1
|
Kumar Suman A, Bhattacharjee S, Uppin MS, Fathima ST. Clinicohistoradiological and surgical outcome in diffuse midline glioma. Childs Nerv Syst 2024; 40:65-71. [PMID: 37644138 DOI: 10.1007/s00381-023-06095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Diffuse Midline Glioma (DMG) with H3K27M mutation is a rare and aggressive midline high grade glioma with a predominant astrocytic differentiation and K27M mutation in either H3F3A or HIST1H3B/C. This tumor is more common in children than in adults. The current study was aimed to determine clinicohistoradiological and surgical outcome of patients who have undergone surgery for DMG and study disease severity of patients with DMG. METHODS This is an observational study in which 29 DMG patients were evaluated for clinicohistoradiological and surgical outcomes by assessing the pre and postoperative neurological status. RESULT Survival duration was significantly high in patients with age > 18 years (p = 0.02). Patients who had undergone Radiation Therapy showed higher survival rate (p = 0.05) and the cases with low levels of Ki 67 index had improved post operative outcome (p = 0.002). CONCLUSION DMG with H3K27M mutation in newly classified Central Nervous System tumor are WHO grade IV Tumors, comprising H3K27M mutation as molecular marker for diagnosis and related with a poor prognosis.
Collapse
Affiliation(s)
- Arvind Kumar Suman
- Department of Neurosurgery, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh, India, 229 405.
| | - Suchanda Bhattacharjee
- Department of Neurosurgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India, 500 082
| | - Megha S Uppin
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India, 500 082
| | - Syed Tazeem Fathima
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India, 500 082
| |
Collapse
|
2
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
3
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
4
|
DiNapoli SE, Martinez-McFaline R, Shen H, Doane AS, Perez AR, Verma A, Simon A, Nelson I, Balgobin CA, Bourque CT, Yao J, Raman R, Béguelin W, Zippin JH, Elemento O, Melnick AM, Houvras Y. Histone 3 Methyltransferases Alter Melanoma Initiation and Progression Through Discrete Mechanisms. Front Cell Dev Biol 2022; 10:814216. [PMID: 35223844 PMCID: PMC8866878 DOI: 10.3389/fcell.2022.814216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Perturbations to the epigenome are known drivers of tumorigenesis. In melanoma, alterations in histone methyltransferases that catalyze methylation at histone 3 lysine 9 and histone 3 lysine 27-two sites of critical post-translational modification-have been reported. To study the function of these methyltransferases in melanoma, we engineered melanocytes to express histone 3 lysine-to-methionine mutations at lysine 9 and lysine 27, which are known to inhibit the activity of histone methyltransferases, in a zebrafish melanoma model. Using this system, we found that loss of histone 3 lysine 9 methylation dramatically suppressed melanoma formation and that inhibition of histone 3 lysine 9 methyltransferases in human melanoma cells increased innate immune response signatures. In contrast, loss of histone 3 lysine 27 methylation significantly accelerated melanoma formation. We identified FOXD1 as a top target of PRC2 that is silenced in melanocytes and found that aberrant overexpression of FOXD1 accelerated melanoma onset. Collectively, these data demonstrate how histone 3 lysine-to-methionine mutations can be used to uncover critical roles for methyltransferases.
Collapse
Affiliation(s)
- Sara E. DiNapoli
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Raúl Martinez-McFaline
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Hao Shen
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Ashley S. Doane
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Alexendar R. Perez
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, United States
| | - Akanksha Verma
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Isabel Nelson
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Courtney A. Balgobin
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Caitlin T. Bourque
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Jun Yao
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Renuka Raman
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Ari M. Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Zhao F, Bosler DS, Cook JR. Designing Myeloid Gene Panels. Arch Pathol Lab Med 2021; 146:1004-1011. [PMID: 34784413 DOI: 10.5858/arpa.2021-0124-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Next-generation sequencing studies are increasingly used in the evaluation of suspected chronic myeloid neoplasms (CMNs), but there is wide variability among laboratories in the genes analyzed for this purpose. Recently, the Association for Molecular Pathology CMN working group recommended a core 34-gene set as a minimum target list for evaluation of CMNs. This list was recommended based on literature review, and its diagnostic yield in clinical practice is unknown. OBJECTIVE.— To determine the diagnostic yield of the core 34 genes and assess the potential impact of including selected additional genes. DESIGN.— We retrospectively reviewed 185 patients with known or suspected CMNs tested using a 62-gene next-generation sequencing panel that included all 34 core genes. RESULTS.— The Association for Molecular Pathology's core 34 genes had a diagnostic yield of 158 of 185 (85.4%) to detect at least 1 variant with strong/potential clinical significance and 107 of 185 (57.8%) to detect at least 2 such variants. The 62-gene panel had a diagnostic yield of 160 of 185 (86.5%) and 112 of 185 (60.5%), respectively. Variants of unknown significance were identified in 49 of 185 (26.5%) using the core 34 genes versus 76 of 185 (41.1%) using the 62-gene panel. CONCLUSIONS.— This study demonstrates that the Association for Molecular Pathology-recommended core 34-gene set has a high diagnostic yield in CMNs. Inclusion of selected additional genes slightly increases the rate of abnormal results, while also increasing the detection of variants of unknown significance. We recommend inclusion of CUX1, DDX41, ETNK1, RIT1, and SUZ12 in addition to the Association for Molecular Pathology's 34-gene core set for routine evaluation of CMNs.
Collapse
Affiliation(s)
- Fang Zhao
- From the Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio.,Zhao is currently located at the Center for Clinical Informatics Research and Education and Department of Pathology, The MetroHealth System/Case Western Reserve University, Cleveland, Ohio
| | - David S Bosler
- From the Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - James R Cook
- From the Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
6
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
7
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
8
|
Chetverina DA, Lomaev DV, Georgiev PG, Erokhin MM. Genetic Impairments of PRC2 Activity in Oncology: Problems and Prospects. RUSS J GENET+ 2021; 57:258-272. [DOI: 10.1134/s1022795421030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2025]
|
9
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
10
|
Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells 2020; 9:cells9122721. [PMID: 33371192 PMCID: PMC7767226 DOI: 10.3390/cells9122721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials. Unfortunately, many of these molecules do not have potent single-agent activity. One potential explanation for this phenomenon is the fact that those drugs do not profoundly disrupt the integrity of the aberrant network of multiprotein complexes on chromatin. Recent advances in drug development have led to the establishment of novel inhibitors of protein–protein interactions as well as targeted protein degraders that may provide inroads to longstanding effort to physically disrupt oncogenic multiprotein complexes on chromatin. In this review, we summarize some of the current concepts on the role epigenetic modifiers in malignant chromatin states with a specific focus on myeloid malignancies and recent advances in early-phase clinical trials.
