1
|
Schurer A, Glushakow-Smith SG, Gritsman K. Targeting chromatin modifying complexes in acute myeloid leukemia. Stem Cells Transl Med 2025; 14:szae089. [PMID: 39607901 PMCID: PMC11878770 DOI: 10.1093/stcltm/szae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.
Collapse
Affiliation(s)
- Alexandra Schurer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Shira G Glushakow-Smith
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, United States
- Center for Tumor Dormancy, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461,United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
2
|
Yao Y, Simes ML, Ying W, Zhao Q, Winkler A, Shukla S, Gray F, Nikolaidis C, Hewett G, Grembecka J, Cierpicki T. Development of PRC1 Inhibitors Employing Fragment-Based Approach and NMR-Guided Optimization. J Med Chem 2025; 68:1382-1396. [PMID: 39746899 PMCID: PMC11969575 DOI: 10.1021/acs.jmedchem.4c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Polycomb Repressive Complex 1 (PRC1) is associated with transcriptional silencing, and its dysregulation plays an important role in various cancers. Well-characterized PRC1 inhibitors can facilitate the exploration of PRC1 inhibition as therapeutic agents. By employing an NMR-based fragment screening approach, we have previously identified a very weak millimolar ligand RB-1, which directly binds to RING1B-BMI1. Then, we reported a low-micromolar PRC1 inhibitor, RB-3, which is active in leukemic cells, showing inhibition of H2A ubiquitylation and modulation of target genes. Here, we describe details of the optimization campaign of RB-1 into potent PRC1 inhibitors by guiding the SAR employing two NMR approaches and a probe-based biochemical assay. These efforts, combined with medicinal chemistry optimization, resulted in the development of RB-3 and slightly improved RB-4. We have demonstrated that RB-4 binds to both RING1A and RING1B proteins and inhibits the activity of RING1B-BMI1 and RING1B-PCGF1, representing both canonical and noncanonical PRC1 complexes.
Collapse
Affiliation(s)
- Yiwu Yao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Miranda L Simes
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Weijiang Ying
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qingjie Zhao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caroline Nikolaidis
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geoff Hewett
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Su X, Hu B, Yi J, Zhao Q, Zhou Y, Zhu X, Wu D, Fan Y, Lin J, Cao C, Deng Z. Crosstalk between circBMI1 and miR-338-5p/ID4 inhibits acute myeloid leukemia progression. J Leukoc Biol 2024; 116:1080-1093. [PMID: 38864460 DOI: 10.1093/jleuko/qiae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
BMI1 polycomb ring finger proto-oncogene (BMI1) is involved in the pathogenesis of different cancers, including acute myeloid leukemia (AML). However, the role of the circular RNA of BMI1 (circBMI1) has not been studied. Our study aimed to investigate the role and mechanism of circBMI1 in AML. circBMI1 was significantly decreased in bone marrow mononuclear cells aspirated from patients with AML. Receiver operating characteristic curve analysis showed that circBMI1 could distinguish patients with AML from controls. By overexpressing and knocking down circBMI1 in HL-60 cells, we found that circBMI1 inhibited cell proliferation, promoted apoptosis, and increased chemotherapeutic drug sensitivity in AML. Experiments using severe combined immune-deficient mice and circBMI1 transgenic mice showed that mice with circBMI1 overexpression had lower white blood cell counts, which suggested less severe AML invasion. RNA immunoprecipitation and dual-luciferase reporter assay revealed binding sites among circBMI1, miR-338-5p, and inhibitor of DNA-binding protein 4 (ID4). Rescue experiments proved that circBMI1 inhibited AML progression by binding to miR-338-5p, which affected the expression of ID4. By coculturing exosomes extracted from circBMI1-HL-60 and small interfering circBMI1-HL-60 cells with HL-60 cells, we found that exosomes from circBMI1-HL-60 cells showed tumor-suppressive effects, namely inhibiting HL-60 proliferation, promoting apoptosis, and increasing chemotherapeutic drug sensitivity. Exosomes from small interfering circBMI1-HL-60 cells showed the opposite effects. circBMI1 may act as an exosome-dependent tumor inhibitor. circBMI1, a potential biomarker for clinical diagnosis, acts as a tumor suppressor in AML by regulating miR-338-5p/ID4 and might affect the pathogenesis of AML by exosome secretion.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Biwen Hu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Jing Yi
- Department of Respiratory and Critical Care Medicine, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Shaoxina, Zhejiang 312000, China
| | - Qian Zhao
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Yongqing Zhou
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Xin Zhu
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Delong Wu
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Yaohua Fan
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Jiang Lin
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Chenxi Cao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Zhaoqun Deng
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| |
Collapse
|
4
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
5
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 PMCID: PMC11936478 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
7
|
Moscatelli F, Monda A, Messina G, Picciocchi E, Monda M, Di Padova M, Monda V, Mezzogiorno A, Dipace A, Limone P, Messina A, Polito R. Exploring the Interplay between Bone Marrow Stem Cells and Obesity. Int J Mol Sci 2024; 25:2715. [PMID: 38473961 DOI: 10.3390/ijms25052715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.
Collapse
Affiliation(s)
- Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Antonietta Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Elisabetta Picciocchi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marilena Di Padova
- Department of Humanistic Studies, University of Foggia, 71100 Foggia, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples "Parthenope", 80138 Naples, Italy
| | - Antonio Mezzogiorno
- Department of Mental Health, Fisics and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
8
|
McGrath KE, Koniski AD, Murphy K, Getman M, An HH, Schulz VP, Kim AR, Zhang B, Schofield TL, Papoin J, Blanc L, Kingsley PD, Westhoff CM, Gallagher PG, Chou ST, Steiner LA, Palis J. BMI1 regulates human erythroid self-renewal through both gene repression and gene activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578704. [PMID: 38370741 PMCID: PMC10871261 DOI: 10.1101/2024.02.02.578704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The limited proliferative capacity of erythroid precursors is a major obstacle to generate sufficient numbers of in vitro-derived red blood cells (RBC) for clinical purposes. We and others have determined that BMI1, a member of the polycomb repressive complex 1 (PRC1), is both necessary and sufficient to drive extensive proliferation of self-renewing erythroblasts (SREs). However, the mechanisms of BMI1 action remain poorly understood. BMI1 overexpression led to 10 billion-fold increase BMI1-induced (i)SRE self-renewal. Despite prolonged culture and BMI1 overexpression, human iSREs can terminally mature and agglutinate with typing reagent monoclonal antibodies against conventional RBC antigens. BMI1 and RING1B occupancy, along with repressive histone marks, were identified at known BMI1 target genes, including the INK-ARF locus, consistent with an altered cell cycle following BMI1 inhibition. We also identified upregulated BMI1 target genes with low repressive histone modifications, including key regulator of cholesterol homeostasis. Functional studies suggest that both cholesterol import and synthesis are essential for BMI1-associated self-renewal. These findings support the hypothesis that BMI1 regulates erythroid self-renewal not only through gene repression but also through gene activation and offer a strategy to expand the pool of immature erythroid precursors for eventual clinical uses.
Collapse
Affiliation(s)
- Kathleen E. McGrath
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Anne D. Koniski
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Kristin Murphy
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Hyun Hyung An
- Dept. of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Ah Ram Kim
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Taylor L. Schofield
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Paul D. Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | | | - Patrick G. Gallagher
- Dept. of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Nationwide Children’s Hospital, Ohio State University, Columbus, OH, USA
| | - Stella T. Chou
- Dept. of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurie A. Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
9
|
Ma Z, Ye W, Huang X, Li X, Li F, Lin X, Hu C, Wang J, Jin J, Zhu B, Huang J. The ferroptosis landscape in acute myeloid leukemia. Aging (Albany NY) 2023; 15:13486-13503. [PMID: 38032290 DOI: 10.18632/aging.205257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Ferroptosis induction through the suppression of glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2 (AIFM2) has proven to be an effective approach in eliminating chemotherapy-resistant cells of various types. However, a comprehensive understanding of the roles of GPX4 and AIFM2 in acute myeloid leukemia (AML) has not yet been achieved. Using cBioPortal, DepMap, GEPIA, Metascape, and ONCOMINE, we compared the transcriptional expression, survival data, gene mutation, methylation, and network analyses of GPX4- and AIFM2-associated signaling pathways in AML. The results revealed that high expression levels of GPX4 and AIFM2 are associated with an adverse prognosis for AML patients. Overexpression of AIFM2 correlated with elevated mutation frequencies in NPM1 and DNMT3A. GPX4 upregulation modulated the following pathways: GO:0045333, cellular respiration; R-HSA-5389840, mitochondrial translation elongation; GO:0009060, aerobic respiration; R-HSA-9609507, protein localization; and R-HSA-8953854, metabolism of RNA. On the other hand, the overexpression of AIFM2 influenced the following processes: GO:0048704, embryonic skeletal system morphogenesis; GO:0021546, rhombomere development; GO:0009954, proximal/distal pattern formation; and GO:0048732, gland development. This study identifies the high expression of GPX4 and AIFM2 as novel biomarkers predicting a poor prognosis for AML patients. Furthermore, ferroptosis induction may improve the stratified treatment of AML.
