1
|
Ma XH, Gao MG, Cheng RQ, Qin YZ, Duan WB, Jiang H, Huang XJ, Zhao XS. The expression level of EVI1 and clinical features help to distinguish prognostic heterogeneity in the AML entity with EVI1 overexpression. Cancer Lett 2025; 615:217547. [PMID: 39956382 DOI: 10.1016/j.canlet.2025.217547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Acute myeloid leukemia (AML) with 3q26 rearrangements results in a poor prognosis and typically causes ecotropic viral integration site1 (EVI1) overexpression (EVI1oe); however, many AML patients with EVI1oe have undetected 3q26 rearrangements. The aim of this study was to restratify AML patients with EVI1oe. We retrospectively reviewed the diagnostic outcomes of 1327 patients tested at our institute from November 2015 to December 2022. A total of 468 de novo AML patients were included, with 191 classified as EVI1oe. Eighteen AML patients with EVI1oe had detectable 3q26 rearrangements and had significantly greater EVI1 expression levels than those without rearrangements. A new cutoff value for EVI1oe in AML patients of 122 % was determined using the ROC curve based on overall survival (OS) and effectively distinguished the prognosis of EVI1oe AML patients without detectable 3q26 rearrangements (p = 0.0051 and 0.0039, respectively). Using this cutoff value, ELN stratification, transplantation status, response to induction therapy, and bone marrow blast percentage, we constructed a nomogram model (C-index = 0.808). This model was used to stratify patients into two risk subgroups, with the low-risk subgroup showing better OS than the high-risk subgroup did (p < 0.001 in the training cohort; p = 0.002 in the validation cohort). In conclusion, AML patients with EVI1oe have heterogeneous prognoses. The use of EVI1 expression levels in combination with other risk factors may enable accurate prognostic stratification of AML patients with EVI1oe.
Collapse
MESH Headings
- Humans
- MDS1 and EVI1 Complex Locus Protein/genetics
- MDS1 and EVI1 Complex Locus Protein/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/metabolism
- Male
- Female
- Middle Aged
- Prognosis
- Retrospective Studies
- Adult
- Aged
- Nomograms
- Young Adult
- Adolescent
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Rearrangement
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiao-Hang Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Rong-Qi Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Wen-Bing Duan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
2
|
Arza-Apalategi S, Heuts BMH, Bergevoet SM, Meering R, Gilissen D, Jansen PWTC, Krippner-Heidenreich A, Valk PJM, Vermeulen M, Heidenreich O, Haferlach T, Jansen JH, Martens JHA, van der Reijden BA. HMX3 is a critical vulnerability in MECOM-negative KMT2A::MLLT3 acute myelomonocytic leukemia. Leukemia 2025; 39:371-380. [PMID: 39633068 DOI: 10.1038/s41375-024-02485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
KMT2A::MLLT3 acute myelomonocytic leukemia (AML) comes in two clinically and biologically different subtypes. One is characterized by inferior outcome, older age, and MECOM oncogene expression. The other is mainly observed in children and young adults, associates with better clinical outcome, but lacks MECOM. To identify cell fate determining transcription factors downstream of KMT2A::MLLT3, we applied a bioinformatic algorithm that integrates gene and enhancer expression from primary MECOM-positive and -negative KMT2A::MLLT3 AML samples. This identified MECOM to be most influential in the MECOM-positive group, while neuronal transcription factor HMX3 was most influential in the MECOM-negative group. In large AML cohorts, HMX3 expression associated with a unique gene expression profile, younger age (p < 0.002) and KMT2A-rearranged and KAT6A-CREBBP leukemia (p < 0.00001). HMX3 was not expressed in other major genetic risk groups and healthy blood cells. RNA-sequencing analyses following forced HMX3 expression in healthy CD34+ cells and its silencing in KMT2A::MLT3 cells showed that HMX3 drives cancer-associated E2F and MYC gene programs (p < 0.001). HMX3 expression in healthy CD34+ cells blocked monocytic but not granulocytic colony formation. Strikingly, HMX3 silencing in KMT2A::MLLT3 patient cells resulted in cell cycle arrest, monocytic differentiation and apoptosis. Thus, the neuronal transcription factor HMX3 is a leukemia-specific vulnerability in KMT2A::MLLT3 AML.
Collapse
Affiliation(s)
- Saioa Arza-Apalategi
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roos Meering
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan Gilissen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | | | - Peter J M Valk
- Department Hematology, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Fleming TJ, Antoszewski M, Lambo S, Gundry MC, Piussi R, Wahlster L, Shah S, Reed FE, Dong KD, Paulo JA, Gygi SP, Mimoso C, Goldman SR, Adelman K, Perry JA, Pikman Y, Stegmaier K, Barrachina MN, Machlus KR, Hovestadt V, Arruda A, Minden MD, Voit RA, Sankaran VG. CEBPA repression by MECOM blocks differentiation to drive aggressive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630680. [PMID: 39803492 PMCID: PMC11722404 DOI: 10.1101/2024.12.30.630680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown. To address existing experimental limitations, we engineered and applied targeted protein degradation with functional genomic readouts to demonstrate that MECOM promotes malignant stem cell-like states by directly repressing pro-differentiation gene regulatory programs. Remarkably and unexpectedly, a single node in this network, a MECOM-bound cis-regulatory element located 42 kb downstream of the myeloid differentiation regulator CEBPA, is both necessary and sufficient for maintaining MECOM-driven leukemias. Importantly, targeted activation of this regulatory element promotes differentiation of these aggressive AMLs and reduces leukemia burden in vivo, suggesting a broadly applicable differentiation-based approach for improving therapy.
Collapse
Affiliation(s)
- Travis J. Fleming
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Sander Lambo
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Michael C. Gundry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Riccardo Piussi
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sanjana Shah
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona E. Reed
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin D. Dong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer A. Perry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yana Pikman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria N. Barrachina
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Volker Hovestadt
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Richard A. Voit
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Present Address: UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02142, USA
- Lead contact
| |
Collapse
|
4
|
Vervoort BMT, Butler M, Grünewald KJT, Schenau DSVI, Tee TM, Lucas L, Huitema ADR, Boer JM, Bornhauser BC, Bourquin JP, Hoogerbrugge PM, Van der Velden VHJ, Kuiper RP, Van der Meer LT, Van Leeuwen FN. IKZF1 gene deletions drive resistance to cytarabine in B-cell precursor acute lymphoblastic leukemia. Haematologica 2024; 109:3904-3917. [PMID: 38841778 PMCID: PMC11609812 DOI: 10.3324/haematol.2023.284357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
IKZF1 deletions occur in 10-15% of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and predict a poor outcome. However, the impact of IKZF1 loss on sensitivity to drugs used in contemporary treatment protocols has remained underexplored. Here we show in experimental models and in patients that loss of IKZF1 promotes resistance to cytarabine (AraC), a key component of both upfront and relapsed treatment protocols. We attribute this resistance, in part, to diminished import and incorporation of AraC due to reduced expression of the solute carrier hENT1. Moreover, we found elevated mRNA expression of Evi1, a known driver of therapy resistance in myeloid malignancies. Finally, a kinase directed CRISPR/Cas9-screen identified that inhibition of either mediator kinases CDK8/19 or casein kinase 2 can restore response to AraC. We conclude that this high-risk group of patients could benefit from alternative antimetabolites, or targeted therapies that re-sensitize leukemic cells to AraC.
Collapse
Affiliation(s)
| | - Miriam Butler
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS
| | | | | | - Trisha M Tee
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS
| | - Luc Lucas
- Netherlands Cancer Institute, Amsterdam
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands; Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS
| | - Beat C Bornhauser
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, CH-8008
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, CH-8008
| | | | | | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands; Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht The Netherlands
| | | | | |
Collapse
|
5
|
Grenier JMP, Testut C, Bal M, Bardin F, De Grandis M, Gelsi-Boyer V, Vernerey J, Delahaye M, Granjeaud S, Zemmour C, Spinella JF, Chavakis T, Mancini SJC, Boher JM, Hébert J, Sauvageau G, Vey N, Schwaller J, Hospital MA, Fauriat C, Aurrand-Lions M. Genetic deletion of JAM-C in preleukemic cells rewires leukemic stem cell gene expression program in AML. Blood Adv 2024; 8:4662-4678. [PMID: 38954834 PMCID: PMC11402138 DOI: 10.1182/bloodadvances.2023011747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT The leukemic stem cell (LSC) score LSC-17 based on a stemness-related gene expression signature is an indicator of poor disease outcome in acute myeloid leukemia (AML). However, it is not known whether "niche anchoring" of LSC affects disease evolution. To address this issue, we conditionally inactivated the adhesion molecule JAM-C (Junctional Adhesion Molecule-C) expressed by hematopoietic stem cells (HSCs) and LSCs in an inducible mixed-lineage leukemia (iMLL)-AF9-driven AML mouse model. Deletion of Jam3 (encoding JAM-C) before induction of the leukemia-initiating iMLL-AF9 fusion resulted in a shift from long-term to short-term HSC expansion, without affecting disease initiation and progression. In vitro experiments showed that JAM-C controlled leukemic cell nesting irrespective of the bone marrow stromal cells used. RNA sequencing performed on leukemic HSCs isolated from diseased mice revealed that genes upregulated in Jam3-deficient animals belonged to activation protein-1 (AP-1) and tumor necrosis factor α (TNF-α)/NF-κB pathways. Human orthologs of dysregulated genes allowed to identify a score that was distinct from, and complementary to, the LSC-17 score. Substratification of patients with AML using LSC-17 and AP-1/TNF-α genes signature defined 4 groups with median survival ranging from <1 year to a median of "not reached" after 8 years. Finally, coculture experiments showed that AP-1 activation in leukemic cells was dependent on the nature of stromal cells. Altogether, our results identify the AP-1/TNF-α gene signature as a proxy of LSC anchoring in bone marrow niches, which improves the prognostic value of the LSC-17 score. This trial was registered at www.ClinicalTrials.gov as #NCT02320656.