Collapse
|
11
|
Yang Y, Li G. Post-translational modifications of PRC2: signals directing its activity. Epigenetics Chromatin 2020; 13:47. [PMID: 33129354 PMCID: PMC7603765 DOI: 10.1186/s13072-020-00369-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a chromatin-modifying enzyme that catalyses the methylation of histone H3 at lysine 27 (H3K27me1/2/3). This complex maintains gene transcriptional repression and plays an essential role in the maintenance of cellular identity as well as normal organismal development. The activity of PRC2, including its genomic targeting and catalytic activity, is controlled by various signals. Recent studies have revealed that these signals involve cis chromatin features, PRC2 facultative subunits and post-translational modifications (PTMs) of PRC2 subunits. Overall, these findings have provided insight into the biochemical signals directing PRC2 function, although many mysteries remain.
Collapse
Affiliation(s)
- Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
12
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
13
|
Das P, Taube JH. Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers (Basel) 2020; 12:E2792. [PMID: 33003334 PMCID: PMC7600873 DOI: 10.3390/cancers12102792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Properly timed addition and removal of histone 3 lysine 27 tri-methylation (H3K27me3) is critical for enabling proper differentiation throughout all stages of development and, likewise, can guide carcinoma cells into altered differentiation states which correspond to poor prognoses and treatment evasion. In early embryonic stages, H3K27me3 is invoked to silence genes and restrict cell fate. Not surprisingly, mutation or altered functionality in the enzymes that regulate this pathway results in aberrant methylation or demethylation that can lead to malignancy. Likewise, changes in expression or activity of these enzymes impact cellular plasticity, metastasis, and treatment evasion. This review focuses on current knowledge regarding methylation and de-methylation of H3K27 in cancer initiation and cancer cell plasticity.
Collapse
Affiliation(s)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA;
| |
Collapse
|
14
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
15
|
Rinke J, Chase A, Cross NCP, Hochhaus A, Ernst T. EZH2 in Myeloid Malignancies. Cells 2020; 9:cells9071639. [PMID: 32650416 PMCID: PMC7407223 DOI: 10.3390/cells9071639] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the significance of epigenetic dysregulation in the pathogenesis of myeloid malignancies has greatly advanced in the past decade. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic core component of the Polycomb Repressive Complex 2 (PRC2), which is responsible for gene silencing through trimethylation of H3K27. EZH2 dysregulation is highly tumorigenic and has been observed in various cancers, with EZH2 acting as an oncogene or a tumor-suppressor depending on cellular context. While loss-of-function mutations of EZH2 frequently affect patients with myelodysplastic/myeloproliferative neoplasms, myelodysplastic syndrome and myelofibrosis, cases of chronic myeloid leukemia (CML) seem to be largely characterized by EZH2 overexpression. A variety of other factors frequently aberrant in myeloid leukemia can affect PRC2 function and disease pathogenesis, including Additional Sex Combs Like 1 (ASXL1) and splicing gene mutations. As the genetic background of myeloid malignancies is largely heterogeneous, it is not surprising that EZH2 mutations act in conjunction with other aberrations. Since EZH2 mutations are considered to be early events in disease pathogenesis, they are of therapeutic interest to researchers, though targeting of EZH2 loss-of-function does present unique challenges. Preliminary research indicates that combined tyrosine kinase inhibitor (TKI) and EZH2 inhibitor therapy may provide a strategy to eliminate the residual disease burden in CML to allow patients to remain in treatment-free remission.
Collapse
Affiliation(s)
- Jenny Rinke
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
| | - Andrew Chase
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.C.); (N.C.P.C.)
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Nicholas C. P. Cross
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.C.); (N.C.P.C.)
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
- Correspondence: ; Tel.: +49-3641-9324201; Fax: +49-3641-9324202
| |
Collapse
|
16
|
Kang SJ, Chun T. Structural heterogeneity of the mammalian polycomb repressor complex in immune regulation. Exp Mol Med 2020; 52:1004-1015. [PMID: 32636442 PMCID: PMC8080698 DOI: 10.1038/s12276-020-0462-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulation is mainly mediated by enzymes that can modify the structure of chromatin by altering the structure of DNA or histones. Proteins involved in epigenetic processes have been identified to study the detailed molecular mechanisms involved in the regulation of specific mRNA expression. Evolutionarily well-conserved polycomb group (PcG) proteins can function as transcriptional repressors by the trimethylation of histone H3 at the lysine 27 residue (H3K27me3) and the monoubiquitination of histone H2A at the lysine 119 residue (H2AK119ub). PcG proteins form two functionally distinct protein complexes: polycomb repressor complex 1 (PRC1) and PRC2. In mammals, the structural heterogeneity of each PRC complex is dramatically increased by several paralogs of its subunit proteins. Genetic studies with transgenic mice along with RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses might be helpful for defining the cell-specific functions of paralogs of PcG proteins. Here, we summarize current knowledge about the immune regulatory role of PcG proteins related to the compositional diversity of each PRC complex and introduce therapeutic drugs that target PcG proteins in hematopoietic malignancy. Protein complexes that suppress gene activity by remodeling chromatin, the substance that contains most of a cell’s DNA, play a critical role in regulating the immune system and provide a therapeutic target for treating blood cancers. Seok-Jin Kang and Taehoon Chun from Korea University in Seoul, South Korea, review how polycomb group proteins, best known for their function in embryonic development, also contribute to the formation of immune cells from blood stem cell precursors. Studies with stem cells and cancer cells have begun to reveal many targets of these proteins, and drug companies are evaluating candidate agents directed against some polycomb group proteins in patients with lymphoma and other cancers. More comprehensive profiling of protein function across a broad range of immune cell types could reveal new targets for additional diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Batanian JR, Malherbe JAJ, Erber WN. A novel translocation t(10;17)(p13;q11.2) harboring two cryptic deletions identified by array-CGH and characterized by SUZ12 overexpression in a patient with chronic thrombocytosis. Genes Chromosomes Cancer 2020; 59:661-666. [PMID: 32557935 DOI: 10.1002/gcc.22881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/11/2022] Open
Abstract
No specific translocation is associated with myeloproliferative neoplasms (MPNs). However, an interstitial deletion involving subband 17q11.2 which includes the NF1 gene, although rare, is a recurrent aberration in several myeloid disorders including MPNs. For the first time, we report an acquired novel translocation involving 10p13 and 17q11.2 in a 62-year-old Caucasian female which was referred for investigation of chronic and persistent unexplained thrombocytosis. The patient had no history of hematological sequelae and genomic testing for JAK2, CALR, and MPL mutations were negative. She was subsequently diagnosed with a triple negative essential thrombocythemia. Array-CGH analysis noted that the translocation harbored two cryptic deletions, one of which involved 17q11.2 encompassing the NF1 gene. One of the junction breakpoints involved the SUZ12 gene. Immunohistochemical assessment of the marrow trephine showed increased megakaryocytic expression of the SUZ12 protein, as well as EZH2 and Ki67; biochemical abnormalities suggestive of excess megakaryocytic hyperplasia. This novel translocation may affect the expression of SUZ12 and its downstream targets, and may represent a unique pathogenomic etiology which drives chronic thrombocytosis in essential thrombocythemia.
