1
|
Winthrop KL, Bathon J, Kerschbaumer A, Isaacs JD, Mease P, Gottenberg JE, Crow MK, Kay J, Crofford L, Baraliakos X, Bykerk V, Siebert S, Kloppenburg M, Aletaha D, McInnes IB, Huizinga T, Voll R, Gravallese EM, Breedveld FC, van Vollenhoven R, Smolen JS. Chasing the target: reports from the Advances in Targeted Therapies meeting, 2024. Ann Rheum Dis 2025:S0003-4967(25)00237-7. [PMID: 40240265 DOI: 10.1016/j.ard.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES The Advances in Targeted Therapies annual meeting brings together experts within the field of rheumatology and immunology to highlight and discuss the latest scientific developments and needs in the field. The objective is to highlight unmet scientific needs in the field of rheumatology. METHODS The 24th annual Advances in Targeted Therapies meeting convened with more than 100 international clinicians and scientific researchers in rheumatology, immunology, and other specialities relating to all aspects of immune-mediated inflammatory diseases. During the meeting, we held 5 rheumatologic disease-specific discussion sections consisting of experts in each field. These groups included rheumatoid arthritis (RA), psoriatic arthritis (PsA), axial spondyloarthritis (axSpA), osteoarthritis (OA), and systemic lupus erythematosus (SLE). In each group, experts were asked to identify the top 2 to 3 most important overarching and disease-specific scientific unmet needs to be addressed in the next 5 years. RESULTS The overarching themes across disciplines included the need for precision medicine, improved classification of disease states, and the further identification of targets and associated therapies, including the potential role of chimeric antigen receptor (CAR) T cell therapies. Within RA, the group highlighted the lack of precision medicine and the need for better biomarkers. Further, the lack of targeted therapies against fibroblasts in RA was discussed, with the potential impact of targeting fibroblasts early in the disease as an unmet need. For PsA, there is a continued need for a better definition of disease endotypes and for the categorisation of those with complex and difficult-to-treat (D2T) diseases. The development of bispecific molecules and combination therapeutic approaches remain a high priority. For axSpA, the disease-modifying characteristics of nonsteroid anti-inflammatory drugs need further evaluation, as does the treatment of residual pain and fatigue frequently in the disease. In OA, new therapeutic targets remain an unmet need, and the discussion group prioritised potential experimental strategies that could lead to innovative therapeutic targets. Elucidating the specific signalling and target cells responsible for, or inhibiting, repair will be essential for developing targeted therapies. SLE experts emphasised the need to identify the most predictive biological contributions to disease progression in patients with early clinical precursors of SLE. The role of CAR T cell therapy must be further investigated, along with ancillary biologic studies (eg, immune system profiling) that provide critical insights into disease pathogenesis. Further, there is a need to determine the relationship of patient-relevant symptoms to the pathophysiology of SLE and identify new therapeutic targets for these symptoms. CONCLUSIONS There remain many unmet needs on the road to precision medicine with regard to identifying disease endotypes and biomarkers for disease progression or therapeutic response. For most diseases discussed, a strong unmet need remains with regard to identifying new targets and therapies for those with refractory or D2T disease. The ability to prevent or cure rheumatic disease remains the ultimate unmet need in rheumatology.
Collapse
Affiliation(s)
| | - Joan Bathon
- Division of Rheumatology, Columbia University, New York, NY, USA
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle Hospitals, Newcastle upon Tyne, UK
| | - Philip Mease
- Swedish Medical Center, University of Washington, Seattle, WA, USA
| | - Jaque-Eric Gottenberg
- Centre National de Référence des Maladies AutoImmunes Systémiques Rares, CHU Strasbourg-Hautepierre, Strasbourg, France
| | - Mary K Crow
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School and UMass Memorial Medical Center, Worcester, MA, USA
| | - Leslie Crofford
- Division of Rheumatology and Immunology, Vanderbilt University, Nashville, TN, USA
| | | | - Vivian Bykerk
- Hospital for Special Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Stefan Siebert
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Iain B McInnes
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Thomas Huizinga
- Department of Rheumatology, University of Leiden, Leiden, The Netherlands
| | - Reinhard Voll
- Department of Rheumatology and Clinical Immunology, University of Freiburg, Freiburg, Germany
| | | | | | - Ronald van Vollenhoven
- Clinical Immunology and Rheumatology Department, VU Medical University, Amsterdam, The Netherlands
| | - Josef S Smolen
- Division of Rheumatology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
He A, Yang Y, Kotsch K, Sattler A. Impact of Organ Donor Pretreatment With Anti-Thymocyte Globulin in a Murine Model of Allogenic Kidney Transplantation. Transpl Int 2025; 37:13997. [PMID: 39839912 PMCID: PMC11745874 DOI: 10.3389/ti.2024.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Kidney transplantation is the treatment of choice for end-stage organ failure. To improve transplantation outcomes, particularly of "marginal" organs from extended criteria donors (ECD), attempts have been made to therapeutically modulate donor or graft pre-transplantation. Anti-thymocyte globulin (ATG) has a history as lymphocyte-depleting, immunosuppressive drug for treating rejection episodes post transplantation. In this study, however, we aimed to comprehensively analyze the effects of ATG donor pre-conditioning in a mouse model of kidney transplantation. ATG pre-treatment of potential donors led to a broad depletion of T- and NK cells in peripheral blood, non-lymphoid (including kidney) and lymphoid organs within 48 h, whereas myeloid cells were spared. ATG was also effectively depleting renal innate lymphoid type 1 and 2 cells. Importantly, transplantation of kidneys from ATG pre-treated donors into fully mismatched recipients showed only mild effects on leukocyte re-composition post transplantation. In line with this, serum creatinine and urea levels were similar in animals receiving kidneys from ATG treated donors or controls, demonstrating that donor treatment had no effect on allograft function in the early post-transplantation phase. In summary, our findings are suggestive of a more cell-type-specific depletion strategy in concert with an experimental model better reflecting aspects of clinical transplantation.
Collapse
Affiliation(s)
- An He
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiren Yang
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Katja Kotsch
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Arne Sattler
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| |
Collapse
|
3
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Dörner T, Lipsky PE. The essential roles of memory B cells in the pathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2024; 20:770-782. [PMID: 39511302 DOI: 10.1038/s41584-024-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Emerging evidence indicates that memory B cells are dysfunctional in systemic lupus erythematosus (SLE). They are hyporesponsive to signalling through the B cell receptor (BCR) but retain responsiveness to Toll-like receptor (TLR) and type I interferon signalling, as well as to T cell-mediated activation via CD40-CD154. Chronic exposure to immune complexes of ribonucleoprotein (RNP)-specific autoantibodies and TLR-engaging or BCR-engaging cargo is likely to contribute to this partially anergic phenotype. TLR7 or TLR8 signalling and the resulting production of type I interferon, as well as the sustained activation by bystander T cells, fuel a positive feedforward loop in memory B cells that can evade negative selection and permit preferential expansion of anti-RNP autoantibodies. Clinical trials of autologous stem cell transplantation or of B cell-targeted monoclonal antibodies and chimeric antigen receptor (CAR) T cells have correlated replenishment of the memory B cell population with relapse of SLE. Moreover, the BCR hyporesponsiveness of memory B cells might explain the failure of non-depleting B cell-targeting approaches in SLE, including BTK inhibitors and anti-CD22 monoclonal antibodies. Thus, targeting of dysfunctional memory B cells might prove effective in SLE, while also avoiding the adverse events of broad-spectrum targeting of B cell and plasma cell subsets that are not directly involved in disease pathogenesis.
Collapse
Affiliation(s)
- Thomas Dörner
- Department Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin & Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.
| | | |
Collapse
|
5
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Cleaver J, Ceronie B, Strippel C, Handel A, Irani SR. The immunology underlying CNS autoantibody diseases. Rev Neurol (Paris) 2024; 180:916-930. [PMID: 39289136 DOI: 10.1016/j.neurol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
The past two decades have seen a considerable paradigm shift in the way autoimmune CNS disorders are considered, diagnosed, and treated; largely due to the discovery of novel autoantibodies directed at neuroglial surface or intracellular targets. This approach has enabled multiple bona fide CNS autoantibody-associated diseases to thoroughly infiltrate the sphere of clinical neurology, facilitating advances in patient outcomes. This review focusses on the fundamental immunological concepts behind CNS autoantibody-associated diseases. First, we briefly review the broad phenotypic profiles of these conditions. Next, we explore concepts around immune checkpoints and the related B cell lineage. Thirdly, the sources of autoantibody production are discussed alongside triggers of tolerance failure, including neoplasms, infections and iatrogenic therapies. Penultimately, the role of T cells and leucocyte trafficking into the CNS are reviewed. Finally, biological insights from responses to targeted immunotherapies in different CNS autoantibody-associated diseases are summarised. The continued and rapid expansion of the CNS autoantibody-associated field holds promise for further improved diagnostic and therapeutic paradigms, ultimately leading to further improvements in patient outcomes.
Collapse
Affiliation(s)
- J Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - B Ceronie
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - C Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - A Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - S R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
8
|
Maurer M, Kolkhir P, Pereira MP, Siebenhaar F, Witte-Händel E, Bergmann KC, Bonnekoh H, Buttgereit T, Fluhr JW, Frischbutter S, Grekowitz EM, Herzog L, Kiefer LA, Krause K, Magerl M, Muñoz M, Neisinger S, Nojarov N, Prins S, Pyatilova P, Ramanauskaité A, Scheffel J, Terhorst-Molawi D, Treudler R, Weller K, Zuberbier T, Metz M. Disease modification in chronic spontaneous urticaria. Allergy 2024; 79:2396-2413. [PMID: 39044706 DOI: 10.1111/all.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating, inflammatory skin condition characterized by infiltrating immune cells. Available treatments are limited to improving the signs and symptoms. There is an unmet need to develop therapies that target disease-driving pathways upstream of mast cell activation to inhibit or delay the progression of CSU and associated comorbidities. Here, we aim to define disease modification due to a treatment intervention and criteria that disease-modifying treatments (DMTs) must meet in CSU. We have defined disease modification in CSU as a favorable treatment-induced change in the underlying pathophysiology and, therefore, the disease course, which is clinically beneficial and enduring. A DMT must fulfil the following criteria: (1) prevents or delays the progression of CSU, (2) induces long-term, therapy-free clinical remission, which is the sustained absence of CSU signs and symptoms without the need for treatment, and (3) affects the underlying mechanism of CSU, as demonstrated by an effect on disease-driving signals and/or a biomarker. DMTs in CSU should slow disease progression, achieve long-lasting disease remission, target disease-driving mechanisms, reduce mast cell-activating IgE autoantibodies, target cytokine profile polarization, and normalize the gut microbiome and barrier. Treating CSU at the immune system level could provide valuable alternatives to pharmacotherapy in CSU management. Specific DMTs in CSU are yet to be developed, but some show potential benefits, such as inhibitors of Bruton's Tyrosine Kinase, IL-4 and IL-13. Future therapies could prevent CSU signs and symptoms, achieve long-term clinical benefits after discontinuing treatment, and prevent associated concomitant disorders.