Collapse
Affiliation(s)
- Julien M. P. Grenier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
- UMR 7268, Aix-Marseille Université, EFS, CNRS, GENGLOBE, Marseille, France
| | - Céline Testut
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Matthieu Bal
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Florence Bardin
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Maria De Grandis
- Aix-Marseille University, CNRS, EFS, ADES, Biologie des Groupes Sanguins, Marseille, France
- UMR 7268, Aix-Marseille Université, EFS, CNRS, GENGLOBE, Marseille, France
| | - Véronique Gelsi-Boyer
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Julien Vernerey
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Marjorie Delahaye
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Samuel Granjeaud
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Christophe Zemmour
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Jean-François Spinella
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stéphane J. C. Mancini
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Jean-Marie Boher
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Josée Hébert
- Division of Hematology-Oncology, Department of Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Norbert Vey
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Jürg Schwaller
- Department of Biomedicine, University Children’s Hospital, University of Basel, Basel, Switzerland
| | | | - Cyril Fauriat
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| |
Collapse
|
6
|
Pastoors D, Havermans M, Mulet-Lazaro R, Brian D, Noort W, Grasel J, Hoogenboezem R, Smeenk L, Demmers JAA, Milsom MD, Enver T, Groen RWJ, Bindels E, Delwel R. Oncogene EVI1 drives acute myeloid leukemia via a targetable interaction with CTBP2. SCIENCE ADVANCES 2024; 10:eadk9076. [PMID: 38748792 PMCID: PMC11095456 DOI: 10.1126/sciadv.adk9076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.
Collapse
Affiliation(s)
- Dorien Pastoors
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marije Havermans
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Duncan Brian
- Stem Cell Group, UCL Cancer Institute, University College London, London, UK
| | - Willy Noort
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, Netherlands
| | - Julius Grasel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Experimental Hematology, German Cancer Research Center, DKFZ69120 Heidelberg, Germany
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leonie Smeenk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Michael D. Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Experimental Hematology, German Cancer Research Center, DKFZ69120 Heidelberg, Germany
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London, UK
| | - Richard W. J. Groen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
7
|
Voit RA, Sankaran VG. MECOM Deficiency: from Bone Marrow Failure to Impaired B-Cell Development. J Clin Immunol 2023:10.1007/s10875-023-01545-0. [PMID: 37407873 DOI: 10.1007/s10875-023-01545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
MECOM deficiency is a recently identified inborn error of immunity and inherited bone marrow failure syndrome caused by haploinsufficiency of the hematopoietic transcription factor MECOM. It is unique among inherited bone marrow failure syndromes, many of which present during later childhood or adolescence, because of the early age of onset and severity of the pancytopenia, emphasizing the importance and gene dose dependency of MECOM during hematopoiesis. B-cell lymphopenia and hypogammaglobulinemia have been described in a subset of patients with MECOM deficiency. While the mechanisms underlying the B-cell deficiency are currently unknown, recent work has provided mechanistic insights into the function of MECOM in hematopoietic stem cell (HSC) maintenance. MECOM binds to regulatory enhancers that control the expression of a network of genes essential for HSC maintenance and self-renewal. Heterozygous mutations, as seen in MECOM-deficient bone marrow failure, lead to dysregulated MECOM network expression. Extra-hematopoietic manifestations of MECOM deficiency, including renal and cardiac anomalies, radioulnar synostosis, clinodactyly, and hearing loss, have been reported. Individuals with specific genotypes have some of the systemic manifestations with isolated mild thrombocytopenia or without hematologic abnormalities, highlighting the tissue specificity of mutations in some MECOM domains. Those infants with MECOM-associated bone marrow failure require HSC transplantation for survival. Here, we review the expanding cohort of patient phenotypes and accompanying genotypes resulting in MECOM deficiency, and the proposed mechanisms underlying MECOM regulation of human HSC maintenance and B-cell development.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Voit RA, Tao L, Yu F, Cato LD, Cohen B, Fleming TJ, Antoszewski M, Liao X, Fiorini C, Nandakumar SK, Wahlster L, Teichert K, Regev A, Sankaran VG. A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia. Nat Immunol 2023; 24:69-83. [PMID: 36522544 PMCID: PMC9810535 DOI: 10.1038/s41590-022-01370-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
The molecular regulation of human hematopoietic stem cell (HSC) maintenance is therapeutically important, but limitations in experimental systems and interspecies variation have constrained our knowledge of this process. Here, we have studied a rare genetic disorder due to MECOM haploinsufficiency, characterized by an early-onset absence of HSCs in vivo. By generating a faithful model of this disorder in primary human HSCs and coupling functional studies with integrative single-cell genomic analyses, we uncover a key transcriptional network involving hundreds of genes that is required for HSC maintenance. Through our analyses, we nominate cooperating transcriptional regulators and identify how MECOM prevents the CTCF-dependent genome reorganization that occurs as HSCs differentiate. We show that this transcriptional network is co-opted in high-risk leukemias, thereby enabling these cancers to acquire stem cell properties. Collectively, we illuminate a regulatory network necessary for HSC self-renewal through the study of a rare experiment of nature.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Liming Tao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Blake Cohen
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Travis J Fleming
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaotian Liao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Satish K Nandakumar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Bronx, NY, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristian Teichert
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
9
|
Gudmundsson KO, Du Y. Quiescence regulation by normal haematopoietic stem cells and leukaemia stem cells. FEBS J 2022. [PMID: 35514133 DOI: 10.1111/febs.16472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The haematopoietic system is maintained by rare haematopoietic stem cells (HSCs), which are quiescent most of the time and only divide occasionally to self-renew and/or to undergo commitment to clonal expansion via the generation of highly proliferative progenitor cells. The latter is responsible for the generation of all mature cells of the system through subsequent lineage commitment and terminal differentiation. Cells with similar properties also exist in leukaemias and are known as leukaemia stem cells (LSCs). Quiescence provides essential protection for both HSC and LSC from cytotoxic stress and DNA damage and, in the case of LSCs, likely causes therapy resistance and disease relapse in leukaemia patients. Specific inhibition of LSC quiescence has been considered a promising strategy for eliminating LSCs and curing leukaemias. Although the understanding of mechanisms responsible for quiescence maintenance in these cells remains limited, particularly for LSCs, recent studies have suggested potential differences in their dependency on certain pathways and their levels of stress and DNA damage caused by increased cycling. Such differences likely stem from oncogenic mutations in LSCs and could be specifically exploited for the elimination of LSCs while sparing normal HSCs in the future.
