1
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
2
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chen L, Mao W, Ren C, Li J, Zhang J. Comprehensive Insights that Targeting PIM for Cancer Therapy: Prospects and Obstacles. J Med Chem 2024; 67:38-64. [PMID: 38164076 DOI: 10.1021/acs.jmedchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proviral integration sitea for Moloney-murine leukemia virus (PIM) kinases are a family of highly conserved serine/tyrosine kinases consisting of three members, PIM-1, PIM-2, and PIM-3. These kinases regulate a wide range of substrates through phosphorylation and affect key cellular processes such as transcription, translation, proliferation, apoptosis, and energy metabolism. Several PIM inhibitors are currently undergoing clinical trials, such as a phase I clinical trial of Uzanserti (5) for the treatment of relapsed diffuse large B-cell lymphoma that has been completed. The current focus encompasses the structural and biological characterization of PIM, ongoing research progress on small-molecule inhibitors undergoing clinical trials, and evaluation analysis of persisting challenges in this field. Additionally, the design and discovery of small-molecule inhibitors targeting PIM in recent years have been explored, with a particular emphasis on medicinal chemistry, aiming to provide valuable insights for the future development of PIM inhibitors.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Wuyu Mao
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Molecular Mechanisms of Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia: Ongoing Challenges and Future Treatments. Cells 2020; 9:cells9112493. [PMID: 33212779 PMCID: PMC7697863 DOI: 10.3390/cells9112493] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive acute myeloid leukemia (AML) remains a challenge despite the development of novel FLT3-directed tyrosine kinase inhibitors (TKI); the relapse rate is still high even after allogeneic stem cell transplantation. In the era of next-generation FLT3-inhibitors, such as midostaurin and gilteritinib, we still observe primary and secondary resistance to TKI both in monotherapy and in combination with chemotherapy. Moreover, remissions are frequently short-lived even in the presence of continuous treatment with next-generation FLT3 inhibitors. In this comprehensive review, we focus on molecular mechanisms underlying the development of resistance to relevant FLT3 inhibitors and elucidate how this knowledge might help to develop new concepts for improving the response to FLT3-inhibitors and reducing the development of resistance in AML. Tailored treatment approaches that address additional molecular targets beyond FLT3 could overcome resistance and facilitate molecular responses in AML.
Collapse
|
5
|
Quevedo CE, Bataille CJR, Byrne S, Durbin M, Elkins J, Guillermo A, Jones AM, Knapp S, Nadali A, Walker RG, Wilkinson IVL, Wynne GM, Davies SG, Russell AJ. Aminothiazolones as potent, selective and cell active inhibitors of the PIM kinase family. Bioorg Med Chem 2020; 28:115724. [PMID: 33128909 DOI: 10.1016/j.bmc.2020.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
We have previously reported the discovery of a series of rhodanine-based inhibitors of the PIM family of serine/threonine kinases. Here we described the optimisation of those compounds to improve their physicochemical and ADME properties as well as reducing their off-targets activities against other kinases. Through molecular modeling and systematic structure activity relationship (SAR) studies, advanced molecules with high inhibitory potency, reduced off-target activity and minimal efflux were identified as new pan-PIM inhibitors. One example of an early lead, OX01401, was found to inhibit PIMs with nanomolar potency (15 nM for PIM1), inhibit proliferation of two PIM-expressing leukaemic cancer cell lines, MV4-11 and K562, and to reduce intracellular phosphorylation of a PIM substrate in a concentration dependent manner.