Collapse
Affiliation(s)
- Zhixin Ma
- Clinical Prenatal Diagnosis Center, Key Laboratory of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjie Lin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Hu
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Zhu
- Clinical Prenatal Diagnosis Center, Key Laboratory of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Chai X, Tao Q, Li L. The role of RING finger proteins in chromatin remodeling and biological functions. Epigenomics 2023; 15:1053-1068. [PMID: 37964749 DOI: 10.2217/epi-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Mammalian DNA duplexes are highly condensed with different components, including histones, enabling chromatin formation. Chromatin remodeling is involved in multiple biological processes, including gene transcription regulation and DNA damage repair. Recent research has highlighted the significant involvement of really interesting new gene (RING) finger proteins in chromatin remodeling, primarily attributed to their E3 ubiquitin ligase activities. In this review, we highlight the pivotal role of RING finger proteins in chromatin remodeling and provide an overview of their capacity to ubiquitinate specific histones, modulate ATP-dependent chromatin remodeling complexes and interact with various histone post-translational modifications. We also discuss the diverse biological effects of RING finger protein-mediated chromatin remodeling and explore potential therapeutic strategies for targeting these proteins.
Collapse
Affiliation(s)
- Xiaoxue Chai
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
12
|
Lei Y, Shen HF, Li QW, Yang S, Xie HT, Li XF, Chen ML, Xia JW, Wang SC, Dai GQ, Zhou Y, Li YC, Huang SH, He DH, Zhou ZH, Cong JG, Lin XL, Lin TY, Wu AB, Xiao D, Xiao SJ, Zhang XK, Jia JS. Hairy gene homolog increases nasopharyngeal carcinoma cell stemness by upregulating Bmi-1. Aging (Albany NY) 2023; 15:204742. [PMID: 37219449 DOI: 10.18632/aging.204742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.
Collapse
Affiliation(s)
- Ye Lei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Hong-Fen Shen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi-Wen Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Ting Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu-Feng Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Mei-Ling Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Sheng-Chun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Guan-Qi Dai
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying-Chun Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-Hao Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan-Hua He
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Ge Cong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Tao-Yan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai-Bing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Xin-Ke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Shuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Akita N, Okada R, Mukae K, Sugino RP, Takenobu H, Chikaraishi K, Ochiai H, Yamaguchi Y, Ohira M, Koseki H, Kamijo T. Polycomb group protein BMI1 protects neuroblastoma cells against DNA damage-induced apoptotic cell death. Exp Cell Res 2023; 422:113412. [PMID: 36370852 DOI: 10.1016/j.yexcr.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
The overexpression of BMI1, a polycomb protein, correlates with cancer development and aggressiveness. We previously reported that MYCN-induced BMI1 positively regulated neuroblastoma (NB) cell proliferation via the transcriptional inhibition of tumor suppressors in NB cells. To assess the potential of BMI1 as a new target for NB therapy, we examined the effects of reductions in BMI1 on NB cells. BMI1 knockdown (KD) in NB cells significantly induced their differentiation for up to 7 days. BMI1 depletion significantly induced apoptotic NB cell death for up to 14 days along with the activation of p53, increases in p73, and induction of p53 family downstream molecules and pathways, even in p53 mutant cells. BMI1 depletion in vivo markedly suppressed NB xenograft tumor growth. BMI1 reductions activated ATM and increased γ-H2AX in NB cells. These DNA damage signals and apoptotic cell death were not canceled by the transduction of the polycomb group molecules EZH2 and RING1B. Furthermore, EZH2 and RING1B KD did not induce apoptotic NB cell death to the same extent as BMI1 KD. Collectively, these results suggest the potential of BMI1 as a target of molecular therapy for NB and confirmed, for the first time, the shared role of PcG proteins in the DNA damage response of NB cells.
Collapse
Affiliation(s)
- Nobuhiro Akita
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Japan; Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan; Department of Pediatrics, Chiba University School of Medicine, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Japan
| | - Ryu Okada
- Research Institute for Clinical Oncology, Saitama Cancer Center, Japan; Department of Graduate School of Science and Engineering, Saitama University, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, Japan
| | - Ryuichi P Sugino
- Research Institute for Clinical Oncology, Saitama Cancer Center, Japan
| | - Hisanori Takenobu
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Japan.
| | - Koji Chikaraishi
- Department of Pediatrics, Chiba University School of Medicine, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Japan
| | - Hidemasa Ochiai
- Department of Pediatrics, Chiba University School of Medicine, Japan
| | - Yohko Yamaguchi
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan; Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Japan
| | - Miki Ohira
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Japan
| | - Haruhiko Koseki
- Developmental Genetics Group, RIKEN Research Center for Allergy and Immunology, Japan
| | - Takehiko Kamijo
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Japan; Department of Graduate School of Science and Engineering, Saitama University, Japan.
| |
Collapse
|
14
|
Takano J, Ito S, Dong Y, Sharif J, Nakajima-Takagi Y, Umeyama T, Han YW, Isono K, Kondo T, Iizuka Y, Miyai T, Koseki Y, Ikegaya M, Sakihara M, Nakayama M, Ohara O, Hasegawa Y, Hashimoto K, Arner E, Klose RJ, Iwama A, Koseki H, Ikawa T. PCGF1-PRC1 links chromatin repression with DNA replication during hematopoietic cell lineage commitment. Nat Commun 2022; 13:7159. [PMID: 36443290 PMCID: PMC9705430 DOI: 10.1038/s41467-022-34856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Polycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs). This function of PCGF1-PRC1 in turn facilitates PRC2-mediated repression of target genes such as Hmga2 and restricts premature myeloid differentiation. PCGF1-PRC1, therefore, maintains the differentiation potential of HSPCs by linking proper nucleosome configuration at the replication fork with PcG-mediated gene silencing to ensure life-long hematopoiesis.