Collapse
Affiliation(s)
- Kristbjorn Orri Gudmundsson
- Basic Science Program Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program Center for Cancer Research NCI Frederick MD USA
| | - Yang Du
- Department of Pediatrics Uniformed Services University of the Health Sciences Bethesda MD USA
| |
Collapse
|
10
|
Bai H, Zhang Q, Zhang S, Wang J, Luo B, Dong Y, Gao J, Cheng T, Dong F, Ema H. Multiple cells of origin in common with various types of mouse N-Myc acute leukemia. Leuk Res 2022; 117:106843. [DOI: 10.1016/j.leukres.2022.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
11
|
Sun R, Yu L, Xu K, Pu Y, Huang J, Liu M, Zhang J, Yin L, Pu Y. Evi1 involved in benzene-induced haematotoxicity via modulation of PI3K/mTOR pathway and negative regulation Serpinb2. Chem Biol Interact 2022; 354:109836. [PMID: 35092719 DOI: 10.1016/j.cbi.2022.109836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Benzene is a widely used chemical and an environmental pollutant. Exposure to benzene can cause blood diseases, but the mechanisms underlying benzene haematotoxicity have not been fully clarified. Ecotropic virus integration site-1 (Evi1), a transcription factor, plays important roles in normal haematopoiesis and haematological diseases. In this study, we investigated the role and mechanism of Evi1 in benzene-induced haematotoxicity. We found that benzene exposure significantly increased Evi1 level in white blood cells (WBCs) in occupational benzene workers as well as mouse bone marrow cells. Further in vitro results demonstrated that compared with control cells exposed to same 1,4-benzoquinone (1,4-BQ, an important active metabolite of benzene) concentration, Evi1 downregulation significantly reduced cell proliferation, and disrupted cell viability, apoptosis, erythroid and megakaryotic cell differentiation and cell cycle. Additionally, down-regulation of Evi1 suppressed phosphoinositide 3-kinase (PI3K)/mTOR signalling pathway and elevated its target gene Serpinb2 following 1,4-BQ exposure. Moreover, the PI3K activator could partially relieve the inhibitory effect of down-regulation of Evi1 on cell proliferation and increase cell arrest in in G2/M phase. What's more, downregulation of Serpinb2 could partially alleviate proliferation inhibition and reverse cell cycle changes in G0/G1 phase and S phase induced by Evi1 inhibition. In conclusion, our data revealed that Evi1 downregulation aggravated the inhibition of cell proliferation and arrested cells in the G0/G1 phase when exposed to 1,4-BQ, potentially by inactivating the PI3K/mTOR pathway and upregulating downstream target gene Serpinb2. Our study provides novel insights on mechanism by which Evi1 participates in benzene-induced haematotoxicity.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
12
|
Nguyen N, Gudmundsson KO, Soltis AR, Oakley K, Roy KR, Han Y, Gurnari C, Maciejewski JP, Crouch G, Ernst P, Dalgard CL, Du Y. Recruitment of MLL1 complex is essential for SETBP1 to induce myeloid transformation. iScience 2022; 25:103679. [PMID: 35036869 PMCID: PMC8749219 DOI: 10.1016/j.isci.2021.103679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal activation of SETBP1 due to overexpression or missense mutations occurs frequently in various myeloid neoplasms and associates with poor prognosis. Direct activation of Hoxa9/Hoxa10/Myb transcription by SETBP1 and its missense mutants is essential for their transforming capability; however, the underlying epigenetic mechanisms remain elusive. We found that both SETBP1 and its missense mutant SETBP1(D/N) directly interact with histone methyltransferase MLL1. Using a combination of ChIP-seq and RNA-seq analysis in primary hematopoietic stem and progenitor cells, we uncovered extensive overlap in their genomic occupancy and their cooperation in activating many oncogenic transcription factor genes including Hoxa9/Hoxa10/Myb and a large group of ribosomal protein genes. Genetic ablation of Mll1 as well as treatment with an inhibitor of the MLL1 complex OICR-9429 abrogated Setbp1/Setbp1(D/N)-induced transcriptional activation and transformation. Thus, the MLL1 complex plays a critical role in Setbp1-induced transcriptional activation and transformation and represents a promising target for treating myeloid neoplasms with SETBP1 activation.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kristbjorn O. Gudmundsson
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anthony R. Soltis
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kevin Oakley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kartik R. Roy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yufen Han
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary Crouch
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
EVI1 Promotes the Proliferation and Invasive Properties of Human Head and Neck Squamous Cell Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23031050. [PMID: 35162973 PMCID: PMC8835242 DOI: 10.3390/ijms23031050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a frequent malignancy with a poor prognosis. So far, the EGFR inhibitor cetuximab is the only approved targeted therapy. A deeper understanding of the molecular and genetic basis of HNSCC is needed to identify additional targets for rationally designed, personalized therapeutics. The transcription factor EVI1, the major product of the MECOM locus, is an oncoprotein with roles in both hematological and solid tumors. In HNSCC, high EVI1 expression was associated with an increased propensity to form lymph node metastases, but its effects in this tumor entity have not yet been determined experimentally. We therefore overexpressed or knocked down EVI1 in several HNSCC cell lines and determined the impact of these manipulations on parameters relevant to tumor growth and invasiveness, and on gene expression patterns. Our results revealed that EVI1 promoted the proliferation and migration of HNSCC cells. Furthermore, it augmented tumor spheroid formation and the ability of tumor spheroids to displace an endothelial cell layer. Finally, EVI1 altered the expression of numerous genes in HNSCC cells, which were enriched for Gene Ontology terms related to its cellular functions. In summary, EVI1 represents a novel oncogene in HNSCC that contributes to cellular proliferation and invasiveness.
Collapse
|
14
|
Liu L, Patnana PK, Xie X, Frank D, Nimmagadda SC, Rosemann A, Liebmann M, Klotz L, Opalka B, Khandanpour C. High Metabolic Dependence on Oxidative Phosphorylation Drives Sensitivity to Metformin Treatment in MLL/AF9 Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14030486. [PMID: 35158754 PMCID: PMC8833593 DOI: 10.3390/cancers14030486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia is a group of metabolic heterogeneous cancers, of which the long-term overall survival is still poor, especially in elderly patients. Targeting metabolic reprogramming in leukemic cells is becoming a promising strategy. The aim of our research was to explore the relation of genetic mutations with the metabolic phenotype and potential therapeutics to target metabolic pathway dependence. We confirmed the metabolic heterogeneity in AML cell lines and found the high dependence on oxidative phosphorylation in MLL/AF9 AML cells. Metformin could significantly repress the proliferation of MLL/AF9 AML cells by inhibiting oxidative phosphorylation. Abstract Acute myeloid leukemia (AML) is a group of hematological cancers with metabolic heterogeneity. Oxidative phosphorylation (OXPHOS) has been reported to play an important role in the function of leukemic stem cells and chemotherapy-resistant cells and are associated with inferior prognosis in AML patients. However, the relationship between metabolic phenotype and genetic mutations are yet to be explored. In the present study, we demonstrate that AML cell lines have high metabolic heterogeneity, and AML cells with MLL/AF9 have upregulated mitochondrial activity and mainly depend on OXPHOS for energy production. Furthermore, we show that metformin repressed the proliferation of MLL/AF9 AML cells by inhibiting mitochondrial respiration. Together, this study demonstrates that AML cells with an MLL/AF9 genotype have a high dependency on OXPHOS and could be therapeutically targeted by metformin.
Collapse
Affiliation(s)
- Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany; (L.L.); (P.K.P.); (X.X.); (D.F.); (S.C.N.)
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany; (L.L.); (P.K.P.); (X.X.); (D.F.); (S.C.N.)
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany; (L.L.); (P.K.P.); (X.X.); (D.F.); (S.C.N.)
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany; (L.L.); (P.K.P.); (X.X.); (D.F.); (S.C.N.)
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany; (L.L.); (P.K.P.); (X.X.); (D.F.); (S.C.N.)
| | - Annegret Rosemann
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany;
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany; (M.L.); (L.K.)
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany; (M.L.); (L.K.)
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany; (L.L.); (P.K.P.); (X.X.); (D.F.); (S.C.N.)
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
- Correspondence:
| |
Collapse
|
15
|
Chiarella E, Aloisio A, Scicchitano S, Todoerti K, Cosentino EG, Lico D, Neri A, Amodio N, Bond HM, Mesuraca M. ZNF521 Enhances MLL-AF9-Dependent Hematopoietic Stem Cell Transformation in Acute Myeloid Leukemias by Altering the Gene Expression Landscape. Int J Mol Sci 2021; 22:ijms221910814. [PMID: 34639154 PMCID: PMC8509509 DOI: 10.3390/ijms221910814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Leukemias derived from the MLL-AF9 rearrangement rely on dysfunctional transcriptional networks. ZNF521, a transcription co-factor implicated in the control of hematopoiesis, has been proposed to sustain leukemic transformation in collaboration with other oncogenes. Here, we demonstrate that ZNF521 mRNA levels correlate with specific genetic aberrations: in particular, the highest expression is observed in AMLs bearing MLL rearrangements, while the lowest is detected in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. In cord blood-derived CD34+ cells, enforced expression of ZNF521 provides a significant proliferative advantage and enhances MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome analysis of primary CD34+ cultures displayed subsets of genes up-regulated by MLL-AF9 or ZNF521 single transgene overexpression as well as in MLL-AF9/ZNF521 combinations, at either the early or late time points of an in vitro leukemogenesis model. The silencing of ZNF521 in the MLL-AF9 + THP-1 cell line coherently results in an impairment of growth and clonogenicity, recapitulating the effects observed in primary cells. Taken together, these results underscore a role for ZNF521 in sustaining the self-renewal of the immature AML compartment, most likely through the perturbation of the gene expression landscape, which ultimately favors the expansion of MLL-AF9-transformed leukemic clones.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Nucleophosmin
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Correspondence: (E.C.); (H.M.B.); (M.M.)
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
| | - Katia Todoerti
- Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (K.T.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Emanuela G. Cosentino
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Exiris S.r.l., 00128 Roma, Italy
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Daniela Lico
- Department of Obstetrics and Gynaecology, Pugliese-Ciaccio Hospital, University Magna Græcia, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (K.T.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
| | - Heather Mandy Bond
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Correspondence: (E.C.); (H.M.B.); (M.M.)