Collapse
Affiliation(s)
- Camilo E Quevedo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Carole J R Bataille
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Simon Byrne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew Durbin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Jon Elkins
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Abigail Guillermo
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Alan M Jones
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Anna Nadali
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Roderick G Walker
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Isabel V L Wilkinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
6
|
Panchal NK, Sabina EP. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci 2020; 255:117866. [PMID: 32479955 DOI: 10.1016/j.lfs.2020.117866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
The PIM Kinases belong to the family of a proto-oncogene that essentially phosphorylates the serine/threonine residues of the target proteins. They are primarily categorized into three types PIM-1, PIM-2, PIM-3 which plays an indispensable regulatory role in signal transduction cascades, by promoting cell survival, proliferation, and drug resistance. These kinases are overexpressed in several solid as well as hematopoietic tumors which supports in vitro and in vivo malignant cell growth along with survival by regulating cell cycle and inhibiting apoptosis. They lack regulatory domain which makes them constitutively active once transcribed. PIM kinases usually appear to be important downstream effectors of oncoproteins which overexpresses and helps in mediating drug resistance to available agents, such as rapamycin. Structural studies of PIM kinases revealed that they have unique hinge regions where two Proline resides and makes ATP binding unique, by offering a target for an increasing number of potent PIM kinase inhibitors. Preclinical studies of those inhibitory compounds in various cancers indicate that these novel agents show promising activity and some of them currently being under examination. In this review, we have outlined PIM kinases molecular mechanism and signaling pathways along with matriculation in various cancer and list of inhibitors often used.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - E P Sabina
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
7
|
FLT3-ITD induces expression of Pim kinases through STAT5 to confer resistance to the PI3K/Akt pathway inhibitors on leukemic cells by enhancing the mTORC1/Mcl-1 pathway. Oncotarget 2017; 9:8870-8886. [PMID: 29507660 PMCID: PMC5823622 DOI: 10.18632/oncotarget.22926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
FLT3-ITD is the most frequent tyrosine kinase mutation in acute myeloid leukemia (AML) associated with poor prognosis. We previously reported that activation of STAT5 confers resistance to PI3K/Akt inhibitors on the FLT3-ITD-positive AML cell line MV4-11 and 32D cells driven by FLT3-ITD (32D/ITD) but not by FLT3 mutated in the tyrosine kinase domain (32D/TKD). Here, we report the involvement of Pim kinases expressed through STAT5 activation in acquisition of this resistance. The specific pan-Pim kinase inhibitor AZD1208 as well as PIM447 in combination with the PI3K inhibitor GDC-0941 or the Akt inhibitor MK-2206 cooperatively downregulated the mTORC1/4EBP1 pathway, formation of the eIF4E/eIF4G complex, and Mcl-1 expression leading to activation of Bak and Bax to induce caspase-dependent apoptosis synergistically in these cells. These cooperative effects were enhanced or inhibited by knock down of mTOR or expression of its activated mutant, respectively. Overexpression of Mcl-1 conferred the resistance on 32D/ITD cells to combined inhibition of the PI3K/Akt pathway and Pim kinases, while the Mcl-1-specific BH3 mimetic A-1210477 conquered the resistance of MV4-11 cells to GDC-0941. Furthermore, overexpression of Pim-1 in 32D/TKD enhanced the mTORC1/Mcl-1 pathway and partially protected it from the PI3K/Akt inhibitors or the FLT3 inhibitor gilteritinib to confer the resistance to PI3K/Akt inhibitors. Finally, AZD1208 and GDC-0941 cooperatively inhibited the mTORC1/Mcl-1 pathway and reduced viable cell numbers of primary AML cells from some FLT3-ITD positive cases. Thus, Pim kinases may protect the mTORC1/4EBP1/Mcl-1 pathway to confer the resistance to the PI3K/Akt inhibitors on FLT3-ITD cells and represent promising therapeutic targets.
Collapse
|
8
|
Kapoor S, Natarajan K, Baldwin PR, Doshi KA, Lapidus RG, Mathias TJ, Scarpa M, Trotta R, Davila E, Kraus M, Huszar D, Tron AE, Perrotti D, Baer MR. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation. Clin Cancer Res 2017; 24:234-247. [PMID: 29074603 DOI: 10.1158/1078-0432.ccr-17-1629] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
Abstract
Purpose:fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition.Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivoResults: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML.Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR.
Collapse
Affiliation(s)
- Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Karthika Natarajan
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Patrick R Baldwin
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kshama A Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Rena G Lapidus
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trevor J Mathias
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Rossana Trotta
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eduardo Davila
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.,Veterans Affairs Medical Center, Baltimore, Maryland
| | | | | | | | - Danilo Perrotti
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
9
|
Rebello RJ, Huglo AV, Furic L. PIM activity in tumours: A key node of therapy resistance. Adv Biol Regul 2017; 67:163-169. [PMID: 29111105 DOI: 10.1016/j.jbior.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
The PIM kinases are proto-oncogenes which have been shown to facilitate cell survival and proliferation to drive malignancy and resistance post-therapy. They are able to suppress cell death signals, sustain PI3K/AKT/mTORC1 pathway activity and regulate the MYC oncogenic program. Recent work has revealed PIM kinase essentiality for advanced tumour maintenance and described tumour sensitivity to small molecule inhibitors targeting PIM kinase in multiple malignancies.
Collapse
Affiliation(s)
- Richard J Rebello
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, VIC, 3800, Australia
| | - Alisée V Huglo
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, VIC, 3800, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia. Leukemia 2017; 32:597-605. [PMID: 28914261 DOI: 10.1038/leu.2017.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.