Collapse
Affiliation(s)
- Jacqueline R Batanian
- Department of Pediatrics, SSM Cardinal Glennon Children's Hospital, St. Louis, MO, USA.,Department of Pathology, St. Louis University School of Medicine, SSM Cardinal Glennon Children's Hospital, St. Louis, MO, USA
| | - Jacques A J Malherbe
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
18
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
19
|
Cyrus SS, Cohen ASA, Agbahovbe R, Avela K, Yeung KS, Chung BHY, Luk HM, Tkachenko N, Choufani S, Weksberg R, Lopez-Rangel E, Brown K, Saenz MS, Svihovec S, McCandless SE, Bird LM, Garcia AG, Gambello MJ, McWalter K, Schnur RE, An J, Jones SJM, Bhalla SK, Pinz H, Braddock SR, Gibson WT. Rare SUZ12 variants commonly cause an overgrowth phenotype. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:532-547. [PMID: 31736240 DOI: 10.1002/ajmg.c.31748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
The Polycomb repressive complex 2 is an epigenetic writer and recruiter with a role in transcriptional silencing. Constitutional pathogenic variants in its component proteins have been found to cause two established overgrowth syndromes: Weaver syndrome (EZH2-related overgrowth) and Cohen-Gibson syndrome (EED-related overgrowth). Imagawa et al. (2017) initially reported a singleton female with a Weaver-like phenotype with a rare coding SUZ12 variant-the same group subsequently reported two additional affected patients. Here we describe a further 10 patients (from nine families) with rare heterozygous SUZ12 variants who present with a Weaver-like phenotype. We report four frameshift, two missense, one nonsense, and two splice site variants. The affected patients demonstrate variable pre- and postnatal overgrowth, dysmorphic features, musculoskeletal abnormalities and developmental delay/intellectual disability. Some patients have genitourinary and structural brain abnormalities, and there may be an association with respiratory issues. The addition of these 10 patients makes a compelling argument that rare pathogenic SUZ12 variants frequently cause overgrowth, physical abnormalities, and abnormal neurodevelopmental outcomes in the heterozygous state. Pathogenic SUZ12 variants may be de novo or inherited, and are sometimes inherited from a mildly-affected parent. Larger samples sizes will be needed to elucidate whether one or more clinically-recognizable syndromes emerge from different variant subtypes.
Collapse
Affiliation(s)
- Sharri S Cyrus
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ana S A Cohen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ruky Agbahovbe
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Kristiina Avela
- Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Kit S Yeung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong, Hong Kong
| | - Nataliya Tkachenko
- Medical Genetics Service, Medical Genetics Center Dr. Jacinto de Magalhães, Porto Hospital Center, Porto, Portugal
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Elena Lopez-Rangel
- Department of Medical Genetics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | -
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen Brown
- Section of Genetics and Metabolism, Department of Pediatrics, The Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margarita S Saenz
- Section of Genetics and Metabolism, Department of Pediatrics, The Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shayna Svihovec
- Section of Genetics and Metabolism, Department of Pediatrics, The Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shawn E McCandless
- Section of Genetics and Metabolism, Department of Pediatrics, The Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, California.,Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, California
| | - Aixa Gonzalez Garcia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Jianghong An
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanjiv K Bhalla
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Diagnostic and Medical Imaging Services, Surrey Memorial Hospital, Surrey, British Columbia, Canada
| | - Hailey Pinz
- Division of Medical Genetics, Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Stephen R Braddock
- Division of Medical Genetics, Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Attenuated Acceleration to Leukemia after Ezh2 Loss in Nup98-HoxD13 (NHD13) Myelodysplastic Syndrome. Hemasphere 2019; 3:e277. [PMID: 31723847 PMCID: PMC6745923 DOI: 10.1097/hs9.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 11/02/2022] Open
Abstract
Supplemental Digital Content is available in the text.
Collapse
|
21
|
Utility of Combined EZH2, p-ERK1/2, p-STAT, and MYC Expression in the Differential Diagnosis of EZH2-positive Hodgkin Lymphomas and Related Large B-Cell Lymphomas. Am J Surg Pathol 2019; 43:102-109. [PMID: 30371509 DOI: 10.1097/pas.0000000000001180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
EZH2 is a methyltransferase that plays an important tumorigenic role in various neoplasms. We previously found that EZH2 is expressed in a range of aggressive B-cell lymphomas (ABCLs), T-cell lymphomas, and histiocytic neoplasms, with differential expression of intracellular signaling molecules p-ERK, MYC, and p-STAT3, potential regulators of EZH2 expression. We studied EZH2 expression in nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), classic Hodgkin lymphoma (cHL), T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL), and B-cell Lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphomas and classic Hodgkin lymphoma (BCLu-DLBCL/cHL), as well as the coexpression of p-ERK, MYC, and p-STAT3 in these neoplasms. The neoplastic LP cells of NLPHL and Hodgkin/Reed-Sternberg cells of cHL were strongly positive for EZH2, as were the neoplastic cells in THRLBCL and BCLu-DLBCL/cHL. EZH2 expression correlated with proliferation rate, as assessed by Ki-67 staining. LP cells in NLPHL and Hodgkin/Reed-Sternberg cells in cHL were strongly positive for p-ERK, p-STAT3, and MYC, as were the neoplastic cells in THRLBCL and BCLu-DLBCL/cHL, in contrast to the differential expression of these molecules seen in ABCLs. These findings suggest that combined expression of p-ERK, MYC, and p-STAT3 is a useful immunohistochemical pattern for the diagnosis of EZH2-positive Hodgkin lymphomas and related lymphomas, in contrast to ABCLs. Furthermore, the overexpression of EZH2, in association with coexpression of tumorigenic signaling molecules, suggests an oncogenic role for this molecule in the development of Hodgkin lymphomas and related lymphomas. THRLBCL and BCLu-DLBCL/cHL appear to have a mechanism for the regulation of EZH2 expression that is similar to NLPHL and cHL and different from that of ABCLs. In addition, EZH2 and associated signaling cascades may serve as therapeutic targets for the treatment of Hodgkin lymphomas and related lymphomas.
