1
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
2
|
Bailey LR, Bugg D, Reichardt IM, Ortaç CD, Nagle A, Gunaje J, Martinson A, Johnson R, MacCoss MJ, Sakamoto T, Kelly DP, Regnier M, Davis JM. MBNL1 Regulates Programmed Postnatal Switching Between Regenerative and Differentiated Cardiac States. Circulation 2024; 149:1812-1829. [PMID: 38426339 PMCID: PMC11147738 DOI: 10.1161/circulationaha.123.066860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation. METHODS MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects. RESULTS MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation. CONCLUSIONS Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.
Collapse
Affiliation(s)
- Logan R.J. Bailey
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Darrian Bugg
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Isabella M. Reichardt
- Bioengineering, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - C. Dessirée Ortaç
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Abigail Nagle
- Bioengineering, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jagadambika Gunaje
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Amy Martinson
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | | | | | - Tomoya Sakamoto
- Cardiovascular Institute, Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel P. Kelly
- Cardiovascular Institute, Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Regnier
- Bioengineering, University of Washington, Seattle, WA
- Center for Translational Muscle Research, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jennifer M. Davis
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Bioengineering, University of Washington, Seattle, WA
- Center for Translational Muscle Research, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Yu L, Liu L. Exploration of adverse events associated with risdiplam use: Retrospective cases from the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. PLoS One 2024; 19:e0298609. [PMID: 38427665 PMCID: PMC10906863 DOI: 10.1371/journal.pone.0298609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
Risdiplam is a new drug for treating spinal muscular atrophy (SMA). However, pharmacovigilance analyses are necessary to objectively evaluate its safety-a crucial step in preventing severe adverse events (AEs). Accordingly, the primary objective of the current study was to examine the AEs associated with risdiplam use based on real-world data obtained from the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. More specifically, we examined incidents reported between the third quarter of 2020 and the second quarter of 2023. The imbalance of risdiplam-related AEs was evaluated by computing the reporting odds ratio. A total of 5,406,334 reports were thoroughly reviewed. By removing duplicate reports, we identified 1588 reports in which risdiplam was the main suspected drug whose use was accompanied by 3470 associated AEs. Among the included AEs, 703 were categorized as serious and 885 as non-serious. Risdiplam use induced AEs across 18 organ systems, resulting in 130 positive signals. Notably, we detected new AE signals, including cardiac arrest, nephrolithiasis, tachycardia, loss of libido, and elevated hepatic enzyme activities; however, no ophthalmologic toxicity was reported. Although these new adverse reaction signals associated with risdiplam have been defined, long-term clinical studies are needed to confirm these findings. Nevertheless, our findings provide a valuable reference for improving the clinical management of SMA.
Collapse
Affiliation(s)
- Lurong Yu
- College of Traditional Chinese Medicine of Chongqing Medical University, Chongqing, China
| | - Limei Liu
- Pharmacy Department of Chongqing YouYou BaoBei Women’s and Children’s Hospital, Chongqing, China
| |
Collapse
|
4
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
5
|
Ottesen EW, Singh NN, Luo D, Kaas B, Gillette B, Seo J, Jorgensen H, Singh RN. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res 2023; 51:5948-5980. [PMID: 37026480 PMCID: PMC10325915 DOI: 10.1093/nar/gkad259] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Bailey Kaas
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Benjamin J Gillette
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Hannah J Jorgensen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
7
|
Nelson AR, Bugg D, Davis J, Saucerman JJ. Network model integrated with multi-omic data predicts MBNL1 signals that drive myofibroblast activation. iScience 2023; 26:106502. [PMID: 37091233 PMCID: PMC10119756 DOI: 10.1016/j.isci.2023.106502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
RNA-binding protein muscleblind-like1 (MBNL1) was recently identified as a central regulator of cardiac wound healing and myofibroblast activation. To identify putative MBNL1 targets, we integrated multiple genome-wide screens with a fibroblast network model. We expanded the model to include putative MBNL1-target interactions and recapitulated published experimental results to validate new signaling modules. We prioritized 14 MBNL1 targets and developed novel fibroblast signaling modules for p38 MAPK, Hippo, Runx1, and Sox9 pathways. We experimentally validated MBNL1 regulation of p38 expression in mouse cardiac fibroblasts. Using the expanded fibroblast model, we predicted a hierarchy of MBNL1 regulated pathways with strong influence on αSMA expression. This study lays a foundation to explore the network mechanisms of MBNL1 signaling central to fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, 5th Floor, PO Box 800735, Charlottesville, VA 22908-0735, USA
| | - Darrian Bugg