Collapse
Affiliation(s)
- Junichiro Takano
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.136304.30000 0004 0370 1101Department of Cellular and Molecular Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shinsuke Ito
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yixing Dong
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Jafar Sharif
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yaeko Nakajima-Takagi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taichi Umeyama
- grid.7597.c0000000094465255Laboratory for Microbiome Sciences, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Yong-Woon Han
- grid.7597.c0000000094465255Laboratory for Integrative Genomics, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Kyoichi Isono
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.412857.d0000 0004 1763 1087Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kondo
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yusuke Iizuka
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Tomohiro Miyai
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yoko Koseki
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Mika Ikegaya
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Mizuki Sakihara
- grid.143643.70000 0001 0660 6861Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Manabu Nakayama
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yoshinori Hasegawa
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kosuke Hashimoto
- grid.136593.b0000 0004 0373 3971Laboratory of Computational Biology, Institute for Protein Research, Osaka University Osaka, Japan ,grid.7597.c0000000094465255Laboratory for Transcriptome Technology, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Erik Arner
- grid.7597.c0000000094465255Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Robert J. Klose
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsushi Iwama
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Haruhiko Koseki
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.136304.30000 0004 0370 1101Department of Cellular and Molecular Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomokatsu Ikawa
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.143643.70000 0001 0660 6861Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
15
|
Rao GK, Makani VKK, Mendonza JJ, Edathara PM, Patel N, Ramakrishna M, Cilamkoti P, Chiring Phukon J, Jose J, Bhadra U, Bhadra MP. Downregulation of BORIS/CTCFL leads to ROS-dependent cellular senescence and drug sensitivity in MYCN-amplified neuroblastoma. FEBS J 2021; 289:2915-2934. [PMID: 34854238 DOI: 10.1111/febs.16309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
Brother of Regulator of Imprinted Sites (BORIS) or CCCTC-binding factor like (CTCFL) is a nucleotide-binding protein, aberrantly expressed in various malignancies. Expression of BORIS has been found to be associated with the expression of oncogenes which regulate the reactive oxygen species (ROS) biogenesis, DNA double-strand break repair, regulation of stemness, and induction of cellular senescence. In the present study, we have analyzed the effects of knockdown of BORIS, a potential oncogene, on the induction of senescence and tumor suppression. Loss of BORIS downregulated the expression of critical oncogenes such as BMI1, Akt, MYCN, and STAT3, whereas overexpression increased their respective expression levels in MYCN-amplified neuroblastoma cells. BORIS knockdown exhibited high levels of ROS biogenesis, indicating an upregulated mitochondrial superoxide production and thereby induction of senescence. Our study also showed that the loss of BORIS facilitated cellular senescence through the disruption of telomere integrity via altering the expression of various proteins required for telomere capping (POT1, TRF2, and TIN1). In addition to affecting ROS production and DNA damage, BORIS knockdown sensitized the cells toward chemotherapeutic drugs and induced apoptosis. Tumor induction studies on in vivo xenograft mouse models showed that cells with loss of BORIS/CTCFL failed to induce tumors. From our study, we conclude that silencing BORIS/CTCFL influences tumor growth and proliferation by regulating key oncogenes. The results also indicated that the BORIS knockdown can cause cellular senescence and upon a combinatorial treatment with chemotherapeutic drugs can induce enhanced drug sensitivity in MYCN-amplified neuroblastoma cells.
Collapse
Affiliation(s)
- Garikapati Koteswara Rao
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Venkata Krishna Kanth Makani
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Jolly Janette Mendonza
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | | | - Nibedita Patel
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Maresha Ramakrishna
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Priyanka Cilamkoti
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Jedy Jose
- Animal House Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
16
|
Chen X, Wang W, Li Y, Huo Y, Zhang H, Feng F, Xi W, Zhang T, Gao J, Yang F, Chen S, Yang A, Wang T. MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:341. [PMID: 34706761 PMCID: PMC8549173 DOI: 10.1186/s13046-021-02106-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023]
Abstract
Background Histone epigenetic modification disorder is an important predisposing factor for the occurrence and development of many cancers, including colorectal cancer (CRC). The role of MYSM1, a metalloprotease that deubiquitinates monoubiquitinated histone H2A, in colorectal cancer was identified to evaluate its potential clinical application value. Methods MYSM1 expression levels in CRC cell lines and tumor tissues were detected, and their associations with patient survival rate and clinical stage were analyzed using databases and tissue microarrays. Gain- and loss-of-function studies were performed to identify the roles of MYSM1 in CRC cell proliferation, apoptosis, cell cycle progression, epithelial-mesenchymal transition (EMT) and metastasis in vitro and in vivo. ChIP, rescue assays and signal pathway verification were conducted for mechanistic study. Immunohistochemistry (IHC) was used to further assess the relationship of MYSM1 with CRC diagnosis and prognosis. Results MYSM1 was significantly downregulated and was related to the overall survival (OS) of CRC patients. MYSM1 served as a CRC suppressor by inducing apoptosis and inhibiting cell proliferation, EMT, tumorigenic potential and metastasis. Mechanistically, MYSM1 directly bound to the promoter region of miR-200/CDH1, impaired the enrichment of repressive H2AK119ub1 modification and epigenetically enhanced miR-200/CDH1 expression. Testing of paired CRC patient samples confirmed the positive regulatory relationship between MYSM1 and miR-200/CDH1. Furthermore, silencing MYSM1 stimulated PI3K/AKT signaling and promoted EMT in CRC cells. More importantly, a positive association existed between MYSM1 expression and a favorable CRC prognosis. Conclusions MYSM1 plays essential suppressive roles in CRC tumorigenesis and is a potential target for reducing CRC progression and distant metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02106-2.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.,Air Force Health Care Center for Special Services, Hangzhou, Zhejiang, 310007, P.R. China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Yufang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.,Nuclear Medicine Diagnostic Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710032, P.R. China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Han Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Tianze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Jinjian Gao
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Siyi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.
| |
Collapse
|
17
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
18
|
Shukla S, Ying W, Gray F, Yao Y, Simes ML, Zhao Q, Miao H, Cho HJ, González-Alonso P, Winkler A, Lund G, Purohit T, Kim E, Zhang X, Ray JM, He S, Nikolaidis C, Ndoj J, Wang J, Jaremko Ł, Jaremko M, Ryan RJH, Guzman ML, Grembecka J, Cierpicki T. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nat Chem Biol 2021; 17:784-793. [PMID: 34155404 PMCID: PMC8238916 DOI: 10.1038/s41589-021-00815-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Polycomb repressive complex 1 (PRC1) is an essential chromatin-modifying complex that monoubiquitinates histone H2A and is involved in maintaining the repressed chromatin state. Emerging evidence suggests PRC1 activity in various cancers, rationalizing the need for small-molecule inhibitors with well-defined mechanisms of action. Here, we describe the development of compounds that directly bind to RING1B-BMI1, the heterodimeric complex constituting the E3 ligase activity of PRC1. These compounds block the association of RING1B-BMI1 with chromatin and inhibit H2A ubiquitination. Structural studies demonstrate that these inhibitors bind to RING1B by inducing the formation of a hydrophobic pocket in the RING domain. Our PRC1 inhibitor, RB-3, decreases the global level of H2A ubiquitination and induces differentiation in leukemia cell lines and primary acute myeloid leukemia (AML) samples. In summary, we demonstrate that targeting the PRC1 RING domain with small molecules is feasible, and RB-3 represents a valuable chemical tool to study PRC1 biology.
Collapse
Affiliation(s)
- Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Weijiang Ying
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yiwu Yao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Miranda L Simes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Qingjie Zhao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Alyssa Winkler
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - George Lund
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaotian Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua M Ray
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shihan He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Juliano Ndoj
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jingya Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- MedImmune, LLC, Gaithersburg, MD, USA
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Russell J H Ryan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Maat H, Atsma TJ, Hogeling SM, Rodríguez López A, Jaques J, Olthuis M, de Vries MP, Gravesteijn C, Brouwers-Vos AZ, van der Meer N, Datema S, Salzbrunn J, Huls G, Baas R, Martens JHA, van den Boom V, Schuringa JJ. The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia. iScience 2021; 24:102435. [PMID: 34113809 PMCID: PMC8169803 DOI: 10.1016/j.isci.2021.102435] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
In an attempt to unravel functionality of the non-canonical PRC1.1 Polycomb complex in human leukemogenesis, we show that USP7 and TRIM27 are integral components of PRC1.1. USP7 interactome analyses show that PRC1.1 is the predominant Polycomb complex co-precipitating with USP7. USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding, coinciding with reduced H2AK119ub and H3K27ac levels and diminished gene transcription of active PRC1.1-controlled loci, whereas H2AK119ub marks are also lost at PRC1 loci. TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1, and TRIM27 knockdown partially rescues USP7 inhibitor sensitivity. USP7 inhibitors effectively impair proliferation in AML cells in vitro, also independent of the USP7-MDM2-TP53 axis, and MLL-AF9-induced leukemia is delayed in vivo in human leukemia xenografts. We propose a model where USP7 counteracts TRIM27 E3 ligase activity, thereby maintaining PRC1.1 integrity and function. Moreover, USP7 inhibition may be a promising new strategy to treat AML patients. We identify USP7 and TRIM27 as integral components of non-canonical PRC1.1 USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1 USP7 inhibitors effectively impair AML proliferation, also independent of TP53
Collapse
Affiliation(s)
- Henny Maat
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tjerk Jan Atsma
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Shanna M Hogeling
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aida Rodríguez López
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jennifer Jaques
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Mirjam Olthuis
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marcel P de Vries
- Department of Pharmacy, Interfaculty Mass Spectrometry Center, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Chantal Gravesteijn
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Annet Z Brouwers-Vos
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha van der Meer
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Suzan Datema
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jonas Salzbrunn
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gerwin Huls
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Roy Baas
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
20
|
Lovat F, Gasparini P, Nigita G, Larkin K, Byrd JC, Minden MD, Andreeff M, Carter BZ, Croce CM. Loss of expression of both miR-15/16 loci in CML transition to blast crisis. Proc Natl Acad Sci U S A 2021; 118:e2101566118. [PMID: 33836616 PMCID: PMC7980455 DOI: 10.1073/pnas.2101566118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances that have improved the treatment of chronic myeloid leukemia (CML) patients in chronic phase, the mechanisms of the transition from chronic phase CML to blast crisis (BC) are not fully understood. Considering the key role of miR-15/16 loci in the pathogenesis of myeloid and lymphocytic leukemia, here we aimed to correlate the expression of miR-15a/16 and miR-15b/16 to progression of CML from chronic phase to BC. We analyzed the expression of the two miR-15/16 clusters in 17 CML patients in chronic phase and 22 patients in BC and in 11 paired chronic phase and BC CML patients. BC CMLs show a significant reduction of the expression of miR-15a/-15b/16 compared to CMLs in chronic phase. Moreover, BC CMLs showed an overexpression of miR-15/16 direct targets such as Bmi-1, ROR1, and Bcl-2 compared to CMLs in chronic phase. This study highlights the loss of both miR-15/16 clusters as a potential oncogenic driver in the transition from chronic phase to BC in CML patients.