Collapse
Affiliation(s)
- Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Manuel P Pereira
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Frank Siebenhaar
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ellen Witte-Händel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karl-Christian Bergmann
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Hanna Bonnekoh
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Thomas Buttgereit
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joachim W Fluhr
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Stefan Frischbutter
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Eva Maria Grekowitz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Leonie Herzog
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Lea Alice Kiefer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karoline Krause
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Melba Muñoz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Sophia Neisinger
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Nicole Nojarov
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Samantha Prins
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Polina Pyatilova
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Aisté Ramanauskaité
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Jörg Scheffel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Regina Treudler
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karsten Weller
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Torsten Zuberbier
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
9
|
Guffroy A, Jacquel L, Guffroy B, Martin T. CAR-T cells for treating systemic lupus erythematosus: A promising emerging therapy. Joint Bone Spine 2024; 91:105702. [PMID: 38336271 DOI: 10.1016/j.jbspin.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Chimeric Antigen Receptor T-cell therapy (CAR-T), currently employed routinely for treating B-cell malignancies, has emerged as a groundbreaking approach in addressing severe autoimmune diseases, especially for systemic lupus erythematosus (SLE). The immunological rationale for targeting B lymphocytes in autoimmune diseases is well-established, demonstrating success in numerous autoantibody-mediated autoimmune conditions through targeted therapies over several years. However, this approach has often proven ineffective in the context of systemic lupus erythematosus. Recent data on CAR-T usage in lupus, revealed promising results including rapid and prolonged remission without treatment, highlighting the potential of CAR-T therapy in severe lupus cases. This article provides a comprehensive overview of CAR-T cells, tracing their evolution from hematological malignancies to their recent applications in autoimmune disorder, especially in lupus. Clinical trials within a regulated framework are now imperative to assess the procedural aspects in order to validate the considerable promise of CAR-T cell therapy in the field of autoimmune diseases. This includes evaluating safety and long-term efficacy and security of the procedure, the benefit-risk ratio in the field of autoimmunity, the availability and cost-related issues associated with this emerging cellular therapy procedure.
Collapse
Affiliation(s)
- Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, 67000 Strasbourg, France; University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Léa Jacquel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, 67000 Strasbourg, France; University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Blandine Guffroy
- Department of Hematology, ICANS (Institut for Cancer Strasbourg-Europe), Strasbourg, France
| | - Thierry Martin
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, 67000 Strasbourg, France; University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| |
Collapse
|
10
|
Zare Moghaddam M, Mousavi MJ, Ghotloo S. Stem cell-based therapy for systemic lupus erythematous. J Transl Autoimmun 2024; 8:100241. [PMID: 38737817 PMCID: PMC11087996 DOI: 10.1016/j.jtauto.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, is among the most prevalent rheumatic autoimmune disorders. It affects autologous connective tissues caused by the breakdown of self-tolerance mechanisms. During the last two decades, stem cell therapy has been increasingly considered as a therapeutic option in various diseases, including parkinson's disease, alzheimer, stroke, spinal cord injury, multiple sclerosis, inflammatory bowel disease, liver disease, diabete, heart disease, bone disease, renal disease, respiratory diseases, and hematological abnormalities such as anemia. This is due to the unique properties of stem cells that divide and differentiate to the specialized cells in the damaged tissues. Moreover, they impose immunomodulatory properties affecting the diseases caused by immunological abnormalities such as rheumatic autoimmune disorders. In the present manuscript, efficacy of stem cell therapy with two main types of stem cells, including mesenchymal stem cell (MSC), and hematopoietic stem cells (HSC) in animal models or human patients of SLE, has been reviewed. Taken together, MSC and HSC therapies improved the disease activity, and severity in kidney, lung, liver, and bone (improvement in the clinical manifestation). In addition, a change in the immunological parameters occurred (improvement in immunological parameters). The level of autoantibodies, including antinuclear antibody (ANA), and anti-double-stranded deoxyribonucleic acid antibodies (dsDNA Abs) reduced. A conversion of Th1/Th2 ratio (in favor of Th2), and Th17/Treg (in favor of Treg) was also detected. In spite of many advantages of MSC and HSC transplantations, including efficacy, safety, and increased survival rate of SLE patients, some complications, including recurrence of the disease, occurrence of infections, and secondary autoimmune diseases (SAD) were observed after transplantation that should be addressed in the next studies.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Radbruch A, Melchers F. [Why the regeneration of immunological tolerance by vaccination is difficult]. Z Rheumatol 2024; 83:105-111. [PMID: 38110746 DOI: 10.1007/s00393-023-01453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/20/2023]
Abstract
Autoimmunity, including that involved in chronic inflammatory rheumatic diseases, seems to be the price we have to pay for our efficient immune system. It has the ability to precisely recognize pathogens and tumor cells, to efficiently fight them, to adapt to their alterations and provide specific immunity for a lifetime. "Inoculation", and more specifically "vaccination" takes advantage of this, either by transfer of protective antibodies (passive vaccination) or by using attenuated pathogens or parts of them by which a specific protective immunity is induced (active vaccination). The idea to use vaccination to reduce undesired (auto)immunity and chronic inflammation is nothing new in rheumatology. Many biologicals are antibodies, which specifically block the mediators of inflammation and in the broader sense are similar to a passive vaccination. The active vaccination with autoantigens using the recent mRNA/liposome technology, has shown in experimental animal models that they can prevent the formation of chronic inflammatory immune reactions, in that they strengthen the physiological tolerance and deviate the immune system to noninflammatory immune reactions against the antigen; however, there is still a long way to go to achieve the actual goals of a permanent suppression of established undesired immune reactions and the regeneration of immunological tolerance.
Collapse
Affiliation(s)
- Andreas Radbruch
- Deutsches Rheumaforschungszentrum Berlin, ein Leibniz Institut, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Fritz Melchers
- Deutsches Rheumaforschungszentrum Berlin, ein Leibniz Institut, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
12
|
Farge D, Pugnet G, Allez M, Castilla-Llorente C, Chatelus E, Cintas P, Faucher-Barbey C, Labauge P, Labeyrie C, Lioure B, Maria A, Michonneau D, Puyade M, Talouarn M, Terriou L, Treton X, Wojtasik G, Zephir H, Marjanovic Z. French protocol for the diagnosis and management of hematopoietic stem cell transplantation in autoimmune diseases. Rev Med Interne 2024; 45:79-99. [PMID: 38220493 DOI: 10.1016/j.revmed.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) for severe ADs was developed over the past 25years and is now validated by national and international medical societies for severe early systemic sclerosis (SSc) and relapsing-remitting multiple sclerosis (MS) and available as part of routine care in accredited center. HSCT is also recommended, with varying levels of evidence, as an alternative treatment for several ADs, when refractory to conventional therapy, including specific cases of connective tissue diseases or vasculitis, inflammatory neurological diseases, and more rarely severe refractory Crohn's disease. The aim of this document was to provide guidelines for the current indications, procedures and follow-up of HSCT in ADs. Patient safety considerations are central to guidance on patient selection and conditioning, always validated at the national MATHEC multidisciplinary team meeting (MDTM) based on recent (less than 3months) thorough patient evaluation. HSCT procedural aspects and follow-up are then carried out within appropriately experienced and Joint Accreditation Committee of International Society for Cellular Therapy and SFGM-TC accredited centres in close collaboration with the ADs specialist. These French recommendations were performed according to HAS/FAI2R standard operating procedures and coordinated by the Île-de-France MATHEC Reference Centre for Rare Systemic Autoimmune Diseases (CRMR MATHEC) within the Filière FAI2R and in association with the Filière MaRIH. The task force consisted of 3 patients and 64 clinical experts from various specialties and French centres. These data-derived and consensus-derived recommendations will help clinicians to propose HSCT for their severe ADs patients in an evidence-based way. These recommendations also give directions for future clinical research in this area. These recommendations will be updated according to newly emerging data. Of note, other cell therapies that have not yet been approved for clinical practice or are the subject of ongoing clinical research will not be addressed in this document.