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Correspondence: (E.C.); (H.M.B.); (M.M.)
| |
Collapse
|
16
|
Zheng Y, Huang Y, Le S, Zheng H, Hua X, Chen Z, Feng X, Li C, Zheng M, Xu H, He Y, He X, Li J, Hu J. High EVI1 Expression Predicts Adverse Outcomes in Children With De Novo Acute Myeloid Leukemia. Front Oncol 2021; 11:712747. [PMID: 34589425 PMCID: PMC8474639 DOI: 10.3389/fonc.2021.712747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023] Open
Abstract
Background A high ecotropic viral integration site 1 (EVI1) expression (EVI1high) is an independent prognostic factor in adult acute myeloid leukemia (AML). However, little is known of the prognostic value of EVI1high in pediatric AML. This study aimed to examine the biological and prognostic significance of EVI1high in uniformly treated pediatric patients with AML from a large cohort of seven centers in China. Methods A diagnostic assay was developed to determine the relative EVI1 expression using a single real-time quantitative polymerase chain reaction in 421 newly diagnosed pediatric AML patients younger than 14 years from seven centers in southern China. All patients were treated with a uniform protocol, but only 383 patients were evaluated for their treatment response. The survival data were included in the subsequent analysis (n = 35 for EVI1high, n = 348 for EVI1low). Results EVI1high was found in 9.0% of all 421 pediatric patients with de novo AML. EVI1high was predominantly found in acute megakaryoblastic leukemia (FAB M7), MLL rearrangements, and unfavorable cytogenetic aberrance, whereas it was mutually exclusive with t (8; 21), inv (16)/t (16; 16), CEBPA, NPM1, or C-KIT mutations. In the univariate Cox regression analysis, EVI1high had a significantly adverse 5-year event-free survival (EFS) and overall survival (OS) [hazard ratio (HR) = 1.821 and 2.401, p = 0.036 and 0.005, respectively]. In the multivariate Cox regression analysis, EVI1high was an independent prognostic factor for the OS (HR = 2.447, p = 0.015) but not EFS (HR = 1.556, p = 0.174). Furthermore, EVI1high was an independent adverse predictor of the OS and EFS of patients with MLL rearrangements (univariate analysis: HR = 9.921 and 7.253, both p < 0.001; multivariate analysis: HR = 7.186 and 7.315, p = 0.005 and 0.001, respectively). Hematopoietic stem cell transplantation (HSCT) in first complete remission (CR1) provided EVI1high patients with a tendential survival benefit when compared with chemotherapy as a consolidation (5-year EFS: 68.4% vs. 50.8%, p = 0.26; 5-year OS: 65.9% vs. 54.8%, p = 0.45). Conclusion It could be concluded that EVI1high can be detected in approximately 10% of pediatric AML cases. It is predominantly present in unfavorable cytogenetic subtypes and predicts adverse outcomes. Whether pediatric patients with EVI1high AML can benefit from HSCT in CR1 needs to be researched further.
Collapse
Affiliation(s)
- Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yan Huang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaohua Le
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hao Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xueling Hua
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zaisheng Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Southern Medical University/Nanfang Hospital, Guangzhou, China
| | - Chunfu Li
- Nanfang-Chunfu Children's Institute of Hematology & Oncology, TaiXin Hospital, Dongguan, China
| | - Mincui Zheng
- Hematology and Oncology, Hunan Children's Hospital, Changsha, China
| | - Honggui Xu
- Department of Pediatric Hematology & Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yingyi He
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiangling He
- Pediatrics, People's Hospital of Hunan Province, Changsha, China
| | - Jian Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
17
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
18
|
Kiehlmeier S, Rafiee MR, Bakr A, Mika J, Kruse S, Müller J, Schweiggert S, Herrmann C, Sigismondo G, Schmezer P, Krijgsveld J, Gröschel S. Identification of therapeutic targets of the hijacked super-enhancer complex in EVI1-rearranged leukemia. Leukemia 2021; 35:3127-3138. [PMID: 33911178 PMCID: PMC8550965 DOI: 10.1038/s41375-021-01235-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Deregulation of the EVI1 proto-oncogene by the GATA2 distal hematopoietic enhancer (G2DHE) is a key event in high-risk acute myeloid leukemia carrying 3q21q26 aberrations (3q-AML). Upon chromosomal rearrangement, G2DHE acquires characteristics of a super-enhancer and causes overexpression of EVI1 at 3q26.2. However, the transcription factor (TF) complex of G2DHE remains poorly characterized. The aim of this study was to unravel key components of G2DHE-bound TFs involved in the deregulation of EVI1. We have identified several CEBPA and RUNX1 binding sites to be enriched and critical for G2DHE function in 3q-AML cells. Using ChIP-SICAP (ChIP followed by selective isolation of chromatin-associated proteins), a panel of chromatin interactors of RUNX1 and CEBPA were detected in 3q-AML, including PARP1 and IKZF1. PARP1 inhibition (PARPi) caused a reduction of EVI1 expression and a decrease in EVI1-G2DHE interaction frequency, highlighting the involvement of PARP1 in oncogenic super-enhancer formation. Furthermore, 3q-AML cells were highly sensitive to PARPi and displayed morphological changes with higher rates of differentiation and apoptosis as well as depletion of CD34 + cells. In summary, integrative analysis of the 3q-AML super-enhancer complex identified CEBPA and RUNX1 associated proteins and nominated PARP1 as a potential new therapeutic target in EVI1 + 3q-AML.
Collapse
Affiliation(s)
- Sandra Kiehlmeier
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Mahmoud-Reza Rafiee
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Ali Bakr
- Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Jagoda Mika
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sabrina Kruse
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Judith Müller
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sabrina Schweiggert
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| | - Gianluca Sigismondo
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Peter Schmezer
- Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.,Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Stefan Gröschel
- Molecular Leukemogenesis, German Cancer Research Center, Heidelberg, Germany. .,Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany. .,Oncology Center Worms, Worms, Germany.
| |
Collapse
|
19
|
EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J 2021; 11:64. [PMID: 33753715 PMCID: PMC7985498 DOI: 10.1038/s41408-021-00457-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Ecotropic viral integration site 1 (Evi1) was discovered in 1988 as a common site of ecotropic viral integration resulting in myeloid malignancies in mice. EVI1 is an oncogenic zinc-finger transcription factor whose overexpression contributes to disease progression and an aggressive phenotype, correlating with poor clinical outcome in myeloid malignancies. Despite progress in understanding the biology of EVI1 dysregulation, significant improvements in therapeutic outcome remain elusive. Here, we highlight advances in understanding EVI1 biology and discuss how this new knowledge informs development of novel therapeutic interventions. EVI1 is overexpression is correlated with poor outcome in some epithelial cancers. However, the focus of this review is the genetic lesions, biology, and current therapeutics of myeloid malignancies overexpressing EVI1.
Collapse
|
20
|
Tet1 is not required for myeloid leukemogenesis by MLL-ENL in novel mouse models. PLoS One 2021; 16:e0248425. [PMID: 33705482 PMCID: PMC7951824 DOI: 10.1371/journal.pone.0248425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
The Ten Eleven Translocation 1 (TET1) gene encodes an epigenetic modifying molecule that is involved in demethylation of 5-methylcytosine. In hematological malignancies, loss-of-function mutations of TET2, which is one of the TET family genes including TET1, are frequently found, while the mutations of TET1 are not. However, clinical studies have revealed that TET1 is highly expressed in some cases of the hematological malignancies including acute myeloid leukemia. Indeed, studies by mouse models using conventional Tet1 knockout mice demonstrated that Tet1 is involved in myeloid leukemogenesis by Mixed Lineage Leukemia (MLL) fusion gene or TET2 mutant. Meanwhile, the other study showed that Tet1 is highly expressed in hematopoietic stem cells (HSCs), and that deletion of Tet1 in HSCs enhances potential self-renewal capacity, which is potentially associated with myeloid leukemogenesis. To examine the role of Tet1 in myeloid leukemogenesis more precisely, we generated novel conditional Tet1-knockout mice, which were used to generate the compound mutant mice by crossing with the inducible MLL-ENL transgenic mice that we developed previously. The leukemic immortalization in vitro was not critically affected by conditional ablation of Tet1 in HSCs with the induced expression of MLL-ENL or in hematopoietic progenitor cells retrovirally transduced with MLL-ENL. In addition, the leukemic phenotypes caused by the induced expression of MLL-ENL in vivo was not also critically affected in the compound mutant mouse model by conditional ablation of Tet1, although we found that the expression of Evi1, which is one of critical target genes of MLL fusion gene, in tumor cells was remarkably low under Tet1-ablated condition. These results revealed that Tet1 was dispensable for the myeloid leukemogenesis by MLL-ENL, suggesting that the therapeutic application of Tet1 inhibition may need careful assessment.