Collapse
Affiliation(s)
- Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, 2308 NSW, Australia
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Karilyn Larkin
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
21
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
22
|
Liu S, Wu M, Lancelot M, Deng J, Gao Y, Roback JD, Chen T, Cheng L. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells. Mol Ther 2021; 29:1918-1932. [PMID: 33484967 PMCID: PMC8116606 DOI: 10.1016/j.ymthe.2021.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transfusion of red blood cells (RBCs) from ABO-matched but genetically unrelated donors is commonly used for treating anemia and acute blood loss. Increasing demand and insufficient supply for donor RBCs, especially those of universal blood types or free of known and unknown pathogens, has called for ex vivo generation of functional RBCs by large-scale cell culture. However, generating physiological numbers of transfusable cultured RBCs (cRBCs) ex vivo remains challenging, due to our inability to either extensively expand primary RBC precursors (erythroblasts) or achieve efficient enucleation once erythroblasts have been expanded and induced to differentiation and maturation. Here, we report that ectopic expression of the human BMI1 gene confers extensive expansion of human erythroblasts, which can be derived readily from adult peripheral blood mononuclear cells of either healthy donors or sickle cell patients. These extensively expanded erythroblasts (E3s) are able to proliferate exponentially (>1 trillion-fold in 2 months) in a defined culture medium. Expanded E3 cells are karyotypically normal and capable of terminal maturation with approximately 50% enucleation. Additionally, E3-derived cRBCs can circulate in a mouse model following transfusion similar to primary human RBCs. Therefore, we provide a facile approach of generating physiological numbers of human functional erythroblasts ex vivo.
Collapse
Affiliation(s)
- Senquan Liu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mengyao Wu
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Moira Lancelot
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiusheng Deng
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongxing Gao
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Tong Chen
- Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Linzhao Cheng
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
van Weele LJ, Scheeren FA, Cai S, Kuo AH, Qian D, Ho WHD, Clarke MF. Depletion of Trp53 and Cdkn2a Does Not Promote Self-Renewal in the Mammary Gland but Amplifies Proliferation Induced by TNF-α. Stem Cell Reports 2021; 16:228-236. [PMID: 33482103 PMCID: PMC7878826 DOI: 10.1016/j.stemcr.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/08/2022] Open
Abstract
The mammary epithelium undergoes several rounds of extensive proliferation during the female reproductive cycle. Its expansion is a tightly regulated process, fueled by the mammary stem cells and these cells' unique property of self-renewal. Sufficient new cells have to be produced to maintain the integrity of a tissue, but excessive proliferation resulting in tumorigenesis needs to be prevented. Three well-known tumor suppressors, p53, p16INK4a, and p19ARF, have been connected to the limiting of stem cell self-renewal and proliferation. Here we investigate the roles of these three proteins in the regulation of self-renewal and proliferation of mammary epithelial cells. Using mammary epithelial-specific mouse models targeting Trp53 and Cdkn2a, the gene coding for p16INK4a and p19ARF, we demonstrate that p53, p16INK4a, and p19ARF do not play a significant role in the limitation of normal mammary epithelium self-renewal and proliferation, whereas in the presence of the inflammatory cytokine TNF-α, Trp53−/−Cdkn2a−/− mammary basal cells exhibit amplified proliferation. p53, p16INK4a, and p19ARF do not limit self-renewal of mammary epithelial cells p53, p16INK4a, and p19ARF do not limit proliferation of mammary epithelial cells TNF-α stimulates mammary basal cell organoid formation and proliferation Trp53−/−Cdkn2a−/− organoids are sensitized to TNF-α-induced proliferation
Collapse
Affiliation(s)
- Linda J van Weele
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ferenc A Scheeren
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - William H D Ho
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA; Department of Stem Cell Biotechnology, California State University Channel Islands, Camarillo, CA, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Liu Q, Dong J, Li J, Duan Y, Wang K, Kong Q, Zhang H. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1. Clin Transl Oncol 2021; 23:1105-1116. [PMID: 33405050 DOI: 10.1007/s12094-020-02505-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) govern fundamental biochemical and cellular biology processes, for example, participate in chromatin remodeling, imprinting, splicing, transcriptional regulation and translation. Dysregulation of lncRNA expression is act as a feature of various diseases and cancers, including hematopoietic malignancies. However, the clinical relevance of myelodysplastic syndrome (MDS) and acute myeloid leukemia preceded by MDS (MDS-AML) requires further research. Recently, lncRNAs have been demonstrated, which play an important role in hematopoiesis, thus, to further finding more functional lncRNA seemed particularly important. METHODS Western blotting, real-time PCR, RNA-pulldown, RIP (RNA immunoprecipitation), Chromatin immunoprecipitation (ChIP), cellular compartments extraction assays, SA-β-gal staining, lentivirus transfection, cell viability assay and cell proliferation assays were used to examine the relationship between lncRNA LINC01255 and its regulation of p53-p21 pathway in human mesenchymal stromal and acute myeloid leukemia cells. RESULTS LncRNA LINC01255 is highly expressed in bone marrow cells of AML patients, CD34+ cells of MDS-AML patients and AML cell lines and the higher expression of LINC01255 is associated with poor survival rate of AML patients. LINC01255 can interact with BMI1 and repress the transcription of MCP-1 to active p53-p21 pathway, thus inhibiting the senescence of human mesenchymal stromal and proliferation of acute myeloid leukemia cell. CONCLUSIONS We discovered a novel functional lncRNA LINC01255, which can regulate the senescence of human mesenchymal stromal and the proliferation of acute myeloid leukemia cell through inhibiting the transcription of MCP-1.
Collapse
Affiliation(s)
- Q Liu
- Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - J Dong
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - J Li
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Y Duan
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - K Wang
- Research Service Office, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Q Kong
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - H Zhang
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| |
Collapse
|
25
|
Reduced SLIT2 is Associated with Increased Cell Proliferation and Arsenic Trioxide Resistance in Acute Promyelocytic Leukemia. Cancers (Basel) 2020; 12:cancers12113134. [PMID: 33120864 PMCID: PMC7693375 DOI: 10.3390/cancers12113134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary In solid tumors, the altered expression of embryonic genes such as the SLIT-ROBO family has been associated with poor prognosis, while little is known about their role in acute myeloid leukemia (AML). Previous studies reported frequent hypermethylation of SLIT2 mediated by the methyltransferase enzyme EZH2 and more recently the PML protein, which are commonly found to be aberrantly expressed in AML. Here, we aim to assess retrospectively the clinical relevance of the SLIT2 gene in acute promyelocytic leukemia, a homogenous subtype of AML. We demonstrated that reduced SLIT2 expression was associated with high leukocyte counts and reduced overall survival in different APL cohorts. STLI2 treatment decreased APL growth, while SLIT2 knockdown accelerated cell cycle progression and proliferation. Finally, reduced expression of SLIT2 in murine APL blasts resulted in fatal leukemia associated with increased leukocyte counts in vivo. These findings demonstrate that SLIT2 can be considered as a prognostic marker in APL, and a potential candidate for clinical studies of a more heterogeneous disease, such as AML. Abstract The SLIT-ROBO axis plays an important role in normal stem-cell biology, with possible repercussions on cancer stem cell emergence. Although the Promyelocytic Leukemia (PML) protein can regulate SLIT2 expression in the central nervous system, little is known about SLIT2 in acute promyelocytic leukemia. Hence, we aimed to investigate the levels of SLIT2 in acute promyelocytic leukemia (APL) and assess its biological activity in vitro and in vivo. Our analysis indicated that blasts with SLIT2high transcript levels were associated with cell cycle arrest, while SLIT2low APL blasts displayed a more stem-cell like phenotype. In a retrospective analysis using a cohort of patients treated with all-trans retinoic acid (ATRA) and anthracyclines, high SLIT2 expression was correlated with reduced leukocyte count (p = 0.024), and independently associated with improved overall survival (hazard ratio: 0.94; 95% confidence interval: 0.92–0.97; p < 0.001). Functionally, SLIT2-knockdown in primary APL blasts and cell lines led to increased cell proliferation and resistance to arsenic trioxide induced apoptosis. Finally, in vivo transplant of Slit2-silenced primary APL blasts promoted increased leukocyte count (p = 0.001) and decreased overall survival (p = 0.002) compared with the control. In summary, our data highlight the tumor suppressive function of SLIT2 in APL and its deteriorating effects on disease progression when downregulated.