Collapse
Affiliation(s)
- D Farge
- AP-HP, hôpital St-Louis, centre de référence des maladies auto-immunes systémiques rares d'Île-de-France MATHEC (FAI2R), unité de Médecine Interne (UF 04) : CRMR MATHEC, maladies auto-immunes et thérapie cellulaire (UF 04), 1, avenue Claude-Vellefaux, 75010 Paris, France; Université de Paris, IRSL, Recherche clinique appliquée à l'hématologie, URP-3518, 75010 Paris, France; Department of Medicine, McGill University, H3A 1A1, Montreal, Canada.
| | - G Pugnet
- Service de médecine interne et immunologie clinique, pôle hospitalo-universitaire des maladies digestives, CHU Rangueil, 1, avenue du Pr-Jean-Poulhès, 31059 Toulouse cedex 9, France
| | - M Allez
- AP-HP, hôpital Saint-Louis, service d'hépato-gastro-entérologie, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - C Castilla-Llorente
- Gustave-Roussy cancer center, département d'hématologie, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| | - E Chatelus
- Département de rhumatologie, hôpitaux universitaires de Strasbourg, Strasbourg, France; Centre de référence des maladies auto-immunes systémiques rares de l'Est et du Sud-Ouest, Strasbourg, France
| | - P Cintas
- CHU Toulouse Purpan, service de neurologie, place du Dr-Baylac, 31059 Toulouse cedex 9, France
| | - C Faucher-Barbey
- Direction prélèvements et greffes de CSH, Direction médicale et scientifique, Agence de la biomédecine, 93212 St-Denis/La Plaine, France
| | - P Labauge
- CRC SEP, service de neurologie, CHU de Montpellier, 34295 Montpellier cedex 5, France
| | - C Labeyrie
- AP-HP, CHU de Bicêtre, service de neurologie, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - B Lioure
- Département d'onco-hématologie, université de Strasbourg, ICANS, Strasbourg, France
| | - A Maria
- Médecine interne & immuno-oncologie (MedI2O), Institute for Regenerative Medicine & Biotherapy (IRMB), hôpital Saint-Éloi, CHU de Montpellier, 80, avenue Augustin-Fliche, Montpellier, France; IRMB, Inserm U1183, hôpital Saint-Éloi, CHU de Montpellier, 34295 Montpellier, France
| | - D Michonneau
- Université de Paris, IRSL, Recherche clinique appliquée à l'hématologie, URP-3518, 75010 Paris, France; Service d'hématologie-greffe, AP-HP, hôpital Saint-Louis, institut de recherche Saint-Louis, Paris, France
| | - M Puyade
- CHU de Poitiers, service de médecine interne, 2, rue de La-Miletrie, 86021 Poitiers, France
| | - M Talouarn
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France
| | - L Terriou
- CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre de référence des maladies auto-immunes et auto-inflammatoires rares (CERAINO), 59000 Lille, France
| | - X Treton
- Université de Paris, hôpital Beaujon, service de gastro-entérologie, MICI et assistance nutritive, DMU DIGEST, 100, boulevard Leclerc, 92110 Clichy, France
| | - G Wojtasik
- Université de Lille, Inserm, CHU de Lille, service de médecine interne et immunologie clinique, Centre de référence des maladies auto-immunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), U1286 - INFINITE - Institut de recherche translationnelle sur l'inflammation, Lille, France
| | - H Zephir
- CHU de Lille, université de Lille, pôle des neurosciences et de l'appareil locomoteur, Lille Inflammation Research International Center (LIRIC), UMR 995, rue Émile-Laine, 59000 Lille, France
| | - Z Marjanovic
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France
| |
Collapse
|
13
|
Oberemok VV, Andreeva O, Laikova K, Alieva E, Temirova Z. Rheumatoid Arthritis Has Won the Battle but Not the War: How Many Joints Will We Save Tomorrow? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1853. [PMID: 37893571 PMCID: PMC10608469 DOI: 10.3390/medicina59101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Rheumatoid arthritis refers to joint diseases of unclear etiology whose final stages can lead to unbearable pain and complete immobility of the affected joints. As one of the most widely known diseases of the joints, it serves as a study target for a large number of research groups and pharmaceutical companies. Modern treatment with anti-inflammatory drugs, including janus kinase (JAK) inhibitors, monoclonal antibodies, and botanicals (polyphenols, glycosides, alkaloids, etc.) has achieved some success and hope for improving the course of the disease. However, existing drugs against RA have a number of side effects which push researchers to elaborate on more selective and effective drug candidates. The avant-garde of research, which aims to develop treatment of rheumatoid arthritis using antisense oligonucleotides along with nonsteroidal drugs and corticosteroids against inflammation, increases the chances of success and expands the arsenal of drugs. The primary goal in the treatment of this disease is to find therapies that allow patients with rheumatoid arthritis to move their joints without pain. The main purpose of this review is to show the victories and challenges for the treatment of rheumatoid arthritis and the tortuous but promising path of research that aims to help patients experience the joy of freely moving joints without pain.
Collapse
Grants
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
Collapse
Affiliation(s)
- Volodymyr V. Oberemok
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea; (O.A.); (K.L.); (E.A.); (Z.T.)
| | | | | | | | | |
Collapse
|
14
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Abstract
Autologous hematopoietic stem cell transplantation is effective, but mechanisms are elusive.
Collapse
Affiliation(s)
- Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
- Neurology, Imperial College London NHS Trust, London, UK
| |
Collapse
|
16
|
Maria ATJ, Campidelli A, Castilla-Llorente C, Lansiaux P, Marjanovic Z, Pugnet G, Torregrosa-Diaz JM, Terriou L, Algayres JP, Urbain F, Yakoub-Agha I, Farge D. [Vaccination before and after autologous hematopoietic cell transplantation for autoimmune diseases: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (MATHEC-SFGM-TC)]. Bull Cancer 2023; 110:S97-S107. [PMID: 36658011 DOI: 10.1016/j.bulcan.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
The Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) organized the 12th workshop on hematopoietic stem cell transplantation clinical practices harmonization procedures on September 2021 in Lille, France. In the absence of specific national or international recommendation, the French working group for autologous stem Cell transplantation in Auto-immune Diseases (MATHEC) proposed guidances for vaccinations of patients undergoing autologous hematopoietic stem cell transplantation for autoimmune disease, including in the context of SARS-Cov-2 pandemic.
Collapse
Affiliation(s)
- Alexandre Thibault Jacques Maria
- Médecine Interne & Immuno-Oncologie (MedI2O), Institute for Regenerative Medicine & Biotherapy (IRMB), Hôpital Saint Eloi, CHU de Montpellier, 80 avenue Augustin Fliche, Montpellier, France; IRMB, Inserm U1183, Hôpital Saint-Eloi, CHU de Montpellier, 34295, Montpellier, France
| | - Arnaud Campidelli
- CHRU Nancy, Service Hématologie Adulte, 54500 Vandoeuvre-lès-Nancy, France
| | - Cristina Castilla-Llorente
- Gustave Roussy Cancer Campus, Département d́Hématologie, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Pauline Lansiaux
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France; Université de Paris Cité, Institut de recherche Saint Louis, Recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Zora Marjanovic
- Hôpital Saint Antoine (APHP), Service d'Hématologie et Thérapie cellulaire, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Grégory Pugnet
- CHU Rangueil, Service de Médecine Interne et Immunologie Clinique, 1 avenue du Pr Jean Poulhès, 31059 Toulouse Cedex 9, France
| | | | - Louis Terriou
- Hôpital Claude Huriez, CHRU Lille, Service de médecine interne et immunologie clinique, rue Michel Polonovski, 59000 Lille, France
| | - Jean-Pierre Algayres
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France
| | - Fanny Urbain
- Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | | | - Dominique Farge
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France; Université de Paris Cité, Institut de recherche Saint Louis, Recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France; McGill University, Department of Medicine, H3A 1A1, Montreal, Canada.
| |
Collapse
|
17
|
Hematopoietic Stem Cell Transplantation for the Treatment of Autoimmune Neurological Diseases: An Update. Bioengineering (Basel) 2023; 10:bioengineering10020176. [PMID: 36829670 PMCID: PMC9952685 DOI: 10.3390/bioengineering10020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last two decades, haematopoietic stem cell transplantation (HSCT) has been explored as a potential therapeutic strategy for autoimmune diseases refractory to conventional treatments, including neurological disorders. Although both autologous (AHSCT) and allogeneic HSCT (allo-HSCT) were investigated, AHSCT was preferentially developed due to a more favourable safety profile compared to allo-HSCT. Multiple sclerosis (MS) represents the most frequent neurological indication for AHSCT, but increasing evidence on the potential effectiveness of transplant in other autoimmune neurological diseases is emerging, although with a risk-benefit ratio overall more uncertain than in MS. In the present work, the rationale for the use of HSCT in neurological diseases and the experimental models that prompted its clinical application will be briefly covered. Case series and prospective studies exploring the use of HSCT in autoimmune diseases other than MS will be discussed, covering both frequent and rare neurological disorders such as myasthenia gravis, myopathies, and stiff-person syndrome. Finally, an updated summary of ongoing and future studies focusing on this issue will be provided.
Collapse
|
18
|
Ostendorf L, Burns M, Wagner DL, Enghard P, Amann K, Mei H, Eckardt KU, Seelow E, Schreiber A. Daratumumab for the treatment of refractory ANCA-associated vasculitis. RMD Open 2023; 9:rmdopen-2022-002742. [PMID: 36627149 PMCID: PMC9835944 DOI: 10.1136/rmdopen-2022-002742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Objective Treatment-refractory antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a life-threatening condition without evidence-based treatment options. One emerging treatment option for several antibody-mediated autoimmune diseases is the anti-CD38 antibody daratumumab, which depletes autoantibody-secreting plasma cells.Methods We treated two patients with severe life-threatening AAV with renal and pulmonary manifestation despite induction therapy with rituximab and cyclophosphamide with four to eight doses of 1800 mg daratumumab. We followed clinical and immunological responses.Results The first patient with myeloperoxidase-ANCA-positive microscopic polyangiitis had resolution of pneumonitis and pleuritis and stabilisation of kidney function after daratumumab. The second patient with proteinase 3-ANCA-positive granulomatosis with polyangiitis, diffuse alveolar haemorrhage necessitating extracorporeal membrane oxygenation (ECMO) and acute kidney failure, requiring kidney replacement therapy, was weaned off ECMO, mechanical ventilation and dialysis and discharged home after daratumumab. Clinical improvement was paralleled by a strong reduction in serum ANCA levels as well as total IgG, indicating depletion of plasma cells. Apart from the depletion of CD38+ natural killer cells, blood leucocyte levels were not notably influenced by daratumumab. Only mild adverse events, such as hypogammaglobulinaemia and an upper respiratory tract infection occurred.Conclusion Daratumumab was safe and effective in inducing remission in two patients with severe treatment-refractory AAV, warranting prospective clinical trials to establish safety and efficacy.