Collapse
|
11
|
Hou X, Yu Y, Feng J, Wang J, Zheng C, Ling Z, Ge M, Zhu X. Biochemical changes of salivary gland adenoid cystic carcinoma cells induced by SGI-1776. Exp Cell Res 2017; 352:403-411. [PMID: 28228352 DOI: 10.1016/j.yexcr.2017.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 11/29/2022]
Abstract
Provirus integration site for Moloney murine leukemia virus 1 (Pim-1) has proved to be an oncogene and it is known that to depress Pim-1 activity may be a novel oncological treatment strategy. SGI-1776, a small molecule, is the first clinically tested inhibitor of the Pim kinase family. Here, we aimed to explore the effect of SGI-1776 on salivary adenoid cystic carcinoma (SACC). Expression of Pim-1 was confirmed in SACC and control tissues by qRT-PCR. After SGI-1776 treatment, the Pim-1 expressions and Pim-1 kinase activity in both SACC-83 and SACC-LM cell lines were measured. Cell proliferation, cell invasion, cell cycle, apoptosis and mitochondrial membrane potential were analyzed. Also, the expression of FOXO3a, p-FOXO3a, RUNX3, Bcl-2, BAD, p-BAD, Bim and p-Bim were detected by Western blot. The results showed that Pim-1 was significantly overexpressed in SACC tissues. SGI-1776 down-regulated the Pim-1 expression, inhibited Pim-1 kinase activity, reduced cell proliferation, decreased invasive ability, increased caspase-3 activity and induced apoptosis, cell cycle arrest and mitochondrial depolarization. Reduced expression was also seen in p-FOXO3a, RUNX3, Bcl-2, p-BAD and p-Bim, whereas no significant changes were observed from FOXO3a, BAD and Bim. These results confirm the pivotal role of Pim-1 in SACC and suggest that targeting Pim-1 kinase signal pathway by SGI-1776 might be a promising therapeutic modality for SACC.
Collapse
Affiliation(s)
- Xiuxiu Hou
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yunfang Yu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| | - Jianguo Feng
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| | - Jiafeng Wang
- Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| | - Chuanming Zheng
- Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| | - Zhiqiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| | - Minghua Ge
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
12
|
PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:133. [PMID: 27596051 PMCID: PMC5011911 DOI: 10.1186/s13046-016-0406-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022]
Abstract
Background The effects of PIM-1 on the progression of pancreatic cancer remain unclear, and the prognostic value of PIM-1 levels in tissues is controversial. Additionally, the expression levels and clinical value of PIM-1 in plasma have not been reported. Methods The effects of PIM-1 on biological behaviours were analysed. PIM-1 levels in tissues and plasma were detected, and the clinical value was evaluated. Results We found that PIM-1 knockdown in pancreatic cancer cells suppressed proliferation, induced cell cycle arrest, enhanced apoptosis, resensitized cells to gemcitabine and erlotinib treatment, and inhibited ABCG2 and EZH2 mRNA expression. Our results indicated that PIM-1 and the EGFR pathway formed a positive feedback loop. We also found that PIM-1 expression in pancreatic cancer tissues was significantly upregulated and that a high level of expression was negatively associated with prognosis (P = 0.025, hazard ratio [HR] =2.113, 95 % confidence interval: 1.046–4.266). Additionally, we found that plasma PIM-1 levels in patients with pancreatic cancer were significantly increased and could be used in the diagnosis of pancreatic cancer. High plasma PIM-1 expression was an independent adverse prognostic factor for pancreatic cancer (P = 0.037, HR = 1.87, 95 % CI: 1.04–3.35). Conclusion Our study suggests that PIM-1 contributes to malignancy and has diagnostic and prognostic value in pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0406-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Chen LS, Yang JY, Liang H, Cortes JE, Gandhi V. Protein profiling identifies mTOR pathway modulation and cytostatic effects of Pim kinase inhibitor, AZD1208, in acute myeloid leukemia. Leuk Lymphoma 2016; 57:2863-2873. [PMID: 27054578 DOI: 10.3109/10428194.2016.1166489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pim kinases phosphorylate and regulate a number of key acute myeloid leukemia (AML) cell survival proteins, and Pim inhibitors have recently entered clinical trial for hematological malignancies. AZD1208 is a small molecule pan-Pim kinase inhibitor and AZD1208 treatment resulted in growth inhibition and cell size reduction in AML cell lines including FLT3-WT (OCI-AML-3, KG-1a, and MOLM-16) and FLT3-ITD mutated (MOLM-13 and MV-4-11). There was limited apoptosis induction (<10% increase) in the AML cell lines evaluated with up to 3 μM AZD1208 for 24 h, suggesting that growth inhibition is not through apoptosis induction. Using reverse phase protein array (RPPA) and immunoblot analysis, we identified that AZD1208 resulted in suppression of mTOR signaling, including inhibition of protein phosphorylation of mTOR (Ser2448), p70S6K (Thr389), S6 (Ser235/236), and 4E-BP1 (Ser65). Consistent with mTOR inhibition, there was also a reduction in protein synthesis that correlated with cell size reduction and growth inhibition with AZD1208; our study provides insights into the mechanism of AZD1208.