Collapse
|
21
|
High EVI1 Expression due to NRIP1/EVI1 Fusion in Therapy-related Acute Myeloid Leukemia: Description of the First Pediatric Case. Hemasphere 2020; 4:e471. [PMID: 33163906 PMCID: PMC7643912 DOI: 10.1097/hs9.0000000000000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
|
22
|
Nguyen CH, Grandits AM, Vassiliou GS, Staber PB, Heller G, Wieser R. Evi1 Counteracts Anti-Leukemic and Stem Cell Inhibitory Effects of All-Trans Retinoic Acid on Flt3-ITD/ Npm1c-Driven Acute Myeloid Leukemia Cells. Biomedicines 2020; 8:E385. [PMID: 32998330 PMCID: PMC7600968 DOI: 10.3390/biomedicines8100385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
All-trans retinoic acid (atRA) has a dramatic impact on the survival of patients with acute promyelocytic leukemia, but its therapeutic value in other types of acute myeloid leukemia (AML) has so far remained unclear. Given that AML is a stem cell-driven disease, recent studies have addressed the effects of atRA on leukemic stem cells (LSCs). atRA promoted stemness of MLL-AF9-driven AML in an Evi1-dependent manner but had the opposite effect in Flt3-ITD/Nup98-Hoxd13-driven AML. Overexpression of the stem cell-associated transcription factor EVI1 predicts a poor prognosis in AML, and is observed in different genetic subtypes, including cytogenetically normal AML. Here, we therefore investigated the effects of Evi1 in a mouse model for cytogenetically normal AML, which rests on the combined activity of Flt3-ITD and Npm1c mutations. Experimental expression of Evi1 on this background strongly promoted disease aggressiveness. atRA inhibited leukemia cell viability and stem cell-related properties, and these effects were counteracted by overexpression of Evi1. These data further underscore the complexity of the responsiveness of AML LSCs to atRA and point out the need for additional investigations which may lay a foundation for a precision medicine-based use of retinoids in AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Alexander M. Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - George S. Vassiliou
- Wellcome Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Philipp B. Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| |
Collapse
|
23
|
Nguyen CH, Grandits AM, Purton LE, Sill H, Wieser R. All-trans retinoic acid in non-promyelocytic acute myeloid leukemia: driver lesion dependent effects on leukemic stem cells. Cell Cycle 2020; 19:2573-2588. [PMID: 32900260 PMCID: PMC7644151 DOI: 10.1080/15384101.2020.1810402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive, often fatal hematopoietic malignancy. All-trans retinoic acid (atRA), one of the first molecularly targeted drugs in oncology, has greatly improved the outcome of a subtype of AML, acute promyelocytic leukemia (APL). In contrast, atRA has so far provided little therapeutic benefit in the much larger group of patients with non-APL AML. Attempts to identify genetically or molecularly defined subgroups of patients that may respond to atRA have not yielded consistent results. Since AML is a stem cell-driven disease, understanding the effectiveness of atRA may require an appreciation of its impact on AML stem cells. Recent studies reported that atRA decreased stemness of AML with an FLT3-ITD mutation, yet increased it in AML1-ETO driven or EVI1-overexpressing AML. This review summarizes the role of atRA in normal hematopoiesis and in AML, focusing on its impact on AML stem cells.
Collapse
Affiliation(s)
- Chi H Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne , Melbourne, Australia
| | - Heinz Sill
- Division of Hematology, Medical University of Graz , Graz, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| |
Collapse
|
24
|
Niu Y, Yang X, Chen Y, Jin X, Li L, Guo Y, Li X, Xie Y, Zhang Y, Wang H. EVI1 induces autophagy to promote drug resistance via regulation of ATG7 expression in leukemia cells. Carcinogenesis 2020; 41:961-971. [PMID: 31593983 DOI: 10.1093/carcin/bgz167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1) is an oncogenic transcription factor, which is abnormally expressed in myeloid leukemia and other several solid cancers. It is associated with short survival as well as anticancer drug resistance. Autophagy is a protective mechanism that promotes cancer cell growth and survival under stressed conditions including clinical drug treatment. Here evidences are provided that EVI1 induces autophagy and mediated drug resistance in myeloid leukemia cells. Both knockdown using RNAi and pharmacological inhibition of autophagy significantly increase sensitivity to cytotoxic drug treatment in EVI1high cells. Mechanistic studies revealed that EVI1 regulated autophagy by directly binding to autophagy-related gene autophagy related 7 (ATG7) promoter and transcriptionally upregulating its expression. Notably, ATG7 expression was positively correlated with EVI1 in bone marrow mononuclear cells from myeloid leukemia patients. Acute myeloid leukemia patients with high level of EVI1 are associated with unfavorable overall survival, which was aggravated by simultaneous high expression of ATG7 in these patients. Furthermore, ChIP and firefly luciferase reporter assay identified an EVI1-binding site at 227 upstream promoter region of ATG7 which regulated its transcription. In addition, enforced expression of EVI1 also increased intracellular reactive oxygen species and ATG7 mRNA levels as well as autophagy activity, whereas the increase was attenuated after treatment with reactive oxygen species scavenger, suggesting the involvement of reactive oxygen species in EVI1-induced autophagy. These findings demonstrate that EVI protects myeloid leukemia cell from anticancer drug treatment by inducing autophagy through dual control of ATG7. These results might present a new therapeutic approach for improving treatment outcome in myelogenous leukemia with EVI1high.
Collapse
Affiliation(s)
- Yuna Niu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xue Yang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yifei Chen
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Xinyue Jin
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Li Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yilin Guo
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Xuelu Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yecheng Xie
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yun Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
25
|
Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020; 8:498. [PMID: 32719792 PMCID: PMC7347797 DOI: 10.3389/fcell.2020.00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Lucas van Duin
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kim M Summers
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Cai SF, Chu SH, Goldberg AD, Parvin S, Koche RP, Glass JL, Stein EM, Tallman MS, Sen F, Famulare CA, Cusan M, Huang CH, Chen CW, Zou L, Cordner KB, DelGaudio NL, Durani V, Kini M, Rex M, Tian HS, Zuber J, Baslan T, Lowe SW, Rienhoff HY, Letai A, Levine RL, Armstrong SA. Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discov 2020; 10:1500-1513. [PMID: 32606137 DOI: 10.1158/2159-8290.cd-19-1469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
The cell of origin of oncogenic transformation is a determinant of therapeutic sensitivity, but the mechanisms governing cell-of-origin-driven differences in therapeutic response have not been delineated. Leukemias initiating in hematopoietic stem cells (HSC) are less sensitive to chemotherapy and highly express the transcription factor MECOM (EVI1) compared with leukemias derived from myeloid progenitors. Here, we compared leukemias initiated in either HSCs or myeloid progenitors to reveal a novel function for EVI1 in modulating p53 protein abundance and activity. HSC-derived leukemias exhibit decreased apoptotic priming, attenuated p53 transcriptional output, and resistance to lysine-specific demethylase 1 (LSD1) inhibitors in addition to classical genotoxic stresses. p53 loss of function in Evi1 lo progenitor-derived leukemias induces resistance to LSD1 inhibition, and EVI1hi leukemias are sensitized to LSD1 inhibition by venetoclax. Our findings demonstrate a role for EVI1 in p53 wild-type cancers in reducing p53 function and provide a strategy to circumvent drug resistance in chemoresistant EVI1 hi acute myeloid leukemia. SIGNIFICANCE: We demonstrate that the cell of origin of leukemia initiation influences p53 activity and dictates therapeutic sensitivity to pharmacologic LSD1 inhibitors via the transcription factor EVI1. We show that drug resistance could be overcome in HSC-derived leukemias by combining LSD1 inhibition with venetoclax.See related commentary by Gu et al., p. 1445.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Sheng F Cai
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Haihua Chu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron D Goldberg
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob L Glass
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eytan M Stein
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filiz Sen
- Hematopathology Diagnostic Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A Famulare
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Monica Cusan
- University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Lihua Zou
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Keith B Cordner
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicole L DelGaudio
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vidushi Durani
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mitali Kini
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Madison Rex
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen S Tian
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Howard Hughes Medical Institute, New York, New York
| | | | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ross L Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Sarrou E, Richmond L, Carmody RJ, Gibson B, Keeshan K. CRISPR Gene Editing of Murine Blood Stem and Progenitor Cells Induces MLL-AF9 Chromosomal Translocation and MLL-AF9 Leukaemogenesis. Int J Mol Sci 2020; 21:ijms21124266. [PMID: 32549410 PMCID: PMC7352880 DOI: 10.3390/ijms21124266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Chromosomal rearrangements of the mixed lineage leukaemia (MLL, also known as KMT2A) gene on chromosome 11q23 are amongst the most common genetic abnormalities observed in human acute leukaemias. MLL rearrangements (MLLr) are the most common cytogenetic abnormalities in infant and childhood acute myeloid leukaemia (AML) and acute lymphocytic leukaemia (ALL) and do not normally acquire secondary mutations compared to other leukaemias. To model these leukaemias, we have used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL-AF9 (MA9) chromosomal rearrangements in murine hematopoietic stem and progenitor cell lines and primary cells. By utilizing a dual-single guide RNA (sgRNA) approach targeting the breakpoint cluster region of murine Mll and Af9 equivalent to that in human MA9 rearrangements, we show efficient de novo generation of MA9 fusion product at the DNA and RNA levels in the bulk population. The leukaemic features of MA9-induced disease were observed including increased clonogenicity, enrichment of c-Kit-positive leukaemic stem cells and increased MA9 target gene expression. This approach provided a rapid and reliable means of de novo generation of Mll-Af9 genetic rearrangements in murine haematopoietic stem and progenitor cells (HSPCs), using CRISPR/Cas9 technology to produce a cellular model of MA9 leukaemias which faithfully reproduces many features of the human disease in vitro.