Collapse
|
22
|
Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J Cancer 2019; 122:315-328. [PMID: 31708574 PMCID: PMC7000746 DOI: 10.1038/s41416-019-0615-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a key epigenetic multiprotein complex involved in the regulation of gene expression in metazoans. PRC2 is formed by a tetrameric core that endows the complex with histone methyltransferase activity, allowing it to mono-, di- and tri-methylate histone H3 on lysine 27 (H3K27me1/2/3); H3K27me3 is a hallmark of facultative heterochromatin. The core complex of PRC2 is bound by several associated factors that are responsible for modulating its targeting specificity and enzymatic activity. Depletion and/or mutation of the subunits of this complex can result in severe developmental defects, or even lethality. Furthermore, mutations of these proteins in somatic cells can be drivers of tumorigenesis, by altering the transcriptional regulation of key tumour suppressors or oncogenes. In this review, we present the latest results from structural studies that have characterised PRC2 composition and function. We compare this information with data and literature for both gain-of function and loss-of-function missense mutations in cancers to provide an overview of the impact of these mutations on PRC2 activity.
Collapse
Affiliation(s)
- Paul Chammas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
23
|
Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019; 20:573-589. [PMID: 31270442 DOI: 10.1038/s41580-019-0143-1] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.
Collapse
Affiliation(s)
- Ewa M Michalak
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
Zhang H, Lv H, Jia X, Hu G, Kong L, Zhang T, Li L, Pan Y, Zhai Q, Meng B, Wang X, Wang H, Wang X. Clinical significance of enhancer of zeste homolog 2 and histone deacetylases 1 and 2 expression in peripheral T-cell lymphoma. Oncol Lett 2019; 18:1415-1423. [PMID: 31423206 DOI: 10.3892/ol.2019.10410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Epigenetics serve a key role in peripheral T cell lymphoma (PTCL). The purpose of the present study was to investigate the clinical significance of enhancer of zeste homolog 2 (EZH2) and histone deacetylase 1 and 2 (HDAC1/2) expression in PTCL. A total of 82 patients were enrolled in the present study, including 43 with PTCL not otherwise specified (PTCL-NOS), 10 with angioimmunoblastic T-cell lymphoma (AITL), 14 with natural killer/T-cell lymphoma (NK/TCL) and 15 with anaplastic large cell lymphoma (ALCL). EZH2 and HDAC1/2 expression was detected by immunohistochemistry and any correlations between them were evaluated. Additionally, any correlations between EZH2 or HDAC1/2 expression and a number of clinicopathological characteristics were analyzed, and survival curves were created. Results revealed that 55.8% of patients with PTCL-NOS, 57.1% of patients with NK/TCL, 86.7% of patients ALCL and 50% of patients with AITL highly expressed HDAC1. Furthermore, 58.1% of patients with PTCL-NOS, 57.1% of patients with NK/TCL, 53.3% of patients with ALCL and 60% of patients with AITL highly expressed HDAC2. Additionally, 67.5% of patients with PTCL-NOS, 50% of patients with NK/TCL, 73.3% of patients with ALCL and 60% of patients with AITL highly expressed EZH2. EZH2 expression was significantly correlated with the presence of B symptoms, elevated LDH and elevated β2 microglobulin (B2M; P<0.05), and HDAC2 expression was significantly correlated with sex, advanced clinical stages, high international prognostic index scores and elevated B2M levels (P<0.05) in all the patients with PTCL. However, different subtypes of PTCL are correlated with different clinical characteristics. Patients with PTCL highly expressing EZH2 or HDAC2 exhibit a poorer overall survival rate. In conclusion, EZH2 and HDAC1/2 were frequently upregulated in patients with PTCL, and the patients with a higher EZH2 and HDAC2 expression usually exhibited a poorer survival rate. Therefore, EZH2 and HDAC2 may be prognostic markers in patients with PTCL, particularly in those with PTCL-NOS.
Collapse
Affiliation(s)
- Huilai Zhang
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Huijuan Lv
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiaohui Jia
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ge Hu
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Lingzhe Kong
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Tingting Zhang
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Linyu Li
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yi Pan
- Department of Pathology, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Qiongli Zhai
- Department of Pathology, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Bin Meng
- Department of Pathology, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Xianhuo Wang
- Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
25
|
Tokodai Y, Yakushiji F. Polycomb Repressive Complex 2: Modulator Development for Functional Regulation of a Multiprotein Complex by Using Structural Information. Chembiochem 2019; 20:2046-2053. [PMID: 31062458 DOI: 10.1002/cbic.201900212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Indexed: 12/19/2022]
Abstract
Functional regulation of a protein complex is generally difficult because information of the target complex as a whole is limited. However, regulation of a protein complex is important for understanding complicated biological events in cells and therapeutic possibilities. This concept article introduces the potential for the functional regulation of a multiprotein complex, polycomb repressive complex 2 (PRC2), by developing chemical modulators. Functional regulatory mechanisms of PRC2 are described by using protein interaction information found through structural analyses. Subsequently, possibilities of novel chemical modulator development of PRC2 based on structural insights into the complex and related interactions are discussed.
Collapse
Affiliation(s)
- Yasuaki Tokodai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
26
|
Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol 2019; 24:885-892. [DOI: 10.1007/s10147-019-01462-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/28/2019] [Indexed: 12/14/2022]
|
27
|
Hu H, Wang L, Wu J, Zhou P, Fu J, Sun J, Cai W, Liu H, Yang Y. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 8141 single pregnancies. Hum Genomics 2019; 13:14. [PMID: 30871627 PMCID: PMC6419401 DOI: 10.1186/s40246-019-0198-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/26/2019] [Indexed: 12/28/2022] Open
Abstract
Background Noninvasive prenatal testing (NIPT) for fetal aneuploidies by scanning cell-free fetal DNA in maternal plasma is rapidly becoming a first-tier aneuploidy screening test in clinical practices. With the development of whole-genome sequencing technology, small subchromosomal deletions and duplications that could not be detected by conventional karyotyping are now able to be detected with NIPT technology. Methods In the present study, we examined 8141 single pregnancies with NIPT to calculate the positive predictive values of each of the chromosome aneuploidies and the subchromosomal microdeletions and microduplications. Results We confirmed that the positive predictive values (PPV) for trisomy 13, trisomy 18, trisomy 21, and sex chromosome aneuploidy were 14.28%, 60%, 80%, and 45.83%, respectively. At the same time, we also found 51 (0.63%) positive cases for chromosomal microdeletions or microduplications but only 13 (36.11%) true-positive cases. These results indicate that NIPT for trisomy 21 detection had the highest accuracy, while accuracy was low for chromosomal microdeletion and microduplications. Conclusions Therefore, it is very important to improve the specificity, accuracy, and sensitivity of NIPT technology for the detection of subchromosomal microdeletions and microduplications.