Collapse
Affiliation(s)
- Lisa S Chen
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ji-Yeon Yang
- b Department of Applied Mathematics , Kumoh National Institute of Technology , Gumi , Korea
| | - Han Liang
- c Department of Bioinformatics and Computational Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,d Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jorge E Cortes
- e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
14
|
Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, Xie Y. Pim-1 kinase as cancer drug target: An update. Biomed Rep 2015; 4:140-146. [PMID: 26893828 DOI: 10.3892/br.2015.561] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Proviral integration site for Moloney murine leukemia virus-1 (Pim-1) is a serine/threonine kinase that regulates multiple cellular functions such as cell cycle, cell survival, drug resistance. Aberrant elevation of Pim-1 kinase is associated with numerous types of cancer. Two distinct isoforms of Pim-1 (Pim-1S and Pim-1L) show distinct cellular functions. Pim-1S predominately localizes to the nucleus and Pim-1L localizes to plasma membrane for drug resistance. Recent studies show that mitochondrial Pim-1 maintains mitochondrial integrity. Pim-1 is emerging as a cancer drug target, particularly in prostate cancer. Recently the potent new functions of Pim-1 in immunotherapy, senescence bypass, metastasis and epigenetic dynamics have been found. The aim of the present updated review is to provide brief information regarding networks of Pim-1 kinase and focus on its recent advances as a novel drug target.
Collapse
Affiliation(s)
- Yernar Tursynbay
- Department of Biology, Nazarbayev University School of Science and Technology, Astana 010000, Republic of Kazakhstan
| | - Jinfu Zhang
- Institute of International Medical Research, Department of Urology and Andrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Zhi Li
- Department of Pathology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Tursonjan Tokay
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Zhaxybay Zhumadilov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Denglong Wu
- Department of Urology, Tong Ji Hospital, Tong Ji University, Shanghai 200065, P.R. China
| | - Yingqiu Xie
- Department of Biology, Nazarbayev University School of Science and Technology, Astana 010000, Republic of Kazakhstan
| |
Collapse
|
15
|
Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC, Pilorge S, Lambert M, Paubelle E, Jacquel A, Zylbersztejn F, Decroocq J, Poulain L, Sujobert P, Jacque N, Adam K, So JCC, Kosmider O, Auberger P, Hermine O, Weinstock DM, Lacombe C, Mayeux P, Vanasse GJ, Leung AY, Moura IC, Bouscary D, Tamburini J. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. SCIENCE ADVANCES 2015; 1:e1500221. [PMID: 26601252 PMCID: PMC4643770 DOI: 10.1126/sciadv.1500221] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/30/2015] [Indexed: 05/12/2023]
Abstract
Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD-induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD(+) cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy.
Collapse
Affiliation(s)
- Alexa S. Green
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
- Department of Hematology, Charles Nicolle University Hospital, Rouen 76000, France
| | - Thiago T. Maciel
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Marie-Anne Hospital
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Chae Yin
- Division of Hematology, Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fetta Mazed
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Elizabeth C. Townsend
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston 02115, MA 02115, USA
| | - Sylvain Pilorge
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
- INSERM U1065/C3M Team 2, Cell Death Differentiation Inflammation and Cancer, Nice 06204, France
| | - Mireille Lambert
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Etienne Paubelle
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Arnaud Jacquel
- INSERM U1065/C3M Team 2, Cell Death Differentiation Inflammation and Cancer, Nice 06204, France
| | - Florence Zylbersztejn
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Justine Decroocq
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Laury Poulain
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Pierre Sujobert
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Nathalie Jacque
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Kevin Adam
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Jason C. C. So
- Division of Hematology, Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olivier Kosmider
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Patrick Auberger
- INSERM U1065/C3M Team 2, Cell Death Differentiation Inflammation and Cancer, Nice 06204, France
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston 02115, MA 02115, USA
| | - Catherine Lacombe
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Patrick Mayeux
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Gary J. Vanasse
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Anskar Y. Leung
- Division of Hematology, Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ivan C. Moura
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Didier Bouscary
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Jerome Tamburini
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
- Corresponding author. E-mail:
| |
Collapse
|
16
|
Abstract
The initiation and progression of human cancer is frequently linked to the uncontrolled activation of survival kinases. Two such pro-survival kinases that are commonly amplified in cancer are PIM and Akt. These oncogenic proteins are serine/threonine kinases that regulate tumorigenesis by phosphorylating substrates that control the cell cycle, cellular metabolism, proliferation, and survival. Growing evidence suggests that cross-talk exists between the PIM and Akt kinases, indicating that they control partially overlapping survival signaling pathways that are critical to the initiation, progression, and metastatic spread of many types of cancer. The PI3K/Akt signaling pathway is activated in many human tumors, and it is well established as a promising anticancer target. Likewise, based on the role of PIM kinases in normal and tumor tissues, it is clear that this family of kinases represents an interesting target for anticancer therapy. Pharmacological inhibition of PIM has the potential to significantly influence the efficacy of standard and targeted therapies. This review focuses on the regulation of PIM kinases, their role in tumorigenesis, and the biological impact of their interaction with the Akt signaling pathway on the efficacy of cancer therapy.