Collapse
Affiliation(s)
- Evgenia Sarrou
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
| | - Laura Richmond
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
| | - Ruaidhrí J. Carmody
- Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK;
| | | | - Karen Keeshan
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
- Correspondence:
| |
Collapse
|
28
|
McGlynn KA, Sun R, Vonica A, Rudzinskas S, Zhang Y, Perkins AS. Prdm3 and Prdm16 cooperatively maintain hematopoiesis and clonogenic potential. Exp Hematol 2020; 85:20-32.e3. [PMID: 32437910 DOI: 10.1016/j.exphem.2020.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Mds1-Evi1 (also known as Prdm3) and Prdm16 are two highly related zinc finger transcription factors that, within the hematopoietic system, are both expressed primarily in hematopoietic stem cells (HSCs). Our laboratory previously found that constitutive Mds1-Evi1 knockout mice are viable, but their HSCs are unable to withstand myeloablative chemotherapy or effectively transplant irradiated recipient mice. A similar phenotype has been observed for Prdm16, except that the Prdm16 constitutive knockout is lethal. Here, we created a novel double-knockout model of Mds1-Evi1 and Prdm16 in the bone marrow, in which double knockout occurs only in cells that endogenously express Mds1-Evi1 and only upon induction with tamoxifen. We show that combined Mds1-Evi1/Prdm16 deficiency causes bone marrow failure within 15 days, with rapid loss in all progenitor compartments, while the peripheral blood exhibits progressive reductions in peripheral monocytes and granulocytes. We found that surviving hematopoietic stem cells and granulocytic progenitors had elevated apoptosis and cell division, and were unable to form colonies in vitro; adding back wild-type Mds1-Evi1 or Prdm16 to double-knockout bone marrow restores colony formation, and for MDS1-EVI1, this activity depends on a functional PR domain. All of these phenotypic effects were exhibited at milder levels in Mds1-Evi1 and Prdm16 single-knockout controls. Overall, these results illustrate that Mds1-Evi1 and Prdm16 play additive roles in maintaining normal hematopoietic stem cell survival.
Collapse
Affiliation(s)
- Kelly A McGlynn
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Rongli Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Alin Vonica
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Sarah Rudzinskas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
29
|
Arindrarto W, Borràs DM, de Groen RAL, van den Berg RR, Locher IJ, van Diessen SAME, van der Holst R, van der Meijden ED, Honders MW, de Leeuw RH, Verlaat W, Jedema I, Kroes WGM, Knijnenburg J, van Wezel T, Vermaat JSP, Valk PJM, Janssen B, de Knijff P, van Bergen CAM, van den Akker EB, Hoen PAC', Kiełbasa SM, Laros JFJ, Griffioen M, Veelken H. Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing. Leukemia 2020; 35:47-61. [PMID: 32127641 PMCID: PMC7787979 DOI: 10.1038/s41375-020-0762-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 01/12/2023]
Abstract
Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform.
Collapse
Affiliation(s)
- Wibowo Arindrarto
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Daniel M Borràs
- GenomeScan B.V, 2333 BZ, Leiden, The Netherlands.,Department of Chemical Cell Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Ruben A L de Groen
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Redmar R van den Berg
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Irene J Locher
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - Rosalie van der Holst
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - M Willy Honders
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Rick H de Leeuw
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Wina Verlaat
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Bart Janssen
- GenomeScan B.V, 2333 BZ, Leiden, The Netherlands
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - Erik B van den Akker
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,The Delft Bioinformatics Lab, Delft University of Technology, 2628CD, Delft, The Netherlands.,Section of Molecular Epidemiology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Szymon M Kiełbasa
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| |
Collapse
|
30
|
Acute Myeloid Neoplasms. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Nguyen CH, Bauer K, Hackl H, Schlerka A, Koller E, Hladik A, Stoiber D, Zuber J, Staber PB, Hoelbl-Kovacic A, Purton LE, Grebien F, Wieser R. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis 2019; 10:944. [PMID: 31822659 PMCID: PMC6904467 DOI: 10.1038/s41419-019-2172-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
Ecotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Katharina Bauer
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Schlerka
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Elisabeth Koller
- Medical Department for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Philipp B Staber
- Division of Hematology and Hemostaseology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria. .,Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
32
|
Expression Pattern and Prognostic Significance of EVI1 Gene in Adult Acute Myeloid Leukemia Patients with Normal Karyotype. Indian J Hematol Blood Transfus 2019; 36:292-299. [PMID: 32425380 DOI: 10.1007/s12288-019-01227-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
According to current criteria, patients with acute myeloid leukemia with normal karyotype (AML-NK) are classified as intermediate risk patients. There is a constant need for additional molecular markers that will help in substratification into more precise prognostic groups. One of the potential new markers is Ecotropic viral integration 1 site (EVI1) transcriptional factor, whose expression is dissregulated in abnormal hematopoietic process. The purpose of this study was to examine EVI1 gene expression in 104 adult AML-NK patients and on 10 healthy bone marrow donors using real-time polymerase chain reaction method, and to evaluate association between EVI1 expression level and other molecular and clinical features, and to examine its potential influence on the prognosis of the disease. Overexpression of EVI1 gene (EVI1 + status) was present in 17% of patients. Increased EVI1 expression was predominantly found in patients with lower WBC count (P = 0.003) and lower bone marrow blast percentage (P = 0.005). EVI1 + patients had lower WT1 expression level (P = 0.041), and were negative for FLT3-ITD and NPM1 mutations (P = 0.036 and P = 0.003). Patients with EVI1 + status had higher complete remission rate (P = 0.047), but EVI1 expression didn't influence overall and disease free survival. EVI1 expression status alone, cannot be used as a new marker for more precise substratification of AML-NK patients. Further investigations conducted on larger number of patients may indicate how EVI1 expression could influence the prognosis and outcome of AML-NK patients, by itself, or in the context of other molecular and clinical parameters.
Collapse
|
33
|
The Impact of the Cellular Origin in Acute Myeloid Leukemia: Learning From Mouse Models. Hemasphere 2019; 3:e152. [PMID: 31723801 PMCID: PMC6745939 DOI: 10.1097/hs9.0000000000000152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease driven by a limited number of cooperating mutations. There is a long-standing debate as to whether AML driver mutations occur in hematopoietic stem or in more committed progenitor cells. Here, we review how different mouse models, despite their inherent limitations, have functionally demonstrated that cellular origin plays a critical role in the biology of the disease, influencing clinical outcome. AML driven by potent oncogenes such as mixed lineage leukemia fusions often seem to emerge from committed myeloid progenitors whereas AML without any major cytogenetic abnormalities seem to develop from a combination of preleukemic initiating events arising in the hematopoietic stem cell pool. More refined mouse models may serve as experimental platforms to identify and validate novel targeted therapeutic strategies.
Collapse
|
34
|
CGRP-CRLR/RAMP1 signal is important for stress-induced hematopoiesis. Sci Rep 2019; 9:429. [PMID: 30674976 PMCID: PMC6344543 DOI: 10.1038/s41598-018-36796-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
Ecotropic viral integration site-1 (EVI1) has a critical role in normal and malignant hematopoiesis. Since we previously identified high expression of calcitonin receptor like receptor (CRLR) in acute myeloid leukemia (AML) with high EVI1 expression, we here characterized the function of CRLR in hematopoiesis. Since higher expression of CRLR and receptor activity modifying protein 1 (RAMP1) was identified in immature hematopoietic bone marrow (BM) cells, we focused on calcitonin gene-related peptide (CGRP), a specific ligand for the CRLR/RAMP1 complex. To elucidate the role of CGRP in hematopoiesis, Ramp1-deficient (Ramp1-/-) mice were used. The steady-state hematopoiesis was almost maintained in Ramp1-/- mice; however, the BM repopulation capacity of Ramp1-/- mice was significantly decreased, and the transplanted Ramp1-/- BM mononuclear cells had low proliferation capacity with enhanced reactive oxygen species (ROS) production and cell apoptosis. Thus, CGRP is important for maintaining hematopoiesis during temporal exposures with proliferative stress. Moreover, continuous CGRP exposure to mice for two weeks induced a reduction in the number of BM immature hematopoietic cells along with differentiated myeloid cells. Since CGRP is known to be increased under inflammatory conditions to regulate immune responses, hematopoietic exhaustion by continuous CGRP secretion under chronic inflammatory conditions is probably one of the important mechanisms of anti-inflammatory responses.
Collapse
|
35
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
36
|
Luciani GM, Xie L, Dilworth D, Tierens A, Moskovitz Y, Murison A, Szewczyk MM, Mitchell A, Lupien M, Shlush L, Dick JE, Arrowsmith CH, Barsyte-Lovejoy D, Minden MD. Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression. Exp Hematol 2018; 69:27-36. [PMID: 30352278 DOI: 10.1016/j.exphem.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022]
Abstract
Acute myeloid leukemia (AML) is a complex, heterogeneous disease with variable outcomes following curative intent chemotherapy. AML with inv(3) is a genetic subgroup characterized by a very low response rate to current induction type chemotherapy and thus has among the worst long-term survivorship of the AMLs. Here, we describe OCI-AML-20, a new AML cell line with inv(3) and deletion of chromosome 7; the latter is a common co-occurrence in inv(3) AML. In OCI-AML-20, CD34 expression is maintained and required for repopulation in vitro and in vivo. CD34 expression in OCI-AML-20 shows dependence on the co-culture with stromal cells. Transcriptome analysis indicates that the OCI-AML-20 clusters with other AML patient data sets that have poor prognosis, as well as other AML cell lines, including another inv(3) line, MUTZ-3. OCI-AML-20 is a new cell line resource for studying the biology of inv(3) AML that can be used to identify potential therapies for this poor outcome disease.