Collapse
|
26
|
Hsp70/Bmi1-FoxO1-SOD Signaling Pathway Contributes to the Protective Effect of Sound Conditioning against Acute Acoustic Trauma in a Rat Model. Neural Plast 2020; 2020:8823785. [PMID: 33082778 PMCID: PMC7556106 DOI: 10.1155/2020/8823785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sound conditioning (SC) is defined as “toughening” to lower levels of sound over time, which reduces a subsequent noise-induced threshold shift. Although the protective effect of SC in mammals is generally understood, the exact mechanisms involved have not yet been elucidated. To confirm the protective effect of SC against noise exposure (NE) and the stress-related signaling pathway of its rescue, we observed target molecule changes caused by SC of low frequency prior to NE as well as histology analysis in vivo and verified the suggested mechanisms in SGNs in vitro. Further, we investigated the potential role of Hsp70 and Bmi1 in SC by targeting SOD1 and SOD2 which are regulated by the FoxO1 signaling pathway based on mitochondrial function and reactive oxygen species (ROS) levels. Finally, we sought to identify the possible molecular mechanisms associated with the beneficial effects of SC against noise-induced trauma. Data from the rat model were evaluated by western blot, immunofluorescence, and RT-PCR. The results revealed that SC upregulated Hsp70, Bmi1, FoxO1, SOD1, and SOD2 expression in spiral ganglion neurons (SGNs). Moreover, the auditory brainstem responses (ABRs) and electron microscopy revealed that SC could protect against acute acoustic trauma (AAT) based on a significant reduction of hearing impairment and visible reduction in outer hair cell loss as well as ultrastructural changes in OHCs and SGNs. Collectively, these results suggested that the contribution of Bmi1 toward decreased sensitivity to noise-induced trauma following SC was triggered by Hsp70 induction and associated with enhancement of the antioxidant system and decreased mitochondrial superoxide accumulation. This contribution of Bmi1 was achieved by direct targeting of SOD1 and SOD2, which was regulated by FoxO1. Therefore, the Hsp70/Bmi1-FoxO1-SOD signaling pathway might contribute to the protective effect of SC against AAT in a rat model.
Collapse
|
27
|
Ikonomi N, Kühlwein SD, Schwab JD, Kestler HA. Awakening the HSC: Dynamic Modeling of HSC Maintenance Unravels Regulation of the TP53 Pathway and Quiescence. Front Physiol 2020; 11:848. [PMID: 32848827 PMCID: PMC7411231 DOI: 10.3389/fphys.2020.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide all types of blood cells during the entire life of the organism. HSCs are mainly quiescent and can eventually enter the cell cycle to differentiate. HSCs are maintained and tightly regulated in a particular environment. The stem cell niche regulates dormancy and awakening. Deregulations of this interplay can lead to hematopoietic failure and diseases. In this paper, we present a Boolean network model that recapitulates HSC regulation in virtue of external signals coming from the niche. This Boolean network integrates and summarizes the current knowledge of HSC regulation and is based on extensive literature research. Furthermore, dynamic simulations suggest a novel systemic regulation of TP53 in homeostasis. Thereby, our model indicates that TP53 activity is balanced depending on external stimulations, engaging a regulatory mechanism involving ROS regulators and RAS activated transcription factors. Finally, we investigated different mouse models and compared them to in silico knockout simulations. Here, the model could recapitulate in vivo observed behaviors and thus sustains our results.
Collapse
Affiliation(s)
- Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Kushwaha AC, Mohanbhai SJ, Sardoiwala MN, Sood A, Karmakar S, Roy Choudhury S. Epigenetic Regulation of Bmi1 by Ubiquitination and Proteasomal Degradation Inhibit Bcl-2 in Acute Myeloid Leukemia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25633-25644. [PMID: 32453568 DOI: 10.1021/acsami.0c06186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bmi1 is associated with advanced prognosis of acute myeloid leukemia (AML), and polyethylenimine (PEI)-stabilized Bmi1 siRNA-entrapped human serum albumin (HSA) nanocarriers (PEI@HSANCs) were used to protect siRNA from degradation and also to control epigenetic regulation-based AML therapy. The nanoform increased the transfection efficiency of Bmi1 siRNA through caveolae-mediated endocytosis and enhanced Bax translocation into the mitochondria. It enhanced the caspase 3-mediated apoptosis through the Bax activation and Bcl-2 inhibition. The molecular analysis reveals the downregulation of polycomb proteins, Bmi1 and EzH2, along with inhibition of H3K27me3 and H2AK119ub1. The signaling cascade revealed downregulation of Bmi1 through ubiquitin-mediated degradation and is reversed by a proteasome inhibitor. Further mechanistic studies established a crucial role of transcription factor, C-Myb and Bmi1, as its direct targets for maintenance and progression of AML. Chromatin immunoprecipitation (ChIP) assay confirmed Bmi1 as a direct target of C-Myb as it binds to promoter sequence of Bmi1 between -235 to +43 and -111 to +43. The in vivo studies performed in the AML xenograft model evidence a decrease in the population of leukemic stem cells marker (CD45+) and an increase in the myeloid differentiating marker expression (CD11b+) in the bone marrow after the Bmi1 siRNA nanoconjugated therapy. Activation of apoptotic pathways and withdrawal of epigenetic repression through a ubiquitin proteasomal pathway potentiating a novel antileukemic therapy were established.
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ankur Sood
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
29
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
30
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
31
|
Abstract
Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.
Collapse
Affiliation(s)
- Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Peter McCarthy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
32
|
Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol 2019; 7:207. [PMID: 31681756 PMCID: PMC6797914 DOI: 10.3389/fcell.2019.00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, our molecular understanding of acute myeloid leukemia (AML) pathogenesis dramatically increased, thanks also to the advent of next-generation sequencing (NGS) technologies. Many of these findings, however, have not yet translated into new prognostic markers or rationales for treatments. We now know that AML is a highly heterogeneous disease characterized by a very low mutational burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators, which shape and define leukemic cell identity. In the light of these discoveries and given the increasing number of drugs targeting epigenetic regulators in clinical development and testing, great interest is emerging for the use of small molecules targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic properties, such as proliferation and survival, epigenetic drugs may affect the way leukemic cells communicate with the surrounding components of the tumor and immune microenvironment. Here, we review current knowledge on alterations in the AML epigenetic landscape and discuss the promises of epigenetic therapies for AML treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic rewiring in cancer cells may as well exert immune-modulatory functions, boost the immune system, and potentially contribute to better patient outcomes.