Collapse
Affiliation(s)
- Lennard Ostendorf
- Department of Nephrology and Medical Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany .,Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Marie Burns
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Dimitrios Laurin Wagner
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany,Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Mei
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Evelyn Seelow
- Department of Nephrology and Medical Intensive Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
19
|
Kretschmann S, Völkl S, Reimann H, Krönke G, Schett G, Achenbach S, Lutzny-Geier G, Müller F, Mougiakakos D, Dingfelder J, Flamann C, Hanssens L, Gary R, Mackensen A, Aigner M. Successful Generation of CD19 Chimeric Antigen Receptor T Cells from Patients with Advanced Systemic Lupus Erythematosus. Transplant Cell Ther 2023; 29:27-33. [PMID: 36241147 DOI: 10.1016/j.jtct.2022.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Although it has been shown that the production of functional chimeric antigen receptor T cells is feasible in patients with B-cell malignancies, it is currently unclear whether sufficient amounts of functional autologous CAR T cells can be generated from patients with autoimmune diseases. Intrinsic T-cell abnormalities and T-cell-targeted immune suppression in patients with autoimmunity may hamper the retrieval of sufficient T cells and their transduction and expansion into CAR T cells. Patients with active systemic lupus erythematosus (SLE) underwent leukapheresis after tapering glucocorticoids and stopping T-cell-suppressive drugs. This material was used as source for manufacturing anti-CD19 CAR T-cell products (CAR) in clinical scale. Cells were transduced with a lentiviral anti-CD19 CAR vector and expanded under good manufacturing practice (GMP) conditions using a closed, semi-automatic system. Functionality of these CAR T cells derived from autoimmune patient cells was tested in vitro. Six SLE patients were analyzed. Leukapheresis could be successfully performed in all patients yielding sufficient T-cell numbers for clinical scale CAR T-cell production. In addition, CAR T cells showed high expansion rates and viability, leading to CAR T cells in sufficient doses and quality for clinical use. CAR T cells from all patients showed specific cytotoxicity against CD19+ cell lines in vitro. GMP grade generation of CD19 CAR T-cell products suitable for clinical use is feasible in patients with autoimmune disease.
Collapse
Affiliation(s)
- S Kretschmann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - S Völkl
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - H Reimann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - G Krönke
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Erlangen, Germany
| | - G Schett
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Erlangen, Germany
| | - S Achenbach
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - G Lutzny-Geier
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - F Müller
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - D Mougiakakos
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Hematology and Oncology, University of Magdeburg, Magdeburg, Germany
| | - J Dingfelder
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - C Flamann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - L Hanssens
- Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - R Gary
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - A Mackensen
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - M Aigner
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
20
|
Peripheral immunophenotypes associated with the flare in the systemic lupus erythematosus patients with low disease activity state. Clin Immunol 2022; 245:109166. [DOI: 10.1016/j.clim.2022.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/08/2021] [Accepted: 10/14/2022] [Indexed: 11/22/2022]
|
21
|
Sadeghi B, Ringdén O, Gustafsson B, Castegren M. Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Front Immunol 2022; 13:963445. [PMID: 36426365 PMCID: PMC9680556 DOI: 10.3389/fimmu.2022.963445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Behnam Sadeghi,
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Markus Castegren
- Center for Clinical Research, Sörmland, Uppsala University, Uppsala, Sweden
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Section of Infectious Diseases, Department of Medical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
von Niederhäusern V, Ruder J, Ghraichy M, Jelcic I, Müller AM, Schanz U, Martin R, Trück J. B-Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200027. [PMID: 36229189 PMCID: PMC9562041 DOI: 10.1212/nxi.0000000000200027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat aggressive forms of multiple sclerosis (MS). This procedure is believed to result in an immune reset and restoration of a self-tolerant immune system. Immune reconstitution has been extensively studied for T cells, but only to a limited extent for B cells. As increasing evidence suggests an important role of B cells in MS pathogenesis, we sought here to better understand reconstitution and the extent of renewal of the B-cell system after aHSCT in MS. METHODS Using longitudinal multidimensional flow cytometry and immunoglobulin heavy chain (IgH) repertoire sequencing following aHSCT with BCNU + Etoposide + Ara-C + Melphalan anti-thymocyte globulin, we analyzed the B-cell compartment in a cohort of 20 patients with MS in defined intervals before and up to 1 year after aHSCT and compared these findings with data from healthy controls. RESULTS Total B-cell numbers recovered within 3 months and increased above normal levels 1 year after transplantation, successively shifting from a predominantly transitional to a naive immune phenotype. Memory subpopulations recovered slowly and remained below normal levels with reduced repertoire diversity 1 year after transplantation. Isotype subclass analysis revealed a proportional shift toward IgG1-expressing cells and a reduction in IgG2 cells. Mutation analysis of IgH sequences showed that highly mutated memory B cells and plasma cells may transiently survive conditioning while the analysis of sequence cluster overlap, variable (IGHV) and joining (IGHJ) gene usage and repertoire diversity suggested a renewal of the late posttransplant repertoire. In patients with early cytomegalovirus reactivation, reconstitution of naive and memory B cells was delayed. DISCUSSION Our detailed characterization of B-cell reconstitution after aHSCT in MS indicates a reduced reactivation potential of memory B cells up to 1 year after transplantation, which may leave patients susceptible to infection, but may also be an important aspect of its mechanism of action.
Collapse
Affiliation(s)
- Valentin von Niederhäusern
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Josefine Ruder
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Marie Ghraichy
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Ilijas Jelcic
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Antonia Maria Müller
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Urs Schanz
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Roland Martin
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Johannes Trück
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich.
| |
Collapse
|
23
|
Yang L, Ren G, Chen W, Zhao L, Guo J, Ge Y, Zeng C, Hu W, Huang X, Zhang H. Long-term follow-up of autologous peripheral blood hematopoietic stem cell transplantation for refractory lupus nephritis—a series study of 20 patients. Lupus 2022; 31:1586-1594. [DOI: 10.1177/09612033221126848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Autologous hematopoietic cell transplantation (ASCT) improves immunologic homeostasis in autoimmune diseases. ASCT-treated refractory lupus nephritis ( LN ) has been reported. Nevertheless, the long-term outcome of patients with refractory LN after ASCT remains unknown. This study reports the outcomes of 20 refractory lupus patients with 10-year of follow-up after receiving ASCT. Methods Twenty-two patients with LN refractory to immunosuppressive therapy were enrolled. Twenty patients were examined closely and two cases died within 100 days after ASCT. Hematopoietic cell mobilization with cyclophosphamide and granulocyte colony-stimulating factor (G-CSF) was followed by collection of CD34+ positively selected cells. The conditioning regimen consisted of intravenous cyclophosphamide, rabbit antithymocyte globulin, methylprednisolone, and G-CSF. All immunosuppressive therapies were discontinued at the start of mobilization and corticosteroids were tapered rapidly after ASCT. Results Data was collected from 22 patients with refractory LN treated by ASCT. 59% were female, duration of lupus before ASCT was 46 (33–71) months, and median duration of follow-up after ASCT was 89.5 (56–108) months. 20 long-term followed up patients had an average follow-up time of 92 months ( 63.25–109.5 ). Eighteen patients achieved complete remission, one patient reached partial remission, one patient without remission started peritoneal dialysis at month 12, and one patient received short-term renal replacement therapy before ASCT started hemodialysis at 84 months after transplantation. Nine patients relapsed 10 times during the follow-up, and three patients received rituximab. Two patients relapsed during pregnancy after complete response and the Apgar scores of infants were 9 and 10, respectively. All nine patients received glucocorticoids and immunosuppressive medication after relapse and responded again. The 10-year overall survival, 10-year disease-free survival rate, and 10-year renal survival were 100%, 35%, and 90%, respectively. The rate of relapse was 45%. Complications included hypocytosis, infection, B-type insulin resistance syndrome, and monoclonal immunoglobulinemia. Conclusion This study suggests ASCT is effective and safety in treating refractory LN and is beneficial to improve their long-term outcomes.
Collapse
Affiliation(s)
- Liu Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guisheng Ren
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wencui Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Liang Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinzhou Guo
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongchun Ge
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weixin Hu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xianghua Huang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Haitao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
24
|
Parodis I, Gatto M, Sjöwall C. B cells in systemic lupus erythematosus: Targets of new therapies and surveillance tools. Front Med (Lausanne) 2022; 9:952304. [PMID: 36111105 PMCID: PMC9468481 DOI: 10.3389/fmed.2022.952304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
B cell hyperactivity is a hallmark of the complex autoimmune disease systemic lupus erythematosus (SLE), which has justified drug development focusing on B cell altering agents during the last decades, as well as the off-label use of B cell targeting biologics. About a decade ago, the anti-B cell activating factor (BAFF) belimumab was the first biological agent to be licensed for the treatment of adult patients with active yet non-renal and non-neuropsychiatric SLE, to later be expanded to include treatment of pediatric SLE and, recently, lupus nephritis. B cell depletion is recommended as an off-label option in refractory cases, with the anti-CD20 rituximab having been the most used B cell depleting agent to date while agents with a slightly different binding specificity to CD20 such as obinutuzumab have also shown promise, forming a part of the current pipeline. In addition, terminally differentiated B cells have also been the targets of experimental therapies, with the proteasome inhibitor bortezomib being one example. Apart from being promising drug targets, B and plasma cells have also shown promise in the surveillance of patients with SLE, especially for monitoring B cell depleting or B cell altering therapies. Inadequate B cell depletion may signify poor expected clinical response to rituximab, for example, while prominent reductions in certain B cell subsets may signify a protection against flare development in patients treated with belimumab. Toward an era with a richer therapeutic armamentarium in SLE, including to a large extent B cell altering treatments, the challenge that emerges is to determine diagnostic means for evidence-based therapeutic decision-making, that uses clinical information, serological markers, and gene expression patterns to guide individualized precision strategies.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mariele Gatto
- Unit of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Kawashima-Vasconcelos MY, Santana-Gonçalves M, Zanin-Silva DC, Malmegrim KCR, Oliveira MC. Reconstitution of the immune system and clinical correlates after stem cell transplantation for systemic sclerosis. Front Immunol 2022; 13:941011. [PMID: 36032076 PMCID: PMC9403547 DOI: 10.3389/fimmu.2022.941011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease that includes fibrosis, diffuse vasculopathy, inflammation, and autoimmunity. Autologous hematopoietic stem cell transplantation (auto-HSCT) is considered for patients with severe and progressive SSc. In recent decades, knowledge about patient management and clinical outcomes after auto-HSCT has significantly improved. Mechanistic studies have contributed to increasing the comprehension of how profound and long-lasting are the modifications to the immune system induced by transplantation. This review revisits the immune monitoring studies after auto-HSCT for SSc patients and how they relate to clinical outcomes. This understanding is essential to further improve clinical applications of auto-HSCT and enhance patient outcomes.