Collapse
Affiliation(s)
- Hua Hu
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Li Wang
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jiayan Wu
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Peng Zhou
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingli Fu
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jiuchen Sun
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Weiyi Cai
- CapitalBio Technology Inc., Beijing, 101111, China
| | - Hailiang Liu
- CapitalBio Technology Inc., Beijing, 101111, China.
| | - Ying Yang
- Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
28
|
Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 2019; 21:152-161. [PMID: 30602726 DOI: 10.1038/s41556-018-0258-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Research over the past several decades has unmasked a major contribution of disrupted chromatin regulatory processes to human disease, particularly cancer. Advances in genome-wide technologies have highlighted frequent mutations in genes encoding chromatin-associated proteins, identified unexpected synthetic lethal opportunities and enabled increasingly comprehensive structural and functional dissection. Here, we review recent progress in our understanding of oncogenic mechanisms at each level of chromatin organization and regulation, and discuss new strategies towards therapeutic intervention.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Poluben L, Puligandla M, Neuberg D, Bryke CR, Hsu Y, Shumeiko O, Yuan X, Voznesensky O, Pihan G, Adam M, Fraenkel E, Rasnic R, Linial M, Klymenko S, Balk SP, Fraenkel PG. Characteristics of myeloproliferative neoplasms in patients exposed to ionizing radiation following the Chernobyl nuclear accident. Am J Hematol 2019; 94:62-73. [PMID: 30295334 DOI: 10.1002/ajh.25307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Myeloproliferative neoplasms (MPNs) driver mutations are usually found in JAK2, MPL, and CALR genes; however, 10%-15% of cases are triple negative (TN). A previous study showed lower rate of JAK2 V617F in primary myelofibrosis patients exposed to low doses of ionizing radiation (IR) from Chernobyl accident. To examine distinct driver mutations, we enrolled 281 Ukrainian IR-exposed and unexposed MPN patients. Genomic DNA was obtained from peripheral blood leukocytes. JAK2 V617F, MPL W515, types 1- and 2-like CALR mutations were identified by Sanger Sequencing and real time polymerase chain reaction. Chromosomal alterations were assessed by oligo-SNP microarray platform. Additional genetic variants were identified by whole exome and targeted sequencing. Statistical significance was evaluated by Fisher's exact test and Wilcoxon's rank sum test (R, version 3.4.2). IR-exposed MPN patients exhibited a different genetic profile vs unexposed: lower rate of JAK2 V617F (58.4% vs 75.4%, P = .0077), higher rate of type 1-like CALR mutation (12.2% vs 3.1%, P = .0056), higher rate of TN cases (27.8% vs 16.2%, P = .0366), higher rate of potentially pathogenic sequence variants (mean numbers: 4.8 vs 3.1, P = .0242). Furthermore, we identified several potential drivers specific to IR-exposed TN MPN patients: ATM p.S1691R with copy-neutral loss of heterozygosity at 11q; EZH2 p.D659G at 7q and SUZ12 p.V71 M at 17q with copy number loss. Thus, IR-exposed MPN patients represent a group with distinct genomic characteristics worthy of further study.
Collapse
Affiliation(s)
- Larysa Poluben
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
- National Research Center for Radiation Medicine Kyiv Ukraine
| | | | - Donna Neuberg
- Dana‐Farber/Harvard Cancer Center Boston Massachusetts
| | - Christine R. Bryke
- Division of Clinical Pathology Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Yahsuan Hsu
- Division of Clinical Pathology Beth Israel Deaconess Medical Center Boston Massachusetts
| | | | - Xin Yuan
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Olga Voznesensky
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| | - German Pihan
- Division of Clinical Pathology Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Miriam Adam
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Ernest Fraenkel
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Roni Rasnic
- School of Computer Science and Engineering & Department of Biological Chemistry Hebrew University Jerusalem Israel
| | - Michal Linial
- School of Computer Science and Engineering & Department of Biological Chemistry Hebrew University Jerusalem Israel
| | - Sergiy Klymenko
- National Research Center for Radiation Medicine Kyiv Ukraine
| | - Steven P. Balk
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Paula G. Fraenkel
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| |
Collapse
|
30
|
Danishuddin, Subbarao N, Faheem M, Khan SN. Polycomb repressive complex 2 inhibitors: emerging epigenetic modulators. Drug Discov Today 2019; 24:179-188. [DOI: 10.1016/j.drudis.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022]
|
31
|
Di Carlo V, Mocavini I, Di Croce L. Polycomb complexes in normal and malignant hematopoiesis. J Cell Biol 2018; 218:55-69. [PMID: 30341152 PMCID: PMC6314559 DOI: 10.1083/jcb.201808028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Di Carlo et al. discuss how the regulation/dysregulation of Polycomb group proteins contributes to hematopoiesis and hematological disorders. Epigenetic mechanisms are crucial for sustaining cell type–specific transcription programs. Among the distinct factors, Polycomb group (PcG) proteins are major negative regulators of gene expression in mammals. These proteins play key roles in regulating the proliferation, self-renewal, and differentiation of stem cells. During hematopoietic differentiation, many PcG proteins are fundamental for proper lineage commitment, as highlighted by the fact that a lack of distinct PcG proteins results in embryonic lethality accompanied by differentiation biases. Correspondingly, proteins of these complexes are frequently dysregulated in hematological diseases. In this review, we present an overview of the role of PcG proteins in normal and malignant hematopoiesis, focusing on the compositional complexity of PcG complexes, and we briefly discuss the ongoing clinical trials for drugs targeting these factors.
