingen, Germany
| | - R. J. Vandebriel
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - I. R. White
- St. John’s Institute of Dermatology, St. Thomas’ Hospital, London, UK
| | - A. Luch
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
47
|
Chandrasekaran EV, Xue J, Xia J, Locke RD, Patil SA, Neelamegham S, Matta KL. Mammalian sialyltransferase ST3Gal-II: its exchange sialylation catalytic properties allow labeling of sialyl residues in mucin-type sialylated glycoproteins and specific gangliosides. Biochemistry 2011; 50:9475-87. [PMID: 21913655 DOI: 10.1021/bi200301w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While glycosyltransferases are known to display unidirectional enzymatic activity, recent studies suggest that some can also catalyze readily reversible reactions. Recently, we found that mammalian sialyltransferase ST3Gal-II can catalyze the formation of CMP-NeuAc from 5'-CMP in the presence of a donor containing the NeuAcα2,3Galβ1,3GalNAc unit [Chandrasekaran, E. V., et al. (2008) Biochemistry 47, 320-330]. This study shows by using [9-(3)H]- or [(14)C]sialyl mucin core 2 compounds that ST3Gal-II exchanges sialyl residues between CMP-NeuAc and the NeuAcα2,3Galβ1,3GalNAc unit and also radiolabels sialyl residues in gangliosides GD1a and GT1b, but not GM1. Exchange sialylation proceeds with relative ease, which is evident from the following. (a) Radiolabeleling of fetuin was ~2-fold stronger than that of asialo fetuin when CMP- [9-(3)H]NeuAc was generated in situ from 5'-CMP and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by ST3Gal-II. (b) ST3Gal-II exchanged radiolabels between [(14)C]sialyl fetuin and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by generating CMP-[(14)C]- and -[9-(3)H]NeuAc through 5'-CMP; only 20.3% (14)C and 28.0% (3)H remained with the parent compounds after the sialyl exchange. The [9-(3)H]sialyl-tagged MN glycophorin A, human chorionic gonadotropin β subunit, GlyCAM-1, CD43, fetuin, porcine Cowper's gland mucin, bovine casein macroglycopeptide, human placental glycoproteins, and haptoglobin were analyzed by using Pronase digestion, mild alkaline borohydride treatment, Biogel P6, lectin agarose, and silica gel thin layer chromatography. Sulfated and sialylated O-glycans were found in GlyCAM-1 and human placental glycoproteins. This technique has the potential to serve as an important tool as it provides a natural tag for the chemical and functional characterization of O-glycan-bearing glycoproteins.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, United States.
| | | | | | | | | | | | | |
Collapse
|
48
|
Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood 2011; 118:1774-83. [PMID: 21659548 DOI: 10.1182/blood-2010-11-320705] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34(+) cells) display greater E-selectin binding than those obtained from mouse (lin(-)/Sca-1(+)/c-kit(+) [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34(+) and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved by Western blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ~ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand-1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ~ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL." E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL's contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures.
Collapse
|
49
|
Bachtarzi H, Stevenson M, Subr V, Seymour LW, Fisher KD. E-selectin is a viable route of infection for polymer-coated adenovirus retargeting in TNF-α-activated human umbilical vein endothelial cells. J Drug Target 2011; 19:690-700. [PMID: 21309681 DOI: 10.3109/1061186x.2010.547585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND E-selectin is an attractive endothelial cell surface marker in inflammation and cancer. PURPOSE We sought to investigate retargeting of adenovirus via E-selectin as a viable pathway of infection in tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVECs). METHODS E1, E3-deleted Ad5 expressing cytomegalovirus immediate-early (CMV IE) promoter-driven luciferase (Adluc) was coated with an amino-reactive multivalent hydrophilic polymer based on poly [N-(2-hydroxypropyl) methacrylamide] to generate pHPMA-adenovirus (pcAdluc). This was then retargeted by covalent attachment of a mouse antihuman E-selectin monoclonal antibody (MHES mAb), purified from the H18/7 hybridoma cell line (MHESpcAdluc). RESULTS MHESpcAdluc was efficiently taken up into HUVECs, generating a high level of transduction in TNF-α-treated E-selectin positive cells but not in untreated receptor-negative cells. Specific retargeting of MHESpcAdluc was demonstrated through reduced transduction of stimulated HUVEC when incubated in the presence of free E-selectin antibodies. DISCUSSION AND CONCLUSION Our results suggest that E-selectin could be a valuable target for gene transfer strategies internalizing polymer-coated modified adenovirus particles through a viable receptor-mediated endocytosis pathway, generating adequate levels of transgene expression per virus genome copy without compromising the specific activity of the parental virus.
Collapse
Affiliation(s)
- Houria Bachtarzi
- Department of Clinical Pharmacology, University of Oxford, Oxford, Oxfordshire, UK
| | | | | | | | | |
Collapse
|
50
|
Fuhlbrigge RC, Chaiban R. The immune system, the skin, and childhood rheumatic disease. Curr Rheumatol Rep 2011; 13:103-9. [PMID: 21234730 DOI: 10.1007/s11926-010-0158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As the body's largest organ and first line of defense against the environment, the skin plays a vital role in host immune defense. In addition to its function as a physical barrier, the skin contains an active immune surveillance network and can mount highly specific responses to eliminate invading organisms. In this review, we discuss the functions of adhesion molecules in regulating the recruitment of distinct cell populations to skin in both healthy and disease states, and the interaction between innate and adaptive immune mechanisms active in the skin. We also review how these systems underlie the pathogenesis of skin manifestations of pediatric rheumatologic diseases.
Collapse
Affiliation(s)
- Robert C Fuhlbrigge
- Program in Rheumatology, Division of Immunology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|