Collapse
Affiliation(s)
- Valentina Gambacorta
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Milan, Italy
| | - Daniela Gnani
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Buisman SC, de Haan G. Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies. Cells 2019; 8:E868. [PMID: 31405121 PMCID: PMC6721661 DOI: 10.3390/cells8080868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with multiple molecular and functional changes in haematopoietic cells. Most notably, the self-renewal and differentiation potential of hematopoietic stem cells (HSCs) are compromised, resulting in myeloid skewing, reduced output of red blood cells and decreased generation of immune cells. These changes result in anaemia, increased susceptibility for infections and higher prevalence of haematopoietic malignancies. In HSCs, age-associated global epigenetic changes have been identified. These epigenetic alterations in aged HSCs can occur randomly (epigenetic drift) or are the result of somatic mutations in genes encoding for epigenetic proteins. Mutations in loci that encode epigenetic modifiers occur frequently in patients with haematological malignancies, but also in healthy elderly individuals at risk to develop these. It may be possible to pharmacologically intervene in the aberrant epigenetic program of derailed HSCs to enforce normal haematopoiesis or treat age-related haematopoietic diseases. Over the past decade our molecular understanding of epigenetic regulation has rapidly increased and drugs targeting epigenetic modifications are increasingly part of treatment protocols. The reversibility of epigenetic modifications renders these targets for novel therapeutics. In this review we provide an overview of epigenetic changes that occur in aging HSCs and age-related malignancies and discuss related epigenetic drugs.
Collapse
Affiliation(s)
- Sonja C Buisman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands.
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| |
Collapse
|
34
|
Bugler J, Kinstrie R, Scott MT, Vetrie D. Epigenetic Reprogramming and Emerging Epigenetic Therapies in CML. Front Cell Dev Biol 2019; 7:136. [PMID: 31380371 PMCID: PMC6652210 DOI: 10.3389/fcell.2019.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder characterized by BCR-ABL1, an oncogenic fusion gene arising from the Philadelphia chromosome. The development of tyrosine kinase inhibitors (TKIs) to overcome the constitutive tyrosine kinase activity of the BCR-ABL protein has dramatically improved disease management and patient outcomes over the past 20 years. However, the majority of patients are not cured and developing novel therapeutic strategies that target epigenetic processes are a promising avenue to improve cure rates. A number of epigenetic mechanisms are altered or reprogrammed during the development and progression of CML, resulting in alterations in histone modifications, DNA methylation and dysregulation of the transcriptional machinery. In this review these epigenetic alterations are examined and the potential of epigenetic therapies are discussed as a means of eradicating residual disease and offering a potential cure for CML in combination with current therapies.
Collapse
Affiliation(s)
| | | | | | - David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Azkanaz M, Rodríguez López A, de Boer B, Huiting W, Angrand PO, Vellenga E, Kampinga HH, Bergink S, Martens JH, Schuringa JJ, van den Boom V. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. eLife 2019; 8:45205. [PMID: 31199242 PMCID: PMC6570483 DOI: 10.7554/elife.45205] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus. In parallel, binding of PRC1/2 to target genes is strongly reduced, coinciding with a dramatic loss of H2AK119ub and H3K27me3 marks. Nucleolar-accumulated CBX proteins are immobile, but remarkably both CBX protein accumulation and loss of PRC1/2 epigenetic marks are reversible. This post-heat shock recovery of pan-nuclear CBX protein localization and reinstallation of epigenetic marks is HSP70 dependent. Our findings demonstrate that the nucleolus is an essential protein quality control center, which is indispensable for recovery of epigenetic regulators and maintenance of the epigenome after heat shock.
Collapse
Affiliation(s)
- Maria Azkanaz
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aida Rodríguez López
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bauke de Boer
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joost Ha Martens
- Department of Molecular Biology, Faculty of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Lu Z, Hong CC, Kong G, Assumpção ALFV, Ong IM, Bresnick EH, Zhang J, Pan X. Polycomb Group Protein YY1 Is an Essential Regulator of Hematopoietic Stem Cell Quiescence. Cell Rep 2019; 22:1545-1559. [PMID: 29425509 PMCID: PMC6140794 DOI: 10.1016/j.celrep.2018.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023] Open
Abstract
Yin yang 1 (YY1) is a ubiquitous transcription factor and mammalian polycomb group protein (PcG) with important functions to regulate embryonic development, lineage differentiation, and cell proliferation. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that catalyze histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in hematopoietic stem cells (HSCs) decreases long-term repopulating activity and ectopic YY1 expression expands HSCs. Although the YY1 PcG domain is required for Igk chain rearrangement in B cells, the YY1 mutant lacking the PcG domain retained the capacity to stimulate HSC self-renewal. YY1 deficiency deregulated the genetic network governing HSC cell proliferation and impaired stem cell factor/c-Kit signaling, disrupting mechanisms conferring HSC quiescence. These results reveal a mechanism for how a ubiquitously expressed transcriptional repressor mediates lineage-specific functions to control adult hematopoiesis. Lu et al. investigate the function of the polycomb group (PcG) protein YY1 in hematopoietic stem cells. Independent of its REPO domain/PcG function, YY1 promotes hematopoietic stem cell selfrenewal and quiescence, suggesting that REPO domain/PcG function is not utilized in all contexts within the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Courtney C Hong
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Guangyao Kong
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PRC; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Anna L F V Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Jeusset LMP, McManus KJ. Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells 2019; 8:cells8020165. [PMID: 30781493 PMCID: PMC6406838 DOI: 10.3390/cells8020165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Histone ubiquitination is a critical epigenetic mechanism regulating DNA-driven processes such as gene transcription and DNA damage repair. Importantly, the cellular machinery regulating histone ubiquitination is frequently altered in cancers. Moreover, aberrant histone ubiquitination can drive oncogenesis by altering the expression of tumor suppressors and oncogenes, misregulating cellular differentiation and promoting cancer cell proliferation. Thus, targeting aberrant histone ubiquitination may be a viable strategy to reprogram transcription in cancer cells, in order to halt cellular proliferation and induce cell death, which is the basis for the ongoing development of therapies targeting histone ubiquitination. In this review, we present the normal functions of histone H2A and H2B ubiquitination and describe the role aberrant histone ubiquitination has in oncogenesis. We also describe the key benefits and challenges associated with current histone ubiquitination targeting strategies. As these strategies are predicted to have off-target effects, we discuss additional efforts aimed at developing synthetic lethal strategies and epigenome editing tools, which may prove pivotal in achieving effective and selective therapies targeting histone ubiquitination, and ultimately improving the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
38
|
de Smith AJ, Walsh KM, Francis SS, Zhang C, Hansen HM, Smirnov I, Morimoto L, Whitehead TP, Kang A, Shao X, Barcellos LF, McKean-Cowdin R, Zhang L, Fu C, Wang R, Yu H, Hoh J, Dewan AT, Metayer C, Ma X, Wiemels JL. BMI1 enhancer polymorphism underlies chromosome 10p12.31 association with childhood acute lymphoblastic leukemia. Int J Cancer 2018; 143:2647-2658. [PMID: 29923177 PMCID: PMC6235695 DOI: 10.1002/ijc.31622] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies of childhood acute lymphoblastic leukemia (ALL) have identified regions of association at PIP4K2A and upstream of BMI1 at chromosome 10p12.31-12.2. The contribution of both loci to ALL risk and underlying functional variants remain to be elucidated. We carried out single nucleotide polymorphism (SNP) imputation across chromosome 10p12.31-12.2 in Latino and non-Latino white ALL cases and controls from two independent California childhood leukemia studies, and additional Genetic Epidemiology Research on Aging study controls. Ethnicity-stratified association analyses were performed using logistic regression, with meta-analysis including 3,133 cases (1,949 Latino, 1,184 non-Latino white) and 12,135 controls (8,584 Latino, 3,551 non-Latino white). SNP associations were identified at both BMI1 and PIP4K2A. After adjusting for the lead PIP4K2A SNP, genome-wide significant associations remained at BMI1, and vice-versa (pmeta < 10-10 ), supporting independent effects. Lead SNPs differed by ethnicity at both peaks. We sought functional variants in tight linkage disequilibrium with both the lead Latino SNP among Admixed Americans and lead non-Latino white SNP among Europeans. This pinpointed rs11591377 (pmeta = 2.1 x 10-10 ) upstream of BMI1, residing within a hematopoietic stem cell enhancer of BMI1, and which showed significant preferential binding of the risk allele to MYBL2 (p = 1.73 x 10-5 ) and p300 (p = 1.55 x 10-3 ) transcription factors using binomial tests on ChIP-Seq data from a SNP heterozygote. At PIP4K2A, we identified rs4748812 (pmeta = 1.3 x 10-15 ), which alters a RUNX1 binding motif and demonstrated chromosomal looping to the PIP4K2A promoter. Fine-mapping chromosome 10p12 in a multi-ethnic ALL GWAS confirmed independent associations and identified putative functional variants upstream of BMI1 and at PIP4K2A.