Collapse
Affiliation(s)
- Marianna Y. Kawashima-Vasconcelos
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Oncology, Stem Cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio C. Zanin-Silva
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Brod SA. The genealogy, methodology, similarities and differences of immune reconstitution therapies for multiple sclerosis and neuromyelitis optica. Autoimmun Rev 2022; 21:103170. [PMID: 35963569 DOI: 10.1016/j.autrev.2022.103170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022]
Abstract
Immune reconstitution therapies (IRTs) are a type of short course procedure or pharmaceutical agent within the MS pharmacopeia. They emanate from oncology and induce transient incomplete lympho-ablation with or without myelo-ablation, resulting in potential prolonged immunomodulation. Thus, they provide significant prophylaxis from disease activity without retreatment. Modern IRT for autoimmunity encompasses a heterogeneous group of pulsed lympho- and non-myelo-ablative treatments designed to re-boot the adaptive immune system in a quasi-permanent manner - a re-induction of ontogeny. IRT is the extensive debulking of an auto-aggressive immune system to attempt to reach the Holy Grail of immune tolerance. This incomplete yet significant lympho-ablation induces lymphoproliferation, reduces pathogenic clonal cells, causes thymopoiesis and results in the induction of immune tolerance. Lympho-ablation with immune reconstitution can result in minimal residual autoimmunity. There is a resetting of the immune thermostat - i.e., the immunostat. IRTs have the potential to provide prolonged periods of disease inactivity without retreatment in part through the immunological results of their pulsatile lymphocyte depletion. It is vital to increase our understanding of how IRTs alter a patient's immune response to the antigenic target of the disease so that we can devise newer, more durable and safer forms of such agents. What common features do extant IRTs (i.e., stem cell transplant, alemtuzumab and oral cladribine) have to produce the durable therapeutic response without long term treatment in neuroimmunological diseases such as MS (multiple sclerosis) and NMOSD (neuromyelitis optica spectrum disorders)? Can we learn from these critical features to predict what other maneuvers or agents might effect similar clinical results with equal or greater efficacy and safety?
Collapse
Affiliation(s)
- Staley A Brod
- Division of MS/Neuro-immunology, Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Nikoonezhad M, Lasemi MV, Alamdari S, Mohammadian M, Tabarraee M, Ghadyani M, Hamidpour M, Roshandel E. Treatment of insulin-dependent diabetes by hematopoietic stem cell transplantation. Transpl Immunol 2022; 75:101682. [PMID: 35926800 DOI: 10.1016/j.trim.2022.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from the demolition of β-cells that are responsible for producing insulin in the pancreas. Treatment with insulin (lifelong applying) and islet transplantation (in rare cases and severe diseases), are standards of care for T1D. Pancreas or islet transplantation have some limitations, such as lack of sufficient donors and longtime immune suppression for preventing allograft rejection. Recent studies demonstrate that autologous hematopoietic stem cells (HSC) can regenerate immune tolerance against auto-antigens. Taking advantage of this feature, autologous HSC transplantation (auto-HSCT) is likely the only treatment for T1D that is associated with lasting and complete remission. None of the other evaluated immunotherapies worldwide had the clinical efficacy of auto-HSCT. Therapy with auto-HSCT is insulin-independent rather than reducing insulin needs or delaying loss of insulin production. This review provided the latest findings in auto-HSCT for treatment of T1D.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vahdat Lasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Alamdari
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tabarraee
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghadyani
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhang HM, Yuan S, Meng H, Hou XT, Li J, Xue JC, Li Y, Wang Q, Nan JX, Jin XJ, Zhang QG. Stem Cell-Based Therapies for Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:8494. [PMID: 35955628 PMCID: PMC9368934 DOI: 10.3390/ijms23158494] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing disease that severely affects patients' quality of life. The exact cause of IBD is uncertain, but current studies suggest that abnormal activation of the immune system, genetic susceptibility, and altered intestinal flora due to mucosal barrier defects may play an essential role in the pathogenesis of IBD. Unfortunately, IBD is currently difficult to be wholly cured. Thus, more treatment options are needed for different patients. Stem cell therapy, mainly including hematopoietic stem cell therapy and mesenchymal stem cell therapy, has shown the potential to improve the clinical disease activity of patients when conventional treatments are not effective. Stem cell therapy, an emerging therapy for IBD, can alleviate mucosal inflammation through mechanisms such as immunomodulation and colonization repair. Clinical studies have confirmed the effectiveness of stem cell transplantation in refractory IBD and the ability to maintain long-term remission in some patients. However, stem cell therapy is still in the research stage, and its safety and long-term efficacy remain to be further evaluated. This article reviews the upcoming stem cell transplantation methods for clinical application and the results of ongoing clinical trials to provide ideas for the clinical use of stem cell transplantation as a potential treatment for IBD.
Collapse
Affiliation(s)
- Hua-Min Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Shuo Yuan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Yanbian University, Yanji 133002, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Yanbian University, Yanji 133002, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Ji-Xing Nan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| |
Collapse
|
29
|
Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro. Sci Rep 2022; 12:13101. [PMID: 35908050 PMCID: PMC9338971 DOI: 10.1038/s41598-022-17331-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple systems. Immunopathology believes that abnormal T cell function and excessive production of autoantibodies by B cells are involved in multi-organ damage. Human umbilical cord mesenchymal stem cells (hUCMSCs) therapies have endowed with promise in SLE, while the function of MSC-derived extracellular vesicles (MSC-EVs) was still unclear. Extracellular vesicles (EVs) are subcellular components secreted by a paracellular mechanism and are essentially a group of nanoparticles. EVs play a vital role in cell-to-cell communication by acting as biological transporters. New evidence has shown beneficial effects of MSC-EVs on autoimmune diseases, such as their immunomodulatory properties. In this study, we investigated whether hUCMSCs derived extracellular vesicles (hUCMSC-EVs) could regulate abnormal immune responses of T cells or B cells in SLE. We isolated splenic mononuclear cells from MRL/lpr mice, a classical animal model of SLE. PBS (Phosphate-buffered saline), 2 × 105 hUCMSCs, 25 µg/ml hUCMSC-EVs, 50 µg/ml hUCMSC-EVs were co-cultured with 2 × 106 activated splenic mononuclear cells for 3 days in vitro, respectively. The proportions of CD4+ T cell subsets, B cells and the concentrations of cytokines were detected. Both hUCMSCs and hUCMSC-EVs inhibited CD4+ T cells, increased the production of T helper (Th)17 cells, promoted the production of interleukin (IL)-17 and transforming growth factor beta1 (TGF-β1) (P < 0.05), although they had no significant effects on Th1, Th2, T follicular helper (Tfh), regulatory T (Treg) cells and IL-10 (P > 0.05); only hUCMSCs inhibited CD19+ B cells, promoted the production of interferon-gamma (IFN-γ) and IL-4 (P < 0.05). hUCMSCs exert immunoregulatory effects on SLE at least partially through hUCMSC-EVs in vitro, therefore, hUCMSC-EVs play novel and potential regulator roles in SLE.
Collapse
|
30
|
Arora S, Rovin BH. Expert Perspective: An Approach to Refractory Lupus Nephritis. Arthritis Rheumatol 2022; 74:915-926. [PMID: 35166048 PMCID: PMC9156543 DOI: 10.1002/art.42092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
Systemic lupus erythematosus affects the kidneys in ~50% of all patients, and lupus nephritis (LN) is the most common manifestation of kidney involvement. Despite prompt diagnosis and treatment with aggressive immunosuppression, a significant proportion of LN patients do not respond to treatment and are considered to have refractory LN. Several factors other than drug resistance, such as nonadherence to treatment, undertreatment with conventional drugs, the effects of accumulated chronic damage, and genetic factors, may contribute to a poor response to treatment and should be considered. We define refractory LN as no change in (or worsening of) proteinuria and/or estimated glomerular filtration rate in response to 2 different standard-of-care induction regimens after 4-6 months in patients who are adherent to treatment. For patients who have LN that is truly refractory to standard of care, B cell-targeted therapy, specifically rituximab (RTX), is the most common next step. There is limited evidence available on alternative rescue therapies that may be used when there is no response to RTX. These include anti-CD38, leflunomide, intravenous immunoglobulin, plasma exchange, autologous stem cell transplantation, chimeric antigen receptor T cell therapy, anticomplement therapy, and interleukin-2 therapy.
Collapse
Affiliation(s)
| | - Brad H. Rovin
- The Ohio State University Wexner Medical Center, Columbus OH
| |
Collapse
|
31
|
Yuan X, Sun L. Stem Cell Therapy in Lupus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:61-68. [PMID: 36465325 PMCID: PMC9524813 DOI: 10.2478/rir-2022-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/25/2022] [Indexed: 06/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune and inflammatory disease with multiple organs and systems involved such as the kidney, lung, brain and the hematopoietic system. Although increased knowledge of the disease pathogenesis has improved treatment options, current immunosuppressive therapies have failed to prevent disease relapse in more than half of treated patients. Thus, the cell replacement therapy approach that aims to overcome adverse events of traditional treatment and improve recovery rate of refractory SLE is considered as an alternative treatment option. A large number of animal studies and clinical trials have shown stem cell therapy to be a promising therapeutic approach for the treatment of SLE. Since the first transplantation into human patients, several stem cell types have been applied in this field, including hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). In this review, we overview different cell sources of stem cells and applications of the stem cell therapy for treatment of SLE, as well as the comparison between HSCs transplantation (HSCT) and MSCs transplantation (MSCT).