Collapse
|
17
|
Xu Y, Brenning BG, Kultgen SG, Foulks JM, Clifford A, Lai S, Chan A, Merx S, McCullar MV, Kanner SB, Ho KK. Synthesis and Biological Evaluation of Pyrazolo[1,5-a]pyrimidine Compounds as Potent and Selective Pim-1 Inhibitors. ACS Med Chem Lett 2015; 6:63-7. [PMID: 25589932 DOI: 10.1021/ml500300c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/22/2014] [Indexed: 02/01/2023] Open
Abstract
Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo[1,5-a]pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases. Selected compounds suppressed both the phosphorylation of BAD protein in a cell-based assay and 2-dimensional colony formation in a clonogenic cell survival assay at submicromolar potency, suggesting that cellular activity was mediated through inhibition of Pim-1. Moreover, these Pim-1 inhibitors did not show significant hERG inhibition at 30 μM concentration. The lead compound proved to be highly selective against a panel of 119 oncogenic kinases, indicating it had an improved safety profile compared with the first generation Pim-1 inhibitor SGI-1776.
Collapse
Affiliation(s)
- Yong Xu
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Benjamin G. Brenning
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Steven G. Kultgen
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Jason M. Foulks
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Adrianne Clifford
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Shuping Lai
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Ashley Chan
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Shannon Merx
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Michael V. McCullar
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Steven B. Kanner
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Koc-Kan Ho
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| |
Collapse
|
18
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Meja K, Stengel C, Sellar R, Huszar D, Davies BR, Gale RE, Linch DC, Khwaja A. PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. Br J Haematol 2014; 167:69-79. [PMID: 24975213 DOI: 10.1111/bjh.13013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/29/2014] [Indexed: 01/20/2023]
Abstract
PIM kinases (PIM1, 2 and 3) are involved in cell proliferation and survival signalling and are emerging targets for the therapy of various malignancies. We found that a significant proportion of primary acute myeloid leukaemia (AML) samples showed PIM1 and PIM2 expression by quantitative reverse transcription polymerase chain reaction. Therefore, we investigated the effects of a novel ATP-competitive pan-PIM inhibitor, AZD1897, on AML cell growth and survival. PIM inhibition showed limited single agent activity in AML cell lines and primary AML cells, including those with or without FLT3-internal tandem duplication (ITD) mutation. However, significant synergy was seen when AZD1897 was combined with the Akt inhibitor AZD5363, a compound that is in early-phase clinical trials. AML cells from putative leukaemia stem cell subsets, including CD34+38- and CD34+38+ fractions, were equivalently affected by dual PIM/Akt inhibition when compared with bulk tumour cells. Analysis of downstream signalling pathways showed that combined PIM/Akt inhibition downregulated mTOR outputs (phosphorylation of 4EBP1 and S6) and markedly reduced levels of the anti-apoptotic protein MCL1. The combination of PIM and Akt inhibition holds promise for the treatment of AML.