Collapse
Affiliation(s)
- Valerio Di Carlo
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
32
|
Abstract
Complexity in genome architecture determines how gene expression programs are established, maintained, and modified from early developmental stages to normal adult phenotypes. Large scale and hierarchical organization of the genome impacts various aspects of cell functions, ranging from X-chromosome inactivation, stem-cell fate determination to transcription, DNA replication, and cellular repair. While chromatin loops and topologically-associated domains represent a basic structural or fundamental unit of chromatin organization, spatio-temporal organization of the genome further creates a complex network of interacting genome patterns, forming chromosomal compartments and chromosome territories. The understanding of human diseases, including cancers, auto-immune disorders, Alzheimer's, and cardiovascular diseases, relies on the associated molecular and epigenetic mechanisms. There is a growing interest in the impact of three-dimensional chromatin folding upon the genome structure and function, which gives rise to the question "What's in the fold?" and is the main focus of this review. Here we discuss the principles determining the spatial and regulatory relationships between gene regulation and three-dimensional chromatin landscapes, and how changes in chromatin-folding could influence the outcome of genome function in healthy and disease states.
Collapse
|
33
|
Expression of enhancer of zeste homolog 2 (EZH2) protein in histiocytic and dendritic cell neoplasms with evidence for p-ERK1/2-related, but not MYC- or p-STAT3-related cell signaling. Mod Pathol 2018; 31:553-561. [PMID: 29327713 DOI: 10.1038/modpathol.2017.174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
EZH2 is an important enzymatic subunit of the epigenetic regulator polycomb repressive complex 2 (PRC2), which controls gene silencing through post-translational modification, and is overexpressed in various carcinomas and hematopoietic neoplasms. We found that the majority of cases of histiocytic and dendritic cell neoplasms, including histiocytic sarcoma, follicular dendritic cell sarcoma, Langerhans cell histiocytosis, and interdigitating dendritic cell sarcoma, show strong EZH2 expression by immunohistochemical staining, in contrast to benign histiocytic lesions and normal cellular counterparts, which did not show EZH2 expression, suggesting that this molecule may function as an oncogenic protein in these neoplasms. We correlated EZH2 expression with that of p-ERK1/2, MYC, and p-STAT3, potential regulators of EZH2, and found that 60-80% of these cases showed strong p-ERK1/2 expression, and only a minority of cases showed positivity for MYC or p-STAT3 in neoplastic cells. In cases of follicular dendritic cell sarcoma, Langerhans cell histiocytosis, histiocytic sarcoma, and interdigitating dendritic cell sarcoma with strong EZH2 expression, 90%, 89%, 70%, and 100% of cases showed co-expression of p-ERK1/2 with EZH2, respectively, while only a small percentage of these cases showed MYC or p-STAT3 co-expression with EZH2 (≤30%). These findings suggest that the p-ERK1/2 signaling cascade, but not the p-STAT3 and MYC signaling cascades, may regulate EZH2 expression in histiocytic and dendritic cell neoplasms, and that EZH2 and the p-ERK1/2 signaling cascade could serve as therapeutic targets for the treatment of these neoplasms. Interestingly, only a minority of cases of blastic plasmacytoid dendritic cell neoplasm exhibited high EZH2 expression, and only a minority of these cases showed p-ERK1/2 co-expression, suggesting that alternative mechanisms may contribute to tumorigenesis in this aggressive neoplasm.
Collapse
|
34
|
Newcombe AA, Gibson BES, Keeshan K. Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia. Exp Hematol 2018; 63:1-11. [PMID: 29608923 DOI: 10.1016/j.exphem.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
There is a desperate need for new and effective therapeutic approaches to acute myeloid leukemia (AML) in both children and adults. Epigenetic aberrations are common in adult AML, and many novel epigenetic compounds that may improve patient outcomes are in clinical development. Mutations in epigenetic regulators occur less frequently in AML in children than in adults. Investigating the potential benefits of epigenetic therapy in pediatric AML is an important issue and is discussed in this review.
Collapse
Affiliation(s)
| | - Brenda E S Gibson
- Department of Paediatric Haematology, Royal Hospital for Children, Glasgow, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
35
|
Elevated expression of the EZH2 gene in CALR-mutated patients with primary myelofibrosis. Ann Hematol 2018; 97:1193-1208. [PMID: 29560522 DOI: 10.1007/s00277-018-3287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/25/2018] [Indexed: 01/07/2023]
Abstract
Primary myelofibrosis (PMF) is one of the BCR/ABL-negative myeloproliferative neoplasms (MPNs), characterized by the diffuse fibrous hyperproliferation, bone marrow osteosclerosis, extramedullary hematopoiesis, and marked splenomegaly. The patients with PMF have an insidious onset, a long duration of clinical course, and the deteriorated quality of life. It has been reported that the CALR gene 9 exon mutations were detected in 25-30% PMF patients, particularly as high as 80% in the JAK2/MPL-negative ones. As the second most common mutation in BCR/ABL-negative MPNs, CALR mutation has been included in the latest World Health Organization (WHO) classification criteria as one of the main diagnostic criteria for both essential thrombocythemia (ET) and PMF. Moreover, the CALR mutations indicated a favorable prognosis, which the mechanism is still under investigation. It was demonstrated that a characterized high expression of EZH2 and SUZ12 in CALR-mutated patients. Taking EZH2 as the research entry point, we initially discussed the mechanism that the CALR-positive patients with PMF exhibited a better prognosis in the current study.