Collapse
Affiliation(s)
- Adam J. de Smith
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA 90033
| | - Kyle M. Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Department of Neurosurgery, Duke University, Durham, NC 27710
| | - Stephen S. Francis
- Department of Epidemiology, School of Community Health Sciences, University of Nevada Reno, Reno, NV 89557
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| | - Helen M. Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Todd P. Whitehead
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Alice Kang
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Xiaorong Shao
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Lisa F. Barcellos
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Roberta McKean-Cowdin
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA 90033
| | - Luoping Zhang
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Cecilia Fu
- Children’s Hospital of Los Angeles, Los Angeles, CA 90027
| | - Rong Wang
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, HI 96813
| | - Josephine Hoh
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Andrew T. Dewan
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Xiaomei Ma
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Joseph L. Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA 90033
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
39
|
Di Carlo V, Mocavini I, Di Croce L. Polycomb complexes in normal and malignant hematopoiesis. J Cell Biol 2018; 218:55-69. [PMID: 30341152 PMCID: PMC6314559 DOI: 10.1083/jcb.201808028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Di Carlo et al. discuss how the regulation/dysregulation of Polycomb group proteins contributes to hematopoiesis and hematological disorders. Epigenetic mechanisms are crucial for sustaining cell type–specific transcription programs. Among the distinct factors, Polycomb group (PcG) proteins are major negative regulators of gene expression in mammals. These proteins play key roles in regulating the proliferation, self-renewal, and differentiation of stem cells. During hematopoietic differentiation, many PcG proteins are fundamental for proper lineage commitment, as highlighted by the fact that a lack of distinct PcG proteins results in embryonic lethality accompanied by differentiation biases. Correspondingly, proteins of these complexes are frequently dysregulated in hematological diseases. In this review, we present an overview of the role of PcG proteins in normal and malignant hematopoiesis, focusing on the compositional complexity of PcG complexes, and we briefly discuss the ongoing clinical trials for drugs targeting these factors.
Collapse
Affiliation(s)
- Valerio Di Carlo
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
40
|
BMI1 Roles in Cancer Stem Cells and Its Association with MicroRNAs Dysregulation in Cancer: Emphasis on Colorectal Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.82926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies. J Biomed Sci 2018; 25:37. [PMID: 29685144 PMCID: PMC5913878 DOI: 10.1186/s12929-018-0440-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-mesenchymal transition is an important process in embryonic development, fibrosis, and cancer metastasis. During the progression of epithelial cancer, activation of epithelial-mesenchymal transition is tightly associated with metastasis, stemness and drug resistance. However, the role of epithelial-mesenchymal transition in non-epithelial cancer is relatively unclear. Main body Epithelial-mesenchymal transition transcription factors are critical in both myeloid and lymphoid development. Growing evidence indicates their roles in cancer cells to promote leukemia and lymphoma progression. The expression of epithelial-mesenchymal transition transcription factors can cause the differentiation of indolent type to the aggressive type of lymphoma. Their up-regulation confers cancer cells resistant to chemotherapy, tyrosine kinase inhibitors, and radiotherapy. Conversely, the down-regulation of epithelial-mesenchymal transition transcription factors, monoclonal antibodies, induce lymphoma cells apoptosis. Conclusions Epithelial-mesenchymal transition transcription factors are potentially important prognostic or predictive factors and treatment targets for leukemia and lymphoma.
Collapse
Affiliation(s)
- San-Chi Chen
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsai-Tsen Liao
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
42
|
Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells. Oncotarget 2018; 8:43782-43798. [PMID: 28187462 PMCID: PMC5546440 DOI: 10.18632/oncotarget.15156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/17/2017] [Indexed: 01/24/2023] Open
Abstract
Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery. Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes.
Collapse
|
43
|
Kowolik CM, Lin M, Xie J, Overman LE, Horne DA. NT1721, a novel epidithiodiketopiperazine, exhibits potent in vitro and in vivo efficacy against acute myeloid leukemia. Oncotarget 2018; 7:86186-86197. [PMID: 27863389 PMCID: PMC5349906 DOI: 10.18632/oncotarget.13364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by heterogeneous genetic and epigenetic changes in hematopoietic progenitors that lead to abnormal self-renewal and proliferation. Despite high initial remission rates, prognosis remains poor for most AML patients, especially for those harboring internal tandem duplication (ITD) mutations in the fms-related tyrosine kinase-3 (FLT3). Here, we report that a novel epidithiodiketopiperazine, NT1721, potently decreased the cell viability of FLT3-ITD+ AML cell lines, displaying IC50 values in the low nanomolar range, while leaving normal CD34+ bone marrow cells largely unaffected. The IC50 values for NT1721 were significantly lower than those for clinically used AML drugs (i.e. cytarabine, sorafenib) in all tested AML cell lines regardless of their FLT3 mutation status. Moreover, combinations of NT1721 with sorafenib or cytarabine showed better antileukemic effects than the single agents in vitro. Combining cytarabine with NT1721 also attenuated the cytarabine-induced FLT3 ligand surge that has been linked to resistance to tyrosine kinase inhibitors. Mechanistically, NT1721 depleted DNA methyltransferase 1 (DNMT1) protein levels, leading to the re-expression of silenced tumor suppressor genes and apoptosis induction. NT1721 concomitantly decreased the expression of EZH2 and BMI1, two genes that are associated with the maintenance of leukemic stem/progenitor cells. In a systemic FLT3-ITD+ AML mouse model, treatment with NT1721 reduced tumor burdens by > 95% compared to the control and significantly increased survival times. Taken together, our results suggest that NT1721 may represent a promising novel agent for the treatment of AML.
Collapse
Affiliation(s)
- Claudia M Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - David A Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
44
|
Duan Q, Zhao H, Zhang Z, Li H, Wu H, Shen Q, Wang C, Yin T. Mechanistic Evaluation and Translational Signature of Gemcitabine-induced Chemoresistance by Quantitative Phosphoproteomics Analysis with iTRAQ Labeling Mass Spectrometry. Sci Rep 2017; 7:12891. [PMID: 29018223 PMCID: PMC5634998 DOI: 10.1038/s41598-017-13330-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
One of the main causations of the poor prognosis of pancreatic cancer is the lack of effective chemotherapies. Gemcitabine is a widely used chemotherapeutic drug, but limited therapeutic efficacy is achieved due to chemoresistance. Recent studies demonstrated that the presence of cancer stem cells may lead to the failure of chemotherapy. Moreover, gemcitabine can promote the stemness of pancreatic cancer cells. We detected the alterations in protein phosphorylation and signaling pathways in pancreatic cancer cells after gemcitabine treatment using iTRAQ labeling LC-MS/MS, because it was featured with the advantages of strong separation ability and analysis range. A total of 232 differentially expressed phosphorylated proteins were identified in this study. Gene Ontology analysis revealed that nuclear lumen, nuclear part and organelle lumen were enriched for cell components and protein binding, poly (A) RNA binding and RNA binding were enriched for molecular function. A variety of signaling pathways were enriched based on KEGG analysis. AMPK, mTOR and PI3K/Akt pathways were verified after gemcitabine exposure. Moreover, we found there were complex interactions of phosphorylated proteins in modulating cancer stemness induced by gemcitabine exposure based on PPIs map. Our experiments may identify potential targets and strategies for sensitizing pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
45
|
Tagde A, Markert T, Rajabi H, Hiraki M, Alam M, Bouillez A, Avigan D, Anderson K, Kufe D. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget 2017; 8:69237-69249. [PMID: 29050200 PMCID: PMC5642475 DOI: 10.18632/oncotarget.20144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/31/2022] Open
Abstract
The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM. These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.