Collapse
Affiliation(s)
- Koremu Meja
- Department of Haematology, University College London Cancer Institute, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yuan LL, Green A, David L, Dozier C, Récher C, Didier C, Tamburini J, Manenti S. Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia. Leuk Res 2014; 38:1342-9. [PMID: 25281057 DOI: 10.1016/j.leukres.2014.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/04/2014] [Accepted: 08/30/2014] [Indexed: 01/28/2023]
Abstract
CHK1 Ser/Thr kinase, a well characterized regulator of DNA damage response, is also involved in normal cell cycle progression. In this study, we investigate how CHK1 participates to proliferation of acute myeloid leukemia cells expressing the mutated FLT3-ITD tyrosine kinase receptor. Pharmacological inhibition of CHK1 as well as its shRNA mediated down regulation reduced the proliferation rate of FLT-ITD expressing leukemic cell lines in a cytostatic manner. Flow cytometry analysis revealed no accumulation in a specific phase of the cell cycle upon CHK1 inhibition. Accordingly, lentiviral-mediated CHK1 overexpression increased the proliferation rate of FLT3-ITD expressing cells, as judged by cell viability and [3H] thymidine incorporation experiments. By contrast, expression of a ser280 mutant did not, suggesting that phosphorylation of this residue is an important determinant of CHK1 proliferative function. Clonogenic growth of primary leukemic cells from patients in semi-solid medium was reduced upon CHK1 inhibition, confirming the data obtained with leukemic established cell lines. Surprisingly, 3 out of 4 CHK1 inhibitory compounds tested in this study were also potent inhibitors of the FLT3-ITD tyrosine kinase receptor. Altogether, these data identify CHK1 as a regulator of FLT3-ITD-positive leukemic cells proliferation, and they open interesting perspectives in terms of new therapeutic strategies for these pathologies.
Collapse
Affiliation(s)
- Ling Li Yuan
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France; Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Alexa Green
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - Laure David
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Christine Dozier
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Christian Récher
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France; Service d'Hématologie, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Christine Didier
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Jérôme Tamburini
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France.
| |
Collapse
|
21
|
Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R, Chan A, Clifford A, Wilkes M, Vollmer D, Brenning B, Merx S, Lai S, McCullar MV, Ho KK, Albertson DJ, Call LT, Bearss JJ, Tripp S, Liu T, Stephens BJ, Mollard A, Warner SL, Bearss DJ, Kanner SB. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia 2014; 16:403-12. [PMID: 24953177 PMCID: PMC4198696 DOI: 10.1016/j.neo.2014.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers. Overexpression of one or more PIM family members in patient tumors frequently correlates with poor prognosis. The aim of this investigation was to evaluate PIM expression in low- and high-grade urothelial carcinoma and to assess the role PIM function in disease progression and their potential to serve as molecular targets for therapy. One hundred thirty-seven cases of urothelial carcinoma were included in this study of surgical biopsy and resection specimens. High levels of expression of all three PIM family members were observed in both noninvasive and invasive urothelial carcinomas. The second-generation PIM inhibitor, TP-3654, displays submicromolar activity in pharmacodynamic biomarker modulation, cell proliferation studies, and colony formation assays using the UM-UC-3 bladder cancer cell line. TP-3654 displays favorable human ether-à-go-go-related gene and cytochrome P450 inhibition profiles compared with the first-generation PIM inhibitor, SGI-1776, and exhibits oral bioavailability. In vivo xenograft studies using a bladder cancer cell line show that PIM kinase inhibition can reduce tumor growth, suggesting that PIM kinase inhibitors may be active in human urothelial carcinomas.
Collapse
Affiliation(s)
| | | | - Bai Luo
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Yong Xu
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Anna Senina
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Rebecca Nix
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Ashley Chan
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | | | | | | | | | | | - Shuping Lai
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | | | - Koc-Kan Ho
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Daniel J Albertson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Jared J Bearss
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Ting Liu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | | | | | | | | | | |
Collapse
|
22
|
AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2013; 123:905-13. [PMID: 24363397 DOI: 10.1182/blood-2013-04-495366] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Upregulation of Pim kinases is observed in several types of leukemias and lymphomas. Pim-1, -2, and -3 promote cell proliferation and survival downstream of cytokine and growth factor signaling pathways. AZD1208 is a potent, highly selective, and orally available Pim kinase inhibitor that effectively inhibits all three isoforms at <5 nM or <150 nM in enzyme and cell assays, respectively. AZD1208 inhibited the growth of 5 of 14 acute myeloid leukemia (AML) cell lines tested, and sensitivity correlates with Pim-1 expression and STAT5 activation. AZD1208 causes cell cycle arrest and apoptosis in MOLM-16 cells, accompanied by a dose-dependent reduction in phosphorylation of Bcl-2 antagonist of cell death, 4EBP1, p70S6K, and S6, as well as increases in cleaved caspase 3 and p27. Inhibition of p4EBP1 and p-p70S6K and suppression of translation are the most representative effects of Pim inhibition in sensitive AML cell lines. AZD1208 inhibits the growth of MOLM-16 and KG-1a xenograft tumors in vivo with a clear pharmacodynamic-pharmacokinetic relationship. AZD1208 also potently inhibits colony growth and Pim signaling substrates in primary AML cells from bone marrow that are Flt3 wild-type or Flt3 internal tandem duplication mutant. These results underscore the therapeutic potential of Pim kinase inhibition for the treatment of AML.