Collapse
|
36
|
Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, Solali S. Double sword role of EZH2 in leukemia. Biomed Pharmacother 2018; 98:626-635. [DOI: 10.1016/j.biopha.2017.12.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
|
37
|
|
38
|
Pan MR, Hsu MC, Chen LT, Hung WC. Orchestration of H3K27 methylation: mechanisms and therapeutic implication. Cell Mol Life Sci 2018; 75:209-223. [PMID: 28717873 PMCID: PMC5756243 DOI: 10.1007/s00018-017-2596-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Histone proteins constitute the core component of the nucleosome, the basic unit of chromatin. Chemical modifications of histone proteins affect their interaction with genomic DNA, the accessibility of recognized proteins, and the recruitment of enzymatic complexes to activate or diminish specific transcriptional programs to modulate cellular response to extracellular stimuli or insults. Methylation of histone proteins was demonstrated 50 years ago; however, the biological significance of each methylated residue and the integration between these histone markers are still under intensive investigation. Methylation of histone H3 on lysine 27 (H3K27) is frequently found in the heterochromatin and conceives a repressive marker that is linked with gene silencing. The identification of enzymes that add or erase the methyl group of H3K27 provides novel insights as to how this histone marker is dynamically controlled under different circumstances. Here we summarize the methyltransferases and demethylases involved in the methylation of H3K27 and show the new evidence by which the H3K27 methylation can be established via an alternative mechanism. Finally, the progress of drug development targeting H3K27 methylation-modifying enzymes and their potential application in cancer therapy are discussed.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 704, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 804, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
39
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Chen L, Alexe G, Dharia NV, Ross L, Iniguez AB, Conway AS, Wang EJ, Veschi V, Lam N, Qi J, Gustafson WC, Nasholm N, Vazquez F, Weir BA, Cowley GS, Ali LD, Pantel S, Jiang G, Harrington WF, Lee Y, Goodale A, Lubonja R, Krill-Burger JM, Meyers RM, Tsherniak A, Root DE, Bradner JE, Golub TR, Roberts CW, Hahn WC, Weiss WA, Thiele CJ, Stegmaier K. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 2017; 128:446-462. [PMID: 29202477 DOI: 10.1172/jci90793] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
Pharmacologically difficult targets, such as MYC transcription factors, represent a major challenge in cancer therapy. For the childhood cancer neuroblastoma, amplification of the oncogene MYCN is associated with high-risk disease and poor prognosis. Here, we deployed genome-scale CRISPR-Cas9 screening of MYCN-amplified neuroblastoma and found a preferential dependency on genes encoding the polycomb repressive complex 2 (PRC2) components EZH2, EED, and SUZ12. Genetic and pharmacological suppression of EZH2 inhibited neuroblastoma growth in vitro and in vivo. Moreover, compared with neuroblastomas without MYCN amplification, MYCN-amplified neuroblastomas expressed higher levels of EZH2. ChIP analysis showed that MYCN binds at the EZH2 promoter, thereby directly driving expression. Transcriptomic and epigenetic analysis, as well as genetic rescue experiments, revealed that EZH2 represses neuronal differentiation in neuroblastoma in a PRC2-dependent manner. Moreover, MYCN-amplified and high-risk primary tumors from patients with neuroblastoma exhibited strong repression of EZH2-regulated genes. Additionally, overexpression of IGFBP3, a direct EZH2 target, suppressed neuroblastoma growth in vitro and in vivo. We further observed strong synergy between histone deacetylase inhibitors and EZH2 inhibitors. Together, these observations demonstrate that MYCN upregulates EZH2, leading to inactivation of a tumor suppressor program in neuroblastoma, and support testing EZH2 inhibitors in patients with MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Liying Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Veronica Veschi
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Norris Lam
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - W Clay Gustafson
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Nicole Nasholm
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | | | | | | | - Levi D Ali
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Yenarae Lee
- Broad Institute, Cambridge, Massachusetts, USA
| | - Amy Goodale
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | | | | | - James E Bradner
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Todd R Golub
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Wm Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William C Hahn
- Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - William A Weiss
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA.,Department of Neurology, Neurological Surgery, Brain Tumor Research Center, UCSF, San Francisco, California, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
H3
K27M/I
mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood 2017; 130:2204-2214. [DOI: 10.1182/blood-2017-03-774653] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Key Points
First characterization of neomorphic H3K27 mutations in AML. H3 K27 mutations are associated with and collaborate with RUNX1 mutations and translocations.
Collapse
|
42
|
Schischlik F, Kralovics R. Mutations in myeloproliferative neoplasms - their significance and clinical use. Expert Rev Hematol 2017; 10:961-973. [PMID: 28914569 DOI: 10.1080/17474086.2017.1380515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Clonal hematologic diseases of the blood such as polycythemia vera, essential thrombocythemia and primary myelofibrosis belong to the BCR-ABL negative Myeloproliferative Neoplasms (MPN). These diseases are characterized by clonal expansion of hematopoietic precursor cells followed by increased production of differentiated cells of the myeloid lineage. Initiation of clonal hematopoiesis, formation of a clinical phenotype as well as disease progression form part of MPN disease evolution. The disease is driven by acquired somatic mutations in critical pathways such as cytokine signaling, epigenetic regulation, RNA splicing, and transcription factor signaling. Areas covered: The following review aims to provide an overview of the mutational landscape of MPN, the impact of these mutations in MPN pathogenesis as well as their prognostic value. Finally, a summary of how these mutations are being used or could potentially be used for the treatment of MPN patients is presented. Expert commentary: The genetic landscape of MPN patients has been successfully dissected within the past years with the advent of new sequencing technologies. Integrating the genetic information within a clinical setting is already benefitting patients in terms of disease monitoring and prognostic information of disease progression but will be further intensified within the next years.
Collapse
Affiliation(s)
- Fiorella Schischlik
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Robert Kralovics
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| |
Collapse
|
43
|
|
44
|
Mito JK, Qian X, Doyle LA, Hornick JL, Jo VY. Role of Histone H3K27 Trimethylation Loss as a Marker for Malignant Peripheral Nerve Sheath Tumor in Fine-Needle Aspiration and Small Biopsy Specimens. Am J Clin Pathol 2017; 148:179-189. [PMID: 28898989 DOI: 10.1093/ajcp/aqx060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Accurate diagnosis of malignant peripheral nerve sheath tumor (MPNST) is often challenging on fine-needle aspiration (FNA) or core needle biopsy. Recurrent mutations in EED and SUZ12, which encode subunits of polycomb repressive complex 2 (PRC2), have been identified in 70% to 92% of MPNSTs; PRC2 inactivation leads to loss of trimethylation of lysine 27 of histone H3 (H3K27me3). We evaluated the utility of H3K27me3 immunohistochemistry for distinguishing MPNST from its cytomorphologic mimics. METHODS H3K27me3 immunohistochemistry was performed on 180 cases of spindle cell neoplasms sampled by FNA (n = 66) and needle biopsy (n = 114), and loss of nuclear staining was scored. Tumor types included MPNST, dedifferentiated liposarcoma, schwannoma, solitary fibrous tumor, leiomyosarcoma, melanoma, synovial sarcoma, sarcomatoid carcinoma, gastrointestinal stromal tumor, desmoid fibromatosis, low-grade fibromyxoid sarcoma, and unclassified spindle cell sarcoma/undifferentiated pleomorphic sarcoma. RESULTS Complete loss of H3K27me3 was observed in 54% (13/24) of MPNSTs. In contrast, only two (of 156) histologic mimics showed complete loss of H3K27me3. Partial loss of H3K27me3 was present in a subset of cases (26/180), including both MPNST and non-MPNSTs. CONCLUSIONS Complete loss of H3K27me3 is a highly specific (98.7%) marker of MPNST that can distinguish MPNST from cytomorphologic mimics in FNA cell block and small biopsy specimens.