Collapse
Affiliation(s)
- Ashujit Tagde
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tahireh Markert
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maroof Alam
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Audrey Bouillez
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Avigan
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kenneth Anderson
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Jetly S, Verma N, Naidu K, Faiq MA, Seth T, Saluja D. Alterations in the Reactive Oxygen Species in Peripheral Blood of Chronic Myeloid Leukaemia Patients from Northern India. J Clin Diagn Res 2017; 11:XC01-XC05. [PMID: 28969255 PMCID: PMC5620896 DOI: 10.7860/jcdr/2017/28565.10425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION There is a significant difference in the Reactive Oxygen Species (ROS) levels of Chronic Myeloid Leukaemia (CML) patients before and during treatment with Tyrosine Kinase Inhibitors (TKIs). This is because high ROS levels support oncogenic phenotype of CML by inducing proliferation pathway and accumulation of further genetic mutations. Often the measurement is done on WBC or serum for ascertaining one type of ROS species, but measurement of global ROS in fresh whole blood will give more accurate estimation of ROS. AIM To measure global ROS in peripheral blood of CML patients. MATERIALS AND METHODS A case control study was undertaken to measure ROS in peripheral blood of CML patients from Northern India. CML patients on TKIs (n=40 on imatinib herein called treated) and untreated (n=17, who were not on any TKIs or alternative medicine, called as treatment naive) and 52 healthy controls were also enrolled. Chemiluminescent assay was carried out using luminol as signal enhancer in 400 µl of blood to measure ROS. The chemiluminescence was measured as Relative Light Units (RLU)/sec/104 WBC. Data was presented in terms of mean±SE or geometric mean (95% Confidence Interval) for continuous variables and percentage for categorical variables. Groups were compared using two sample t-test for continuous variables and chi-square test for categorical variables. RESULTS The WBC profile and ROS levels of patients taking TKIs were quite similar and showed no significant difference (p<0.999) compared to healthy controls. In contrast, significant increase was observed in the ROS levels of CML patients not on TKIs (untreated) compared to patients under treatment (p<0.029) and healthy controls (p<0.007). We also observed that the absolute ROS values and WBC counts were higher in untreated patients compared to patients on TKIs and healthy controls, even though mean ROS value was less. CONCLUSION To ascertain the alterations in ROS levels of CML patients before and during treatment with TKIs, it is better to measure global ROS in fresh whole blood by chemiluminescent method using luminol. Luminol assay is a quick, easy and inexpensive method to measure global ROS. Patient under treatment with TKIs show significant decrease in ROS levels almost similar to the levels measured in healthy controls yet the mechanisms by which this decrease occurs needs to be elucidated.
Collapse
Affiliation(s)
- Sunita Jetly
- Associate Professor, Department of Biotechnology, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Neha Verma
- Project Fellow, Department of Biotechnology, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Kumar Naidu
- Statistician, Clinical Research and Development Department, IPCA Laboratories Ltd, Mumbai, India
| | - Muneeb Ahmad Faiq
- Research Fellow, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tulika Seth
- Professor, Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Daman Saluja
- Professor, Department of Biotechnology, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| |
Collapse
|
47
|
Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models. Exp Hematol 2017; 51:36-46. [PMID: 28456746 DOI: 10.1016/j.exphem.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Recently, NOD-SCID IL2Rγ-/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34+ hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34+ cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34+ cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis.
Collapse
|
48
|
Wang H, Wang X, Xin N, Qi L, Liao A, Yang W, Liu Z, Zhao C. Live kinase B1 maintains CD34 +CD38 - AML cell proliferation and self-renewal. Mol Cell Biochem 2017; 434:25-32. [PMID: 28397012 DOI: 10.1007/s11010-017-3032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
Live kinase B1 (LKB1) has been recognized as a tumor suppressor in many human cancers; however, LKB1 maintains self-renewal of hematopoietic stem cells (HSCs). The existence of leukemia stem cells (LSCs) is responsible for drug resistance and leukemia relapse. In acute myeloid leukemia (AML), CD34+CD38- fraction is the most enriched compartment for LSCs. We found that LKB1 was upregulated in CD34+CD38- AML cells. LKB1 downregulation suppressed the long-term proliferation of CD34+CD38- AML cells, induced CD34+CD38- AML cells into G2/M phase, and enhanced the sensitivity of CD34+CD38- AML cells to chemotherapy. Furthermore, LKB1 downregulation in CD34+CD38- AML cells inhibited tumor formation in NOD-SCID mice. Downregulation of LKB1 gene makes LSCs partly loose the characters as stem cells. Gene expression microarray showed that MAPK/ERK pathway was implicated in the regulation of CD34+CD38- AML cell proliferation by LKB1. Together, these findings demonstrate that LKB1 plays an important role in the maintenance of LSCs, which may be responsible for drug resistance and AML relapse.
Collapse
Affiliation(s)
- Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110039, China
| | - Xiaobin Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110039, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110039, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110039, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
49
|
Nishida Y, Maeda A, Kim MJ, Cao L, Kubota Y, Ishizawa J, AlRawi A, Kato Y, Iwama A, Fujisawa M, Matsue K, Weetall M, Dumble M, Andreeff M, Davis TW, Branstrom A, Kimura S, Kojima K. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Cancer J 2017; 7:e527. [PMID: 28211885 PMCID: PMC5386342 DOI: 10.1038/bcj.2017.8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
Disease recurrence is the major problem in the treatment of acute myeloid leukemia (AML). Relapse is driven by leukemia stem cells, a chemoresistant subpopulation capable of re-establishing disease. Patients with p53 mutant AML are at an extremely high risk of relapse. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is required for the self-renewal and maintenance of AML stem cells. Here we studied the effects of a novel small molecule inhibitor of BMI-1, PTC596, in AML cells. Treatment with PTC596 reduced MCL-1 expression and triggered several molecular events consistent with induction of mitochondrial apoptosis: loss of mitochondrial membrane potential, BAX conformational change, caspase-3 cleavage and phosphatidylserine externalization. PTC596 induced apoptosis in a p53-independent manner. PTC596 induced apoptosis along with the reduction of MCL-1 and phosphorylated AKT in patient-derived CD34+CD38low/− stem/progenitor cells. Mouse xenograft models demonstrated in vivo anti-leukemia activity of PTC596, which inhibited leukemia cell growth in vivo while sparing normal hematopoietic cells. Our results indicate that PTC596 deserves further evaluation in clinical trials for refractory or relapsed AML patients, especially for those with unfavorable complex karyotype or therapy-related AML that are frequently associated with p53 mutations.
Collapse
Affiliation(s)
- Y Nishida
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| | - A Maeda
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| | - M J Kim
- PTC Therapeutics, South Plainfield, NJ, USA
| | - L Cao
- PTC Therapeutics, South Plainfield, NJ, USA
| | - Y Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| | - J Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A AlRawi
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Kato
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Fujisawa
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - K Matsue
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - M Weetall
- PTC Therapeutics, South Plainfield, NJ, USA
| | - M Dumble
- Bristol-Myers Squibb, Princeton, NJ, USA
| | - M Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T W Davis
- PMV Pharmaceuticals Inc., Cranbury, NJ, USA
| | | | - S Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| | - K Kojima
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| |
Collapse
|
50
|
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 2017; 16:13. [PMID: 28137265 PMCID: PMC5282735 DOI: 10.1186/s12943-016-0571-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most commonly diagnosed leukemia in adults (25%) and comprises 15-20% in children. It is a genetically heterogeneous aggressive disease characterized by the accumulation of somatically acquired genetic changes, altering self-renewal, proliferation, and differentiation of hematopoietic progenitor cells, resulting in uncontrolled clonal proliferation of malignant progenitor myeloid cells in the bone marrow, peripheral blood, and occasionally in other body tissues. Treatment with modern chemotherapy regimen (cytarabine and daunorubicin) usually achieves high remission rates, still majority of patients are found to relapse, resulting in only 40-45% overall 5 year survival in young patients and less than 10% in the elderly AML patients. The leukemia stem cells (LSCs) are characterized by their unlimited self-renewal, repopulating potential and long residence in a quiescent state of G0/G1 phase. LSCs are considered to have a pivotal role in the relapse and refractory of AML. Therefore, new therapeutic strategies to target LSCs with limited toxicity towards the normal hematopoietic population is critical for the ultimate curing of AML. Ongoing research works with natural products like parthenolide (a natural plant extract derived compound) and its derivatives, that have the ability to target multiple pathways that regulate the self-renewal, growth and survival of LSCs point to ways for a possible complete remission in AML. In this review article, we will update and discuss various natural products that can target LSCs in AML.
Collapse
Affiliation(s)
- Kodappully Sivaraman Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|