Collapse
|
23
|
Hu B, Vikas P, Mohty M, Savani BN. Allogeneic stem cell transplantation and targeted therapy for FLT3/ITD+ acute myeloid leukemia: an update. Expert Rev Hematol 2013; 7:301-15. [PMID: 24308526 DOI: 10.1586/17474086.2014.857596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Survival of patients with acute myelogenous leukemia (AML), particularly in younger patients, has improved in recent years due to improved understanding of disease biology, post remission therapies and supportive care. AML, however, remains difficult to treat as many patients will still ultimately relapse and die of their disease. This is particularly true in AML patients with identified FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) molecular mutations, which typically confers a poor prognosis. The FLT3-ITD mutation occurs in about one-quarter of patients diagnosed with AML. Oftentimes, these patients are referred for early allogeneic hematopoietic stem cell transplantation (HSCT) in hopes of overcoming this poor prognostic factor. Several studies have demonstrated some benefit with HSCT in patients with FLT3-ITD mutation. However, recent data suggested that FLT3-ITD mutation remains a poor prognostic factor even after early HSCT; these patients remain at risk for early relapse after transplantation, emphasizing ongoing efforts to explore maintenance therapy with FLT3-ITD inhibitors in the post-transplant setting.
Collapse
Affiliation(s)
- Bei Hu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
24
|
Pim-1 kinase phosphorylates and stabilizes 130 kDa FLT3 and promotes aberrant STAT5 signaling in acute myeloid leukemia with FLT3 internal tandem duplication. PLoS One 2013; 8:e74653. [PMID: 24040307 PMCID: PMC3764066 DOI: 10.1371/journal.pone.0074653] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/07/2013] [Indexed: 01/19/2023] Open
Abstract
The type III receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) is expressed on both normal hematopoietic stem cells and acute myeloid leukemia (AML) cells and regulates their proliferation. Internal tandem duplication (ITD) mutation of FLT3 is present in a third of AML cases, results in constitutive activation and aberrant signaling of FLT3, and is associated with adverse treatment outcomes. While wild-type (WT) FLT3 is predominantly a 150 kDa complex glycosylated cell surface protein, FLT3-ITD is partially retained in the endoplasmic reticulum as a 130 kDa underglycosylated species associated with the chaperones calnexin and heat shock protein (HSP) 90, and mediates aberrant STAT5 signaling, which upregulates the oncogenic serine/threonine kinase Pim-1. FLT3 contains a Pim-1 substrate consensus serine phosphorylation site, and we hypothesized that it might be a Pim-1 substrate. Pim-1 was indeed found to directly interact with and serine-phosphorylate FLT3. Pim-1 inhibition decreased the expression and half-life of 130 kDa FLT3, with partial abrogation by proteasome inhibition, in association with decreased FLT3 binding to calnexin and HSP90, and increased 150 kDa FLT3 expression and half-life, with abrogation by inhibition of glycosylation. These findings were consistent with Pim-1 stabilizing FLT3-ITD as a 130 kDa species associated with calnexin and HSP90 and inhibiting its glycosylation to form the 150 kDa species. Pim-1 knockdown effects were similar. Pim-1 inhibition also decreased phosphorylation of FLT3 at tyrosine 591 and of STAT5, and expression of Pim-1 itself, consistent with inhibition of the FLT3-ITD-STAT5 signaling pathway. Finally, Pim-1 inhibition synergized with FLT3 inhibition in inducing apoptosis of FLT3-ITD cells. This is, to our knowledge, the first demonstration of a role of Pim-1 in a positive feedback loop promoting aberrant signaling in malignant cells.