Collapse
Affiliation(s)
- Genna M Luciani
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Lihua Xie
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Anne Tierens
- Toronto General Hospital, Laboratory Medicine Program, Toronto, Ontario, Canada
| | - Yoni Moskovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alex Murison
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Liran Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | - Mark D Minden
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Sadeghian MH, Rezaei Dezaki Z. Prognostic Value of EVI1 Expression in Pediatric Acute Myeloid Leukemia: A Systematic Review. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:294-300. [PMID: 30636951 PMCID: PMC6322524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/18/2018] [Indexed: 11/22/2022]
Abstract
Acute myeloid leukemia (AML) as a distortion of blood cells involves the differ entiation of hematopoietic stem cells. Several studies established the irregular over expression of specific genes is a common finding in patients with AML. The ectopic viral integration site-1 (EVI1) gene is a protooncogene subject to alternative splicing, and encodes a zincfinger protein that acts as a transcriptional regulator in early devel opment. Forced overexpression of EVI1 in hematopoietic progenitors later induced a myeloid differentiation block. The current review aimed at determining the prognos tic value of EVI1 expression in patients with AML in the age range of one month to fifteen years. The scientific databases including PubMed, Google Scholar, EMBASE, Scopus, and ISI published up to January 2016 were searched using the conformity keywords and a total of four articles were studied. Three articles declared higher overexpression of EVI1 in patients with mixed-lineage leukemia (MLL) rearrangements. The percentage of overall survival (OS), reported in two articles, decreased in AML patients with high EVI1 expression. A study reported that the relationship between EVI1 expression and OS was negligible in cases with and without EVI1 expression. Another study showed significant differences in event free survival (EFS) and OS in the group of patients with positive MLL-AF9 between EVI1+ and EVI1patients. The current study revealed that high EVI1 expression was not a poor prognostic factor in pediatric patients with AML. And this gene expression was mainly prognostic concomitantly by other factors such as MLL rearrangement, MEL1 expression, and white blood cell (WBC) count.
Collapse
Affiliation(s)
| | - Zahra Rezaei Dezaki
- Zahra Rezaei Dezaki, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran E-mail:
| |
Collapse
|
38
|
Stavropoulou V, Peters AHFM, Schwaller J. Aggressive leukemia driven by MLL-AF9. Mol Cell Oncol 2017; 5:e1241854. [PMID: 30250880 DOI: 10.1080/23723556.2016.1241854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
We recently showed that cellular origin impacts the aggressiveness and the phenotype of acute myeloid leukemia (AML). Direct induction of the MLL-AF9 fusion in various hematopoietic compartments in vivo using a doxycycline (DOX) regulated mouse model (iMLL-AF9) led to an invasive chemoresistant AML expressing several genes known to be involved in epithelial to mesenchymal transition (EMT) in solid cancers. Many of these genes play important roles in migration and invasion and are significantly associated with poor overall survival in AML patients.
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Department of Biomedicine and Children's Hospital (UKBB), University of Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Switzerland
| | - Juerg Schwaller
- Department of Biomedicine and Children's Hospital (UKBB), University of Basel, Switzerland
| |
Collapse
|
39
|
Reimer J, Knöß S, Labuhn M, Charpentier EM, Göhring G, Schlegelberger B, Klusmann JH, Heckl D. CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica 2017; 102:1558-1566. [PMID: 28572162 PMCID: PMC5685230 DOI: 10.3324/haematol.2017.164046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Chromosomal translocations that generate oncogenic fusion proteins are causative for most pediatric leukemias and frequently affect the MLL/KMT2A gene. In vivo modeling of bona fide chromosomal translocations in human hematopoietic stem and progenitor cells is challenging but essential to determine their actual leukemogenic potential. We therefore developed an advanced lentiviral CRISPR-Cas9 vector that efficiently transduced human CD34+ hematopoietic stem and progenitor cells and induced the t(11;19)/MLL-ENL translocation. Leveraging this system, we could demonstrate that hematopoietic stem and progenitor cells harboring the translocation showed only a transient clonal growth advantage in vitro In contrast, t(11;19)/MLL-ENL-harboring CD34+ hematopoietic stem and progenitor cells not only showed long-term engraftment in primary immunodeficient recipients, but t(11;19)/MLL-ENL also served as a first hit to initiate a monocytic leukemia-like disease. Interestingly, secondary recipients developed acute lymphoblastic leukemia with incomplete penetrance. These findings indicate that environmental cues not only contribute to the disease phenotype, but also to t(11;19)/MLL-ENL-mediated oncogenic transformation itself. Thus, by investigating the true chromosomal t(11;19) rearrangement in its natural genomic context, our study emphasizes the importance of environmental cues for the pathogenesis of pediatric leukemias, opening an avenue for novel treatment options.
Collapse
Affiliation(s)
- Jana Reimer
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Sabine Knöß
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Maurice Labuhn
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Emmanuelle M Charpentier
- Max Planck Institute for Infection Biology, Berlin, Germany.,The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Sweden
| | | | | | - Jan-Henning Klusmann
- Pediatric Hematology & Oncology, Hannover Medical School, Germany Klusmann.Jan-Henning@mh-hannover
| | - Dirk Heckl
- Pediatric Hematology & Oncology, Hannover Medical School, Germany Klusmann.Jan-Henning@mh-hannover
| |
Collapse
|
40
|
Disseminated Nonleukemic Myeloid Sarcoma of the Spleen With Involvement of the Liver in an Infant. J Pediatr Hematol Oncol 2017; 39:e233-e235. [PMID: 28121748 DOI: 10.1097/mph.0000000000000757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonleukemic myeloid sarcoma (MS) is a rare tumor that can occur in several locations without myeloid leukemia. We reported a first case of nonleukemic MS of the spleen involving the liver in a 5-month-old boy presenting with hematochezia, petechial hemorrhage, fever, and hepatosplenomegaly. Bone marrow trephine biopsy and immunophenotypic flow cytometry revealed no evidence of myeloid leukemia. The patient underwent liver biopsy and splenectomy. Clinicopathology and immunohistochemistry suggested a disseminated nonleukemic MS. The patient died of respiratory failure on the seventh postoperative day. Early diagnosis of a disseminated nonleukemic MS may be quite important for patient survival and it should be considered one of the differential diagnoses of hepatosplenomegaly with atypical clinical features.
Collapse
|
41
|
[Clinical significance of expressions of EVI1 and BRE genes in 47 acute leukemia patients with MLL rearrangement]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:22-27. [PMID: 28219220 PMCID: PMC7348406 DOI: 10.3760/cma.j.issn.0253-2727.2017.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
目的 分析伴有11q23/MLL重排急性白血病(AL)患者中EVI1及BRE基因高表达的发生率、相关性及其临床意义。 方法 采用骨髓细胞短期培养法制备染色体,R显带技术进行核型分析;采用MLL双色断裂点分离探针和FISH技术对47例患者进行MLL重排检测;实时定量RT-PCR(RQ-PCR)法检测患者EVI1和BRE基因的表达,并对其相关性和临床意义进行分析。 结果 47例患者核型均涉及11q23易位,FISH检测MLL重排均为阳性。其中37例患者行免疫表型检测,5例表达B淋系抗原CD19、CD79a或CD10,1例表达T淋系抗原CD7,余表达髓系或髓单核系抗原CD33、CD13、CD14和CD15,其中16例同时CD34(+)。RQ-PCR检测显示18例患者EVI1基因高表达,其中以t(6;11)核型和M4/M5亚型最多见;t(6;11)组和t(9;11)组EVI1表达水平均高于正常对照组(P值分别为0.038和0.022)。15例患者BRE基因高表达,其中以t(9;11)核型和M4/M5亚型最多见。t(4;11)、t(6;11)、t(9;11)、t(11;19)组EVI1表达水平与正常对照组相比均增高(P值均<0.05);t(4;11)、t(9;11)组均高于t(6;11)组(P值分别为0.004和0.012)。47例患者中35例死亡,12例存活,中位生存期为10.0个月。总体比较EVI1基因高表达组中位生存期较低表达组短(P=0.049)。各MLL对手基因组中,仅t(9;11)组EVI1基因高表达者中位生存期短于低表达者(P=0.024)。t(9;11)伴BRE高表达者中位生存期较低表达者长(P=0.024)。在t(9;11)组中可见BRE高表达而EVI1低表达者预后好于BRE低表达而EVI1高表达者。 结论 11q23/MLL重排AL患者中EVI1基因高表达发生率高,为预后不良指标。其中尤以t(6;11)和M4/M5多见。BRE基因高表达在该类白血病中发生率较高,以t(9;11)和M5多见。
Collapse
|
42
|
Stavropoulou V, Schwaller J. The hematopoietic precursor cell in which driver mutations occur is linked to AML aggressiveness – a potential target for personalized medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1289065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vaia Stavropoulou
- Department of Biomedicine, University of Basel and Children’s Hospital (UKBB), Basel, Switzerland
| | - Juerg Schwaller
- Department of Biomedicine, University of Basel and Children’s Hospital (UKBB), Basel, Switzerland
| |
Collapse
|
43
|
Winters AC, Bernt KM. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches. Front Pediatr 2017; 5:4. [PMID: 28232907 PMCID: PMC5299633 DOI: 10.3389/fped.2017.00004] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents-so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients.