Collapse
Affiliation(s)
- Xinran Yuan
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
32
|
Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant 2022; 57:1217-1239. [PMID: 35589997 PMCID: PMC9119216 DOI: 10.1038/s41409-022-01691-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
|
33
|
Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2022; 57:1055-1062. [PMID: 35578014 PMCID: PMC9109750 DOI: 10.1038/s41409-022-01702-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases (ADs) represent a heterogenous group of complex diseases with increasing incidence in Western countries and are a major cause of morbidity. Hematopoietic stem cell transplantation (HSCT) has evolved over the last 25 years as a specific treatment for patients with severe ADs, through eradication of the pathogenic immunologic memory and profound immune renewal. HSCT for ADs is recently facing a unique developmental phase across transplant centers. This review provides a comprehensive overview of the recent evidence and developments in the area, including fundamentals of preclinical research, clinical studies in neurologic, rheumatologic and gastroenterologic diseases, which represent major indications at present, along with evidence of HSCT for rarer indications. Moreover, we describe the interwoven challenges of delivering more advanced cellular therapies, exploiting mesenchymal stem cells, regulatory T cells and potentially CAR-T cell therapies, in patients affected by ADs. Overall, we discuss past and current indications, efficacy, associated risks and benefits, and future directions of HSCT and advanced cellular therapies in the treatment of severe/refractory ADs, integrating the available literature with European Society for Blood and Marrow Transplantation (EBMT) registry data.
Collapse
Affiliation(s)
- Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
34
|
Veldkamp SR, Jansen MHA, Swart JF, Lindemans CA. Case Report: Lessons Learned From Subsequent Autologous and Allogeneic Hematopoietic Stem Cell Transplantations in a Pediatric Patient With Relapsing Polychondritis. Front Immunol 2022; 13:812927. [PMID: 35359992 PMCID: PMC8960202 DOI: 10.3389/fimmu.2022.812927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
Background Autologous hematopoietic stem cell transplantation (autoHSCT) is increasingly being recognized as a treatment option for severe refractory autoimmune diseases (AD). However, efficacy is hampered by high relapse rates. In contrast, allogeneic HSCT (alloHSCT) has high potential to cure AD, but is associated with significant morbidity and mortality, and data in AD are limited. Experience with autoHSCT in relapsing polychondritis, a rare episodic inflammatory disorder characterized by destruction of cartilage, is scarce and alloHSCT has not been described before. Case Presentation Here, we present a case of a 9-year-old girl who was diagnosed with relapsing polychondritis, with severe airway involvement requiring a tracheostomy. The disease proved to be steroid-dependent and refractory to a wide array of disease-modifying anti-rheumatic drugs and biologicals. After an autoHSCT procedure, the disease became inactive for a short period of time, until the patient experienced a relapse after 31 days, accompanied by repopulation of effector/memory CD8+ T cells. Because of persistent inflammation and serious steroid toxicity, including severe osteoporosis, growth restriction, and excessive weight gain, the patient was offered an alloHSCT. She experienced transient antibody-mediated immune events post-alloHSCT, which subsided after rituximab. She ultimately developed a balanced immune reconstitution and is currently still in long-term disease remission, 8 years after alloHSCT. Conclusion This case adds to the few existing reports on autoHSCT in relapsing polychondritis and gives new insights in its pathogenesis, with a possible role for CD8+ T cells. Moreover, it is the first report of successful alloHSCT as a treatment for children with this severe autoimmune disease.
Collapse
Affiliation(s)
- Saskia R Veldkamp
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc H A Jansen
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost F Swart
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline A Lindemans
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Blood and Bone Marrow Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
35
|
Hiepe F, Alexander T, Dörner T, Hauser AE, Hoyer BF, Kubagawa H, Skriner K, Tokoyoda K. [B lymphocytes and plasma cells as drivers of rheumatic diseases]. Z Rheumatol 2022; 81:660-666. [PMID: 35380249 PMCID: PMC8980791 DOI: 10.1007/s00393-022-01189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/21/2022]
Abstract
Verschiedene Arbeitsgruppen am Deutschen Rheuma-Forschungszentrum Berlin haben in enger Zusammenarbeit mit der Medizinischen Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie an der Charité wichtige Beiträge zur Bedeutung der B‑Zellen und Plasmazellen bei rheumatischen Erkrankungen geleistet, die nicht nur für die Rheumatologie, sondern für alle klinischen Fachgebiete, in denen antikörpervermittelte Erkrankungen eine Rolle spielen, relevant sind. Insbesondere wird auf die gestörte B‑Zell-Homöostase, die Bedeutung des Immunglobulin M(IgM)-Fc-Rezeptors für die Regulation der Autoimmunität, die Rolle der langlebigen Gedächtnis-Plasmazelle bei der Aufrechterhaltung der Autoimmunität sowie die Sicherung ihres Überlebens in speziellen, von Stromazellen organisierten Nischen im Knochenmark und in entzündeten Geweben eingegangen. Die Forschungsergebnisse haben zu einem besseren Verständnis der immunologischen und molekularen Mechanismen bei rheumatischen Erkrankungen und ihrer Therapie beigetragen. Die Identifizierung der langlebigen Gedächtnis-Plasmazelle hat zu vielversprechenden therapeutischen Ansätzen mit kurativem Potenzial bei Autoimmunerkrankungen geführt.
Collapse
Affiliation(s)
- Falk Hiepe
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland. .,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Tobias Alexander
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Bimba F Hoyer
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland
| | - Karl Skriner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland
| |
Collapse
|
36
|
Aringer M, Alarcón-Riquelme ME, Clowse M, Pons-Estel GJ, Vital EM, Dall’Era M. A glimpse into the future of systemic lupus erythematosus. Ther Adv Musculoskelet Dis 2022; 14:1759720X221086719. [PMID: 35368371 PMCID: PMC8972918 DOI: 10.1177/1759720x221086719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
This viewpoint article on a forecast of clinically meaningful changes in the management of systemic lupus erythematosus (SLE) in the next 10 years is based on a review of the current state of the art. The groundwork has been laid by a robust series of classification criteria and treatment recommendations that have all been published since 2019. Building on this strong foundation, SLE management predictably will take significant steps forward. Assessment for lupus arthritis will presumably include musculoskeletal sonography. Large-scale polyomics studies are likely to unravel more of the central immune mechanisms of the disease. Biomarkers predictive of therapeutic success may enter the field; the type I interferon signature, as a companion for use of anifrolumab, an antibody against the common type I interferon receptor, is one serious candidate. Besides anifrolumab for nonrenal SLE and the new calcineurin inhibitor voclosporin in lupus nephritis, both of which are already approved in the United States and likely to become available in the European Union in 2022, several other approaches are in advanced clinical trials. These include advanced B cell depletion, inhibition of costimulation via CD40 and CD40 ligand (CD40L), and Janus kinase 1 (Jak1) and Tyrosine kinase 2 (Tyk2) inhibition. At the same time, essentially all of our conventional therapeutic armamentarium will continue to be used. The ability of patients to have successful SLE pregnancies, which has become much better in the last decades, should further improve, with approaches including tumor necrosis factor blockade and self-monitoring of fetal heart rates. While we hope that the COVID-19 pandemic will soon be controlled, it has highlighted the risk of severe viral infections in SLE, with increased risk tied to certain therapies. Although there are some data that a cure might be achievable, this likely will remain a challenge beyond 10 years from now.
Collapse
Affiliation(s)
- Martin Aringer
- Professor of Medicine (Rheumatology), Division of Rheumatology, Department of Medicine III, University Medical Center and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Marta E. Alarcón-Riquelme
- Department of Medical Genomics, GENYO, Pfizer-University of Granada-Andalusian Government Center for Genomics and Oncological Research, Granada, Spain
| | - Megan Clowse
- Division of Rheumatology & Immunology, Duke University, Durham, NC, USA
| | - Guillermo J. Pons-Estel
- Department of Rheumatology, Grupo Oroño–Centro Regional de Enfermedades Autoinmunes y Reumáticas (GO-CREAR), Rosario, Argentina
| | - Edward M. Vital
- University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Maria Dall’Era
- Lupus Clinic and Rheumatology Clinical Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
37
|
Mucke J, Krusche M, Burmester GR. A broad look into the future of rheumatoid arthritis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221076211. [PMID: 35154419 PMCID: PMC8832593 DOI: 10.1177/1759720x221076211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Despite all improvements in rheumatoid arthritis, we are still not able to prevent or cure the disease. Diagnostic delays due to lack of access to a specialist and costly therapies are still a major obstacle for many patients. Even in first-world countries, the treat-to-target principle and the goal of disease remission are often missed. Thus, rheumatoid arthritis (RA) is still the reason for disability and reduced quality of life for many patients. So, is it time to move the goalpost even further? Where are we heading next? And will we finally be able to cure the disease? These questions are addressed in our review article.
Collapse
Affiliation(s)
- Johanna Mucke
- Policlinic and Hiller Research Unit for Rheumatology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Martin Krusche
- Division of Rheumatology and Inflammatory Rheumatic Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd R. Burmester
- Department of Rheumatology and Clinical Immunology, Charité –Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
38
|
Yoshimi R, Nakajima H. Current State and Issues of Regenerative Medicine for Rheumatic Diseases. Front Med (Lausanne) 2022; 9:813952. [PMID: 35155499 PMCID: PMC8831787 DOI: 10.3389/fmed.2022.813952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The prognosis of rheumatic diseases is generally better than that of malignant diseases. However, some cases with poor prognoses resist conventional therapies and cause irreversible functional and organ damage. In recent years, there has been much research on regenerative medicine, which uses stem cells to restore the function of missing or dysfunctional tissues and organs. The development of regenerative medicine is also being attempted in rheumatic diseases. In diseases such as systemic sclerosis (SSc), systemic lupus erythematosus (SLE), and rheumatoid arthritis, hematopoietic stem cell transplantation has been attempted to correct and reconstruct abnormalities in the immune system. Mesenchymal stem cells (MSCs) have also been tried for the treatment of refractory skin ulcers in SSc using the ability of MSCs to differentiate into vascular endothelial cells and for the treatment of systemic lupus erythematosus SLE using the immunosuppressive effect of MSCs. CD34-positive endothelial progenitor cells (EPCs), which are found in the mononuclear cell fraction of bone marrow and peripheral blood, can differentiate into vascular endothelial cells at the site of ischemia. Therefore, EPCs have been used in research on vascular regeneration therapy for patients with severe lower limb ischemia caused by rheumatic diseases such as SSc. Since the first report of induced pluripotent stem cells (iPSCs) in 2007, research on regenerative medicine using iPSCs has been actively conducted, and their application to rheumatic diseases is expected. However, there are many safety issues and bioethical issues involved in regenerative medicine research, and it is essential to resolve these issues for practical application and spread of regenerative medicine in the future. The environment surrounding regenerative medicine research is changing drastically, and the required expertise is becoming higher. This paper outlines the current status and challenges of regenerative medicine in rheumatic diseases.