Collapse
Affiliation(s)
- Jeffrey K Mito
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Xiaohua Qian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Leona A Doyle
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
45
|
Nielsen HM, Andersen CL, Westman M, Kristensen LS, Asmar F, Kruse TA, Thomassen M, Larsen TS, Skov V, Hansen LL, Bjerrum OW, Hasselbalch HC, Punj V, Grønbæk K. Epigenetic changes in myelofibrosis: Distinct methylation changes in the myeloid compartments and in cases with ASXL1 mutations. Sci Rep 2017; 7:6774. [PMID: 28754985 PMCID: PMC5533802 DOI: 10.1038/s41598-017-07057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
This is the first study to compare genome-wide DNA methylation profiles of sorted blood cells from myelofibrosis (MF) patients and healthy controls. We found that differentially methylated CpG sites located to genes involved in 'cancer' and 'embryonic development' in MF CD34+ cells, in 'inflammatory disease' in MF mononuclear cells, and in 'immunological diseases' in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation pattern using an unsupervised approach. However, in a supervised analysis of ASXL1 mutated versus wild-type cases, differentially methylated CpG sites were enriched in regions marked by histone H3K4me1, histone H3K27me3, and the bivalent histone mark H3K27me3 + H3K4me3 in human CD34+ cells. Hypermethylation of selected CpG sites was confirmed in a separate validation cohort of 30 MF patients by pyrosequencing. Altogether, we show that individual MF cell populations have distinct differentially methylated genes relative to their normal counterparts, which likely contribute to the phenotypic characteristics of MF. Furthermore, differentially methylated CpG sites in ASXL1 mutated MF cases are found in regulatory regions that could be associated with aberrant gene expression of ASXL1 target genes.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christen Lykkegaard Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | - Maj Westman
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Arvid Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Vibe Skov
- Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | | | - Ole Weis Bjerrum
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Vasu Punj
- Division of Hematology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. .,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:101-26. [PMID: 27193452 DOI: 10.1146/annurev-pathol-012615-044454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2(V617F) homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2(V617F) to modulate MPN phenotype.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| |
Collapse
|
47
|
Polycomb repressive complexes in hematological malignancies. Blood 2017; 130:23-29. [DOI: 10.1182/blood-2017-02-739490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Abstract
The deregulation of polycomb repressive complexes (PRCs) has been reported in a number of hematological malignancies. These complexes exert oncogenic or tumor-suppressive functions depending on tumor type. These findings have revolutionized our understanding of the pathophysiology of hematological malignancies and the impact of deregulated epigenomes in tumor development and progression. The therapeutic targeting of PRCs is currently attracting increasing attention and being extensively examined in clinical studies, leading to new therapeutic strategies that may improve the outcomes of patients with hematological malignancies.
Collapse
|
48
|
Abstract
Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) are aggressive myeloid malignancies recognized as a distinct category owing to their unique combination of dysplastic and proliferative features. Although current classification schemes still emphasize morphology and exclusionary criteria, disease-defining somatic mutations and/or germline predisposition alleles are increasingly incorporated into diagnostic algorithms. The developing picture suggests that phenotypes are driven mostly by epigenetic mechanisms that reflect a complex interplay between genotype, physiological processes such as ageing and interactions between malignant haematopoietic cells and the stromal microenvironment of the bone marrow. Despite the rapid accumulation of genetic knowledge, therapies have remained nonspecific and largely inefficient. In this Review, we discuss the pathogenesis of MDS/MPN, focusing on the relationship between genotype and phenotype and the molecular underpinnings of epigenetic dysregulation. Starting with the limitations of current therapies, we also explore how the available mechanistic data may be harnessed to inform strategies to develop rational and more effective treatments, and which gaps in our knowledge need to be filled to translate biological understanding into clinical progress.
Collapse
Affiliation(s)
- Michael W N Deininger
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University
- Department of Cell, Developmental and Cancer Biology, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Eric Solary
- INSERM U1170, Gustave Roussy, Faculté de médecine Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France
- Department of Hematology, Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
49
|
Abstract
In this review, Hu and Shilatifard summarize recent advances in our understanding of the role of chromatin modifiers in normal hematopoiesis and their contributions in hematopoietic transformation. Hematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms in which normal hematopoiesis has gone awry and together account for ∼10% of all new cancer cases diagnosed in the United States in 2016. Recent intensive genomic sequencing of hematopoietic malignancies has identified recurrent mutations in genes that encode regulators of chromatin structure and function, highlighting the central role that aberrant epigenetic regulation plays in the pathogenesis of these neoplasms. Deciphering the molecular mechanisms for how alterations in epigenetic modifiers, specifically histone and DNA methylases and demethylases, drive hematopoietic cancer could provide new avenues for developing novel targeted epigenetic therapies for treating hematological malignancies. Just as past studies of blood cancers led to pioneering discoveries relevant to other cancers, determining the contribution of epigenetic modifiers in hematologic cancers could also have a broader impact on our understanding of the pathogenesis of solid tumors in which these factors are mutated.
Collapse
Affiliation(s)
- Deqing Hu
- Department of Biochemistry and Molecular Genetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
50
|
Abstract
Myeloproliferative neoplasms (MPNs) are a group of related clonal hematologic disorders characterized by excess accumulation of one or more myeloid cell lineages and a tendency to transform to acute myeloid leukemia. Deregulated JAK2 signaling has emerged as the central phenotypic driver of BCR -ABL1-negative MPNs and a unifying therapeutic target. In addition, MPNs show unexpected layers of genetic complexity, with multiple abnormalities associated with disease progression, interactions between inherited factors and phenotype driver mutations, and effects related to the order in which mutations are acquired. Although morphology and clinical laboratory analysis continue to play an important role in defining these conditions, genomic analysis is providing a platform for better disease definition, more accurate diagnosis, direction of therapy, and refined prognostication. There is an emerging consensus with regard to many prognostic factors, but there is a clear need to synthesize genomic findings into robust, clinically actionable and widely accepted scoring systems as well as the need to standardize the laboratory methodologies that are used.
Collapse
Affiliation(s)
- Katerina Zoi
- Katerina Zoi, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Nicholas C.P. Cross, Salisbury District Hospital, Salisbury; and University of Southampton, Southampton, United Kingdom
| | - Nicholas C P Cross
- Katerina Zoi, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Nicholas C.P. Cross, Salisbury District Hospital, Salisbury; and University of Southampton, Southampton, United Kingdom
| |
Collapse
|