Collapse
Affiliation(s)
- Amanda C Winters
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Kathrin M Bernt
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
44
|
Stavropoulou V, Kaspar S, Brault L, Sanders MA, Juge S, Morettini S, Tzankov A, Iacovino M, Lau IJ, Milne TA, Royo H, Kyba M, Valk PJM, Peters AHFM, Schwaller J. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell 2016; 30:43-58. [PMID: 27344946 DOI: 10.1016/j.ccell.2016.05.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
To address the impact of cellular origin on acute myeloid leukemia (AML), we generated an inducible transgenic mouse model for MLL-AF9-driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSC) in vitro resulted in dispersed clonogenic growth and expression of genes involved in migration and invasion. In vivo, 20% LT-HSC-derived AML were particularly aggressive with extensive tissue infiltration, chemoresistance, and expressed genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulator ZEB1 significantly reduced leukemic blast invasion. By classifying mouse and human leukemias according to Evi1/EVI1 and Erg/ERG expression, reflecting aggressiveness and cell of origin, and performing comparative transcriptomics, we identified several EMT-related genes that were significantly associated with poor overall survival of AML patients.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Epithelial-Mesenchymal Transition
- Gene Expression Profiling/methods
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Neoplasm Invasiveness
- Neoplasms, Experimental
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Prognosis
- Tumor Cells, Cultured
- Zinc Finger E-box-Binding Homeobox 1/genetics
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, 4031 Basel, Switzerland
| | - Susanne Kaspar
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Laurent Brault
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, 4031 Basel, Switzerland
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, 3015 CE Rotterdam, the Netherlands
| | - Sabine Juge
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, 4031 Basel, Switzerland
| | - Stefano Morettini
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Michelina Iacovino
- Department of Pediatrics, LA Biomedical Research Institute, Torrance, CA 90502, USA
| | - I-Jun Lau
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Hélène Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Michael Kyba
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, 3015 CE Rotterdam, the Netherlands
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
45
|
Wilson M, Tsakraklides V, Tran M, Xiao YY, Zhang Y, Perkins AS. EVI1 Interferes with Myeloid Maturation via Transcriptional Repression of Cebpa, via Binding to Two Far Downstream Regulatory Elements. J Biol Chem 2016; 291:13591-607. [PMID: 27129260 DOI: 10.1074/jbc.m115.708156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
One mechanism by which oncoproteins work is through perturbation of cellular maturation; understanding the mechanisms by which this occurs can lead to the development of targeted therapies. EVI1 is a zinc finger oncoprotein involved in the development of acute myeloid leukemia; previous work has shown it to interfere with the maturation of granulocytes from immature precursors. Here we investigate the mechanism by which that occurs, using an immortalized hematopoietic progenitor cell line, EML-C1, as a model system. We document that overexpression of EVI1 abrogates retinoic acid-induced maturation of EML cells into committed myeloid cells, a process that can be documented by the down-regulation of stem cell antigen-1 and acquisition of responsiveness to granulocyte-macrophage colony-stimulating factor. We show that this requires DNA binding capacity of EVI1, suggesting that downstream target genes are involved. We identify the myeloid regulator Cebpa as a target gene and identify two EVI1 binding regions within evolutionarily conserved enhancer elements at +35 and +37 kb relative to the gene. EVI1 can strongly suppress Cebpa transcription, and add-back of Cebpa into EVI1-expressing EML cells partially corrects the block in maturation. We identify the DNA sequences to which EVI1 binds at +35 and +37 kb and show that mutation of one of these releases Cebpa from EVI1-induced suppression. We observe a more complex picture in primary bone marrow cells, where EVI1 suppresses Cebpa in stem cells but not in more committed progenitors. Our data thus identify a regulatory node by which EVI1 contributes to leukemia, and this represents a possible therapeutic target for treatment of EVI1-expressing leukemia.
Collapse
Affiliation(s)
- Michael Wilson
- From the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642 and
| | | | - Minh Tran
- the Department of Pathology, Yale University, New Haven, Connecticut 06520
| | - Ying-Yi Xiao
- the Department of Pathology, Yale University, New Haven, Connecticut 06520
| | - Yi Zhang
- From the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Archibald S Perkins
- From the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
46
|
An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 2016; 127:2991-3003. [PMID: 26966090 DOI: 10.1182/blood-2016-01-695759] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.
Collapse
|
47
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Quantification of EVI1 transcript levels in acute myeloid leukemia by RT-qPCR analysis: A study by the ALFA Group. Leuk Res 2015; 39:1443-7. [DOI: 10.1016/j.leukres.2015.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022]
|
49
|
Laszlo GS, Alonzo TA, Gudgeon CJ, Harrington KH, Kentsis A, Gerbing RB, Wang YC, Ries RE, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S, Walter RB. High expression of myocyte enhancer factor 2C (MEF2C) is associated with adverse-risk features and poor outcome in pediatric acute myeloid leukemia: a report from the Children's Oncology Group. J Hematol Oncol 2015; 8:115. [PMID: 26487643 PMCID: PMC4618184 DOI: 10.1186/s13045-015-0215-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies have identified myocyte enhancer factor 2C (MEF2C) as cooperating oncogene in acute myeloid leukemia (AML) and suggested a contribution to the aggressive nature of at least some subtypes of AML, raising the possibility that MEF2C could serve as marker of poor-risk AML and, therefore, have prognostic significance. Methods To test this hypothesis, we retrospectively quantified MEF2C expression in pretreatment bone marrow specimens in participants of the AAML0531 trial by reverse-transcriptase polymerase chain reaction and correlated expression levels with disease characteristics and clinical outcome. Results In all 751 available patient specimens, MEF2C messenger RNA (mRNA) was detectable and varied >3000-fold relative to β-glucuronidase. Patients with the highest relative MEF2C expression (4th quartile) less likely achieved a complete remission after one course of chemotherapy than the other patients (67 vs. 78 %, P = 0.005). They also had an inferior overall survival (P = 0.014; at 5 years 55 ± 8 vs. 67 ± 4 %), inferior event-free survival (P < 0.001; at 5 years 38 ± 7 vs. 54 ± 4 %), and higher relapse risk than patients within the lower 3 quartiles of MEF2C expression (P < 0.001; at 5 years 53 ± 9 vs. 35 ± 5 %). These differences were accounted for by lower prevalence of cytogenetically/molecularly defined low-risk disease (16 vs. 46 %, P < 0.001) and higher prevalence of standard-risk disease (68 vs. 42 %, P < 0.001) in patients with high MEF2C expression, suggesting that MEF2C cooperates with additional pathogenic abnormalities. Conclusions High MEF2C expression identifies a subset of AML patients with adverse-risk disease features and poor outcome. With confirmation that high MEF2C mRNA expression leads to overexpression of MEF2C protein, these findings provide the rationale for therapeutic targeting of MEF2C transcriptional activation in AML.
Collapse
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Todd A Alonzo
- Department of Biostatistics, University of Southern California, Los Angeles, CA, USA.,Children's Oncology Group, Monrovia, CA, USA
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Alex Kentsis
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | | | | | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Susana C Raimondi
- Children's Oncology Group, Monrovia, CA, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Betsy A Hirsch
- Children's Oncology Group, Monrovia, CA, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Alan S Gamis
- Children's Oncology Group, Monrovia, CA, USA.,Division of Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA.,Children's Oncology Group, Monrovia, CA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA. .,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA. .,Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol 2015; 47:2028-36. [PMID: 26496831 DOI: 10.3892/ijo.2015.3207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/06/2022] Open
Abstract
Ecotropic virus integration site-1 (EVI-1) gene, locus on chromosome 3 (3q26.2) in the human genome, was first found in the AKXD strain of mice, in a model of retrovirus-induced acute myeloid leukemia (AML) established twenty years ago. Since then, EVI-1 was regarded as one of the most invasive proto-oncogenes in human leukemia. EVI-1 can encode a unique zinc-finger protein of 145 kDa that can bind with DNA, and its overexpression was closely related to human hemopoietic diseases. Furthermore, accumulating research indicates that EVI-1 is involved in the differentiation, apoptosis and proliferation of leukemia cells. The present review focuses on the biochemical properties of EVI-1 which plays a role in myeloid malignancies.
Collapse
Affiliation(s)
- Xiaofen Yuan
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China
| | - Kehong Bi
- Department of Hematology, Qianfoshan Hospital of Shandong, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|