Collapse
|
39
|
Velier M, Daumas A, Simoncini S, Arcani R, Magalon J, Benyamine A, Granel B, Dignat George F, Chabannon C, Sabatier F. Combining systemic and locally applied cellular therapies for the treatment of systemic sclerosis. Bone Marrow Transplant 2022; 57:17-22. [PMID: 34663928 DOI: 10.1038/s41409-021-01492-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by a functional and structural alteration of the microvascular network associated with cutaneous and visceral fibrosis lesions. Conventional therapies are based on the use of immunomodulatory molecules and symptomatic management but often prove to be insufficient, particularly for patients suffering from severe and rapidly progressive forms of the disease. In this context, cellular therapy approaches could represent a credible solution with the goal to act on the different components of the disease: the immune system, the vascular system and the extracellular matrix. The purpose of this review is to provide an overview of the cellular therapies available for the management of SSc. The first part will focus on systemically injected therapies, whose primary effect is based on immunomodulatory properties and immune system resetting, including autologous hematopoietic stem cell transplantation and intravenous injection of mesenchymal stem cells. The second part will discuss locally administered regenerative cell therapies, mainly derived from adipose tissue, developed for the management of local complications as hand and face disabilities.
Collapse
Affiliation(s)
- Mélanie Velier
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France. .,Laboratoire de Culture et Thérapie Cellulaire, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France.
| | - Aurélie Daumas
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Gériatrie et Thérapeutique, Hôpital La Timone, AP-HM, Marseille, France
| | | | - Robin Arcani
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Gériatrie et Thérapeutique, Hôpital La Timone, AP-HM, Marseille, France
| | - Jérémy Magalon
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Laboratoire de Culture et Thérapie Cellulaire, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Audrey Benyamine
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Hôpital Nord, pôle MICA, AP-HM, Marseille, France
| | - Brigitte Granel
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Hôpital Nord, pôle MICA, AP-HM, Marseille, France
| | | | - Christian Chabannon
- Centre de Thérapie Cellulaire et INSERM CIC BT-1409, Institut Paoli-Calmettes Comprehensive Cancer Center, Marseille, France
| | - Florence Sabatier
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Laboratoire de Culture et Thérapie Cellulaire, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| |
Collapse
|
40
|
[German research groups are at the forefront in the application of innovative treatments of systemic lupus erythematosus]. Z Rheumatol 2021; 81:134-135. [PMID: 34936006 DOI: 10.1007/s00393-021-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
|
41
|
Goklemez S, Hasni S, Hakim FT, Muraro PA, Pirsl F, Rose J, Memon S, Fowler DF, Steinberg SM, Baker EH, Panch SR, Gress R, Illei GG, Lipsky PE, Pavletic SZ. Long-term follow-up after lymphodepleting autologous hematopoietic cell transplantation for treatment-resistant systemic lupus erythematosus. Rheumatology (Oxford) 2021; 61:3317-3328. [PMID: 34875023 DOI: 10.1093/rheumatology/keab877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Autologous hematopoietic cell transplantation (AHSCT) improves immunologic dysfunction in patients with Systemic Lupus Erythematosus (SLE). However, the curative potential of this therapy remains uncertain. This study reports outcomes in SLE patients receiving a lymphodepleting reduced intensity regimen for AHSCT in SLE. METHODS Eight patients with SLE refractory to treatment, including intravenous cyclophosphamide, were enrolled. Five had lupus nephritis and three central nervous system involvement as primary indications for transplant. Hematopoietic cell mobilization with cyclophosphamide, G-CSF and rituximab was followed by collection of CD34+ positively selected cells. The conditioning regimen consisted of concurrent administration of cyclophosphamide, fludarabine, and rituximab. All immunosuppressive medications were discontinued at the start of mobilization and corticosteroids were rapidly tapered after the transplant. RESULTS Five of eight patients achieved a complete response, including a decline in the SLEDAI to zero, which was sustained in four patients for a median of 165 months (range 138-191). One patient achieved a partial response, which was followed by relapse at month 18. Two patients with nephritis and most underlying organ comorbidities had early deaths from infection and multiorgan failure. AHSCT resulted in profound lymphodepletion, followed by expansion of Treg cells and repopulation of naive T and B cells. Patients with CR showed a sustained suppression of the SLE-associated interferon-induced gene signature, marked depletion of memory and plasmablast B cells, and resultant sustained elimination of anti-dsDNA antibody. CONCLUSION Durable clinical and serologic remissions with suppression in the interferon gene signature can be achieved in refractory SLE following lymphodepleting AHSCT. TRIAL REGISTRATION ClinicalTrials.gov, https://clinicaltrials.gov, NCT00076752.
Collapse
Affiliation(s)
- Sencer Goklemez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frances T Hakim
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom
| | - Filip Pirsl
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeremy Rose
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfraz Memon
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Seth M Steinberg
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eva H Baker
- Department of Radiology and Imaging Services; Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandya R Panch
- Center for Cellular Engineering, National Institutes of Health, USA
| | - Ronald Gress
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter E Lipsky
- AMPEL Bio Solutions and the RILITE Research Institute, Charlottesville, Virginia, USA
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Walhelm T, Gunnarsson I, Heijke R, Leonard D, Trysberg E, Eriksson P, Sjöwall C. Clinical Experience of Proteasome Inhibitor Bortezomib Regarding Efficacy and Safety in Severe Systemic Lupus Erythematosus: A Nationwide Study. Front Immunol 2021; 12:756941. [PMID: 34659263 PMCID: PMC8517506 DOI: 10.3389/fimmu.2021.756941] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023] Open
Abstract
As treatment options in advanced systematic lupus erythematosus (SLE) are limited, there is an urgent need for new and effective therapeutic alternatives for selected cases with severe disease. Bortezomib (BTZ) is a specific, reversible, inhibitor of the 20S subunit of the proteasome. Herein, we report clinical experience regarding efficacy and safety from all patients receiving BTZ as therapy for SLE in Sweden during the years 2014−2020. 8 females and 4 males were included with a mean disease duration at BTZ initiation of 8.8 years (range 0.7–20 years). Renal involvement was the main target for BTZ. Reduction of global disease activity was recorded by decreasing SLEDAI-2K scores over time and remained significantly reduced at the 6-month (p=0.007) and the 12-month (p=0.008) follow-up visits. From BTZ initiation, complement protein 3 (C3) levels increased significantly after the 2nd treatment cycle (p=0.05), the 6-month (p=0.03) and the 12-month (p=0.04) follow-up visits. The urine albumin/creatinine ratio declined over time and reached significance at the 6-month (p=0.008) and the 12-month follow-up visits (p=0.004). Seroconversion of anti-dsDNA (27%), anti-C1q (50%) and anti-Sm (67%) was observed. 6 of 12 patients experienced at least one side-effect during follow-up, whereof the most common adverse events were infections. Safety parameters (C-reactive protein, blood cell counts) mainly remained stable over time. To conclude, we report favorable therapeutic effects of BTZ used in combination with corticosteroids in a majority of patients with severe SLE manifestations irresponsive to conventional immunosuppressive agents. Reduction of proteinuria was observed over time as well as seroconversion of some autoantibody specificities. In most patients, tolerance was acceptable but mild adverse events was not uncommon. Special attention should be paid to infections and hypogammaglobinemia.
Collapse
Affiliation(s)
- Tomas Walhelm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Dag Leonard
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Estelle Trysberg
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Göteborg, Sweden
| | - Per Eriksson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden.,Department of Internal Medicine, Jönköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Zhang W, Feng J, Cinquina A, Wang Q, Xu H, Zhang Q, Sun L, Chen Q, Xu L, Pinz K, Wada M, Jiang X, Ma Y, Zhang H. Treatment of Systemic Lupus Erythematosus using BCMA-CD19 Compound CAR. Stem Cell Rev Rep 2021; 17:2120-2123. [PMID: 34458965 PMCID: PMC8599262 DOI: 10.1007/s12015-021-10251-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Andrew Cinquina
- Research & Development Division, iCell Gene Therapeutics LLC, Long Island High Technology Incubator, 25 Health Sciences Drive, Stony Brook, NY, 11790, USA
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Qian Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Lei Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Kevin Pinz
- Research & Development Division, iCell Gene Therapeutics LLC, Long Island High Technology Incubator, 25 Health Sciences Drive, Stony Brook, NY, 11790, USA
| | - Masayuki Wada
- Research & Development Division, iCell Gene Therapeutics LLC, Long Island High Technology Incubator, 25 Health Sciences Drive, Stony Brook, NY, 11790, USA
| | - Xun Jiang
- Research & Development Division, iCell Gene Therapeutics LLC, Long Island High Technology Incubator, 25 Health Sciences Drive, Stony Brook, NY, 11790, USA
| | - Yupo Ma
- Research & Development Division, iCell Gene Therapeutics LLC, Long Island High Technology Incubator, 25 Health Sciences Drive, Stony Brook, NY, 11790, USA.
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
44
|
Robinson S, Thomas R. Potential for Antigen-Specific Tolerizing Immunotherapy in Systematic Lupus Erythematosus. Front Immunol 2021; 12:654701. [PMID: 34335564 PMCID: PMC8322693 DOI: 10.3389/fimmu.2021.654701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic complex systemic autoimmune disease characterized by multiple autoantibodies and clinical manifestations, with the potential to affect nearly every organ. SLE treatments, including corticosteroids and immunosuppressive drugs, have greatly increased survival rates, but there is no curative therapy and SLE management is limited by drug complications and toxicities. There is an obvious clinical need for safe, effective SLE treatments. A promising treatment avenue is to restore immunological tolerance to reduce inflammatory clinical manifestations of SLE. Indeed, recent clinical trials of low-dose IL-2 supplementation in SLE patients showed that in vivo expansion of regulatory T cells (Treg cells) is associated with dramatic but transient improvement in SLE disease markers and clinical manifestations. However, the Treg cells that expanded were short-lived and unstable. Alternatively, antigen-specific tolerance (ASIT) approaches that establish long-lived immunological tolerance could be deployed in the context of SLE. In this review, we discuss the potential benefits and challenges of nanoparticle ASIT approaches to induce prolonged immunological tolerance in SLE.