Collapse
|
25
|
Cervantes-Gomez F, Chen LS, Orlowski RZ, Gandhi V. Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13 Suppl 2:S317-29. [PMID: 23988451 DOI: 10.1016/j.clml.2013.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pim kinases are constitutively active serine/threonine/tyrosine kinases that are overexpressed in hematological malignancies such as multiple myeloma. Pim kinase substrates are involved in transcription, protein translation, cell proliferation, and apoptosis. SGI-1776 is a potent Pim kinase inhibitor that has proven to be cytotoxic to leukemia and lymphoma cells. Based on this background, we hypothesized that SGI-1776 treatment would result in myeloma cytotoxicity. MATERIALS AND METHODS To test this, myeloma cell lines and primary CD138(+) cells from myeloma patients were treated with SGI-1776 in a dose- and time-dependent manner, and effect on cell death and proliferation, induction of autophagy, and changes in cell cycle profile were measured. RESULTS SGI-1776 treatment resulted in limited apoptosis in cell lines (mean 30%) and CD138(+) cells (< 10%) assessed using Annexin-V/propidium iodide. Limited effect was observed in cell cycle profile or growth in cell lines. However, DNA synthesis was decreased by 70% at 3 μM (all time points) in U266 though this was not observed in MM.1S. In accordance, immunoblot analyses revealed no change in transcription (c-Myc and H3), or apoptotic (Bad) proteins that are substrates of Pim kinases. In contrast, autophagy, assessed using acridine orange staining, was induced with SGI-1776 treatment in both cell lines (U266, 25%-70%; MM.1S, 8%-52%) and CD138(+) cells (19%-21%). Immunoblot analyses of the autophagy LC3b marker and translation initiation proteins (phospho-p70S6K and 4E-BP1) corroborated autophagy induction. CONCLUSION These data indicate that SGI-1776 treatment in myeloma cell lines and CD138(+) myeloma cells elicits its deleterious effects through inhibition of translation and induction of autophagy.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | | | | | | |
Collapse
|
26
|
Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia 2013; 28:293-301. [PMID: 23748345 DOI: 10.1038/leu.2013.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022]
Abstract
Phosphorylation by Akt on Ser 280 was reported to induce cytoplasmic retention and inactivation of CHK1 with consequent genetic instability in PTEN-/- cells. In acute myeloid leukemia cells carrying the FLT3-internal tandem duplication (ITD) mutation, we observed high rates of FLT3-ITD-dependent CHK1 Ser 280 phosphorylation. Pharmacological inhibition and RNA interference identified Pim1/2, not Akt, as effectors of this phosphorylation. Pim1 catalyzed Ser 280 phosphorylation in vitro and ectopic expression of Pim1/2-induced CHK1 phosphorylation. Ser 280 phosphorylation did not modify CHK1 localization, but facilitated its cell cycle and resistance functions in leukemic cells. FLT3, PIM or CHK1 inhibitors synergized with DNA-damaging agents to induce apoptosis, allowing cells to bypass the etoposide-induced G2/M arrest. Consistently, etoposide-induced CHK1-dependent phosphorylations of CDC25C on Ser 216 and histone H3 on Thr11 were decreased upon FLT3 inhibition. Accordingly, ectopic expression of CHK1 improved the resistance of FLT3-ITD cells and maintained histone H3 phosphorylation in response to DNA damage, whereas expression of unphosphorylated Ser 280Ala mutant did not. Finally, FLT3- and Pim-dependent phosphorylation of CHK1 on Ser 280 was confirmed in primary blasts from patients. These results identify a new pathway involved in the resistance of FLT3-ITD leukemic cells to genotoxic agents, and they constitute the first report of CHK1 Ser 280 regulation in myeloid malignancies.
Collapse
|
27
|
Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2013; 34:136-59. [PMID: 23576269 DOI: 10.1002/med.21284] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | |
Collapse
|
28
|
Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2012; 85:629-643. [PMID: 23041228 DOI: 10.1016/j.bcp.2012.09.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
PIM proteins belong to a family of ser/thr kinases composed of 3 members, PIM1, PIM2 and PIM3, with greatly overlapping functions. PIM kinases are mainly responsible for cell cycle regulation, antiapoptotic activity and the homing and migration of receptor tyrosine kinases mediated via the JAK/STAT pathway. PIM kinases have been found to be upregulated in many hematological malignancies and solid tumors. Although these kinases have been described as weak oncogenes, they are heavily targeted for anticancer drug discovery. The present review summarizes the discoveries made to date regarding PIM kinases as driving oncogenes in the process of tumorigenesis and their validation as drug targets.
Collapse
Affiliation(s)
- Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain; Consejo Superior de Investigaciones Cientificas, Spain.
| |
Collapse
|
29
|
Ogawa N, Yuki H, Tanaka A. Insights from Pim1 structure for anti-cancer drug design. Expert Opin Drug Discov 2012; 7:1177-92. [DOI: 10.1517/17460441.2012.727394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Drygin D, Haddach M, Pierre F, Ryckman DM. Potential Use of Selective and Nonselective Pim Kinase Inhibitors for Cancer Therapy. J Med Chem 2012; 55:8199-208. [DOI: 10.1021/jm3009234] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Denis Drygin
- Cylene Pharmaceuticals, 5820 Nancy Ridge Drive, Suite 200, San Diego, California 92121,
United States
| | - Mustapha Haddach
- HTK Corporation, 5218 Rivergrade Road, Irwindale, California
91706, United States
| | - Fabrice Pierre
- 3244
Caminito Eastbluff, Apt 40, La Jolla, California 92037, United States
| | - David M. Ryckman
- Cylene Pharmaceuticals, 5820 Nancy Ridge Drive, Suite 200, San Diego, California 92121,
United States
| |
Collapse
|