Collapse
Affiliation(s)
- Sean Robinson
- School of Medicine, Faculty of Medicine and Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
45
|
Lansiaux P, Loisel S, Castilla-Llorente C, Fontenille C, Kabdani S, Marjanovic Z, Pugnet G, Puyade M, Robert E, Terriou L, Ait Abdallah N, Maria ATJ, Michel L, Tréton X, Yakoub-Agha I, Farge D. [Autologous hematopoietic cells for severe autoimmune diseases: Guidelines of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) for immune monitoring and biobanking]. Bull Cancer 2021; 108:S72-S81. [PMID: 34272057 DOI: 10.1016/j.bulcan.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Autologous hematopoietic cell transplantation (AHCT) is a new treatment option for patients with severe autoimmune diseases (AD), based on the use of intensive or myeloablative chemotherapy to eradicate the pathogenic autoreactive immune cells and to allow the installation of a new and tolerant immune system during immune reconstitution process. Immune reconstitution analysis after AHCT is required for patients clinical follow-up and to further identify biological and immunological markers of the clinical response to develop individualized AHCT protocols. These MATHEC-SFGM-TC good clinical practice guidelines were developed by a multidisciplinary group of experts including members of the french reference center for stem Cell Therapy in Auto-immune Diseases (MATHEC), hematologists from the French speaking Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) and experts in immune monitoring and biobanking. The objectives are to provide practical recommandations for immune monitoring and biobanking of samples in patients with AD undergoing AHCT, for routine care purposes and investigational studies.
Collapse
Affiliation(s)
- Pauline Lansiaux
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Séverine Loisel
- CHU de Rennes, établissement français du sang Bretagne, SITI, 35000 Rennes, France
| | - Cristina Castilla-Llorente
- Gustave-Roussy Cancer Center, département d'hématologie, 114, rue Edouard-Vaillant, 94800 Villejuif, France
| | - Claire Fontenille
- Institut Paoli-Calmettes, Association CRYOSTEM, 13009 Marseille, France
| | - Sarah Kabdani
- EFS HFNO site de Lille, unité de thérapie cellulaire, parc Eurasanté, 20, avenue Pierre-Mauroy, 59373 Loos, France
| | - Zora Marjanovic
- AP-HP, hôpital Saint-Antoine, service d'hématologie, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Grégory Pugnet
- CHU de Rangueil, service de médecine interne et immunologie clinique, 1, avenue du Professeur Jean-Poulhès, 31059 Toulouse cedex 9, France
| | - Mathieu Puyade
- CHU de Poitiers, service de médecine interne, 2, rue de la Miletrie, 86021 Poitiers, France; CHU de Poitiers, CIC-1402, 2, rue de la Miletrie, 86021 Poitiers, France
| | - Emilie Robert
- Institut Paoli-Calmettes, Association CRYOSTEM, 13009 Marseille, France
| | - Louis Terriou
- Hôpital Claude-Huriez, CHRU Lille, service de médecine interne et immunologie clinique, rue Michel-Polonovski, 59000 Lille, France
| | - Nassim Ait Abdallah
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Alexandre Thibault Jacques Maria
- CHRU de Montpellier, hôpital Saint-Éloi, médecine interne : maladies multi-organiques de l'adulte, Inserm U1183 IRMB, 34295 Montpellier cedex 5, France
| | - Laure Michel
- CHU de Rennes, seervice de neurologie, Rennes, France
| | - Xavier Tréton
- Hôpital Beaujon, université de Paris, service de gastro-entérologie, MICI et Assistance Nutritive, DMU DIGEST, 100, boulevard Leclerc, 92110 Clichy, France
| | | | - Dominique Farge
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France; McGill University, Department of Medicine, H3A 1A1, Montreal, Canada.
| |
Collapse
|
46
|
Burmester GR, Kalden JR, Rose T. [80 milestones in rheumatology from 80 years- III. 1980-2000]. Z Rheumatol 2021; 80:515-527. [PMID: 34236494 DOI: 10.1007/s00393-021-01037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Gerd-Rüdiger Burmester
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Joachim R Kalden
- Medizinische Klinik 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - Thomas Rose
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
47
|
Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol 2021; 17:399-414. [PMID: 34075251 DOI: 10.1038/s41582-021-00498-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence indicates the involvement of B cells in the pathogenesis of multiple sclerosis (MS), but their precise roles are unclear. In this Review, we provide an overview of the development and physiological functions of B cells and the main mechanisms through which B cells are thought to contribute to CNS autoimmunity. In MS, abnormalities of B cell function include pro-inflammatory cytokine production, defective B cell regulatory function and the formation of tertiary lymphoid-like structures in the CNS, which are the likely source of abnormal immunoglobulin production detectable in the cerebrospinal fluid. We also consider the hypothesis that Epstein-Barr virus (EBV) is involved in the B cell overactivation that leads to inflammatory injury to the CNS in MS. We also review the immunological effects - with a focus on the effects on B cell subsets - of several successful therapeutic approaches in MS, including agents that selectively deplete B cells (rituximab, ocrelizumab and ofatumumab), agents that less specifically deplete lymphocytes (alemtuzumab and cladribine) and autologous haematopoietic stem cell transplantation, in which the immune system is unselectively ablated and reconstituted. We consider the insights that these effects on B cell populations provide and their potential to further our understanding and targeting of B cells in MS.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Miriam Mattoscio
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.,Department of Neurology, University of Verona, Verona, Italy
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
48
|
Puyade M, Patel A, Lim YJ, Blank N, Badoglio M, Gualandi F, Ma DD, Maximova N, Greco R, Alexander T, Snowden JA. Autologous Hematopoietic Stem Cell Transplantation for Behçet's Disease: A Retrospective Survey of Patients Treated in Europe, on Behalf of the Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Front Immunol 2021; 12:638709. [PMID: 34025648 PMCID: PMC8136432 DOI: 10.3389/fimmu.2021.638709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Behçet’s Disease (BD) is an autoimmune disease mostly presenting with recurrent oral and genital aphthosis, and uveitis. Patients are rarely refractory to immunosuppressive treatments. Autologous hematopoietic stem cell transplantation (aHSCT) is a standard of care in other autoimmune diseases. Some patients with BD have been treated with aHSCT based on compassionate use. Objectives Evaluate the outcome of aHSCT in adult patients with BD treated in member centers of the European Society for Blood and Marrow Transplantation (EBMT). Methods Adults who received aHSCT primarily for BD were identified retrospectively in the EBMT registry and/or in published literature. Data were extracted from either medical records of the patient or from publications. Results Eight out of 9 cases reported to the registry and extracted data of 2 further patients from literature were analyzed. Four were female, median age at onset of BD was 24y (range 9-50). Median age at aHSCT was 32y (27-51). Patients had received median 4 (2-11) previous lines of therapy (89% corticosteroids, 50% methotrexate, anti-TNFα therapy or cyclophosphamide). All patients had active disease before mobilization. Conditioning regimen was heterogeneous. Median follow-up was 48 months (range 6-240). No treatment-related mortality was reported. This procedure induced complete remission (CR) in 80%, partial remission in 10% and lack of response in 10% of the patients. Relapse rate was 30% (2 relapses in patients in CR and 1 relapse in the patient in PR) with panuveitis (n=1), aphthosis (n=2) and arthralgia (n=1). Six patients were in CR. No late complications were reported. Conclusion aHSCT has an acceptable safety profile and represents a feasible and relatively effective procedure in severe and conventional treatment-resistant cases of BD and has the potential to stabilize BD in patients with life-threatening involvements.
Collapse
Affiliation(s)
- Mathieu Puyade
- CHU de Poitiers, Service de Médecine Interne et Maladies Infectieuses, Poitiers, France.,CHU de Poitiers, CIC-1402 Poitiers, France
| | - Amit Patel
- Haematology and Transplant Unit, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Yeong Jer Lim
- Haemato-Oncology Department, Clatterbridge Cancer Centre, University of Liverpool, Liverpool, United Kingdom
| | - Norbert Blank
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | | | - Francesca Gualandi
- U.O. Ematologia Centro Trapianti Midollo - Ospedale Policlinico San Martino, Genova, Italy
| | - David D Ma
- Department of Haematology and BM Transplantation, St Vincent's Hospital Sydney and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Natalia Maximova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - John A Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
49
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
50
|
Oliveira MC, Elias JB, Moraes DAD, Simões BP, Rodrigues M, Ribeiro AAF, Piron-Ruiz L, Ruiz MA, Hamerschlak N. A review of hematopoietic stem cell transplantation for autoimmune diseases: multiple sclerosis, systemic sclerosis and Crohn's disease. Position paper of the Brazilian Society of Bone Marrow Transplantation. Hematol Transfus Cell Ther 2021; 43:65-86. [PMID: 32418777 PMCID: PMC7910166 DOI: 10.1016/j.htct.2020.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are an important field for the development of bone marrow transplantation, or hematopoietic stem cell transplantation. In Europe alone, almost 3000 procedures have been registered so far. The Brazilian Society for Bone Marrow Transplantation (Sociedade Brasileira de Transplantes de Medula Óssea) organized consensus meetings for the Autoimmune Diseases Group, to review the available literature on hematopoietic stem cell transplantation for autoimmune diseases, aiming to gather data that support the procedure for these patients. Three autoimmune diseases for which there are evidence-based indications for hematopoietic stem cell transplantation are multiple sclerosis, systemic sclerosis and Crohn's disease. The professional stem cell transplant societies in America, Europe and Brazil (Sociedade Brasileira de Transplantes de Medula Óssea) currently consider hematopoietic stem cell transplantation as a therapeutic modality for these three autoimmune diseases. This article reviews the evidence available.
Collapse
Affiliation(s)
- Maria Carolina Oliveira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Juliana Bernardes Elias
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Belinda Pinto Simões
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | | | | | - Lilian Piron-Ruiz
- Associação Portuguesa de Beneficência de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Milton Arthur Ruiz
- Associação Portuguesa de Beneficência de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | | |
Collapse
|