- Department of Lab Medicine & Pathology, University of Washington, 1959 NE Pacific Street Box 357470, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Lab Medicine & Pathology, University of Washington, 1959 NE Pacific Street Box 357470, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, PO Box 355061, Seattle, WA 98195-5061, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, 850 Republican Street, PO Box 358056, Seattle, WA 98109, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22903 , USA
| |
Collapse
|
8
|
Bailey LRJ, Bugg D, Reichardt IM, Ortaç CD, Gunaje J, Johnson R, MacCoss MJ, Sakamoto T, Kelly DP, Regnier M, Davis JM. MBNL1 regulates programmed postnatal switching between regenerative and differentiated cardiac states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532974. [PMID: 36993225 PMCID: PMC10055038 DOI: 10.1101/2023.03.16.532974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Discovering determinants of cardiomyocyte maturity and the maintenance of differentiated states is critical to both understanding development and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Here, the RNA binding protein Muscleblind-like 1 (MBNL1) was identified as a critical regulator of cardiomyocyte differentiated states and their regenerative potential through transcriptome-wide control of RNA stability. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of the estrogen-related receptor signaling axis was essential for maintaining cardiomyocyte maturity. In accordance with these data, modulating MBNL1 dose tuned the temporal window of cardiac regeneration, where enhanced MBNL1 activity arrested myocyte proliferation, and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. Collectively these data suggest MBNL1 acts as a transcriptome-wide switch between regenerative and mature myocyte states postnatally and throughout adulthood.
Collapse
|
9
|
Salmen F, De Jonghe J, Kaminski TS, Alemany A, Parada GE, Verity-Legg J, Yanagida A, Kohler TN, Battich N, van den Brekel F, Ellermann AL, Arias AM, Nichols J, Hemberg M, Hollfelder F, van Oudenaarden A. High-throughput total RNA sequencing in single cells using VASA-seq. Nat Biotechnol 2022; 40:1780-1793. [PMID: 35760914 PMCID: PMC9750877 DOI: 10.1038/s41587-022-01361-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/13/2022] [Indexed: 01/14/2023]
Abstract
Most methods for single-cell transcriptome sequencing amplify the termini of polyadenylated transcripts, capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts and hinders alternative splicing analysis. We, therefore, developed VASA-seq to detect the total transcriptome in single cells, which is enabled by fragmenting and tailing all RNA molecules subsequent to cell lysis. The method is compatible with both plate-based formats and droplet microfluidics. We applied VASA-seq to more than 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. Analyzing the dynamics of the total single-cell transcriptome, we discovered cell type markers, many based on non-coding RNA, and performed in vivo cell cycle analysis via detection of non-polyadenylated histone genes. RNA velocity characterization was improved, accurately retracing blood maturation trajectories. Moreover, our VASA-seq data provide a comprehensive analysis of alternative splicing during mammalian development, which highlighted substantial rearrangements during blood development and heart morphogenesis.
Collapse
Affiliation(s)
- Fredrik Salmen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Francis Crick Institute, London, UK
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Alemany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Joe Verity-Legg
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Nicholas Battich
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Floris van den Brekel
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader 88 ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
10
|
The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biol 2022; 20:e3001615. [PMID: 35476669 PMCID: PMC9084524 DOI: 10.1371/journal.pbio.3001615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/09/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.
Collapse
|
11
|
Heazlewood SY, Ahmad T, Mohenska M, Guo BB, Gangatirkar P, Josefsson EC, Ellis SL, Ratnadiwakara M, Cao H, Cao B, Heazlewood CK, Williams B, Fulton M, White JF, Ramialison M, Nilsson SK, Änkö ML. The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production. Blood 2022; 139:1359-1373. [PMID: 34852174 PMCID: PMC8900270 DOI: 10.1182/blood.2021013826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
RNA processing is increasingly recognized as a critical control point in the regulation of different hematopoietic lineages including megakaryocytes responsible for the production of platelets. Platelets are anucleate cytoplasts that contain a rich repertoire of RNAs encoding proteins with essential platelet functions derived from the parent megakaryocyte. It is largely unknown how RNA binding proteins contribute to the development and functions of megakaryocytes and platelets. We show that serine-arginine-rich splicing factor 3 (SRSF3) is essential for megakaryocyte maturation and generation of functional platelets. Megakaryocyte-specific deletion of Srsf3 in mice led to macrothrombocytopenia characterized by megakaryocyte maturation arrest, dramatically reduced platelet counts, and abnormally large functionally compromised platelets. SRSF3 deficient megakaryocytes failed to reprogram their transcriptome during maturation and to load platelets with RNAs required for normal platelet function. SRSF3 depletion led to nuclear accumulation of megakaryocyte mRNAs, demonstrating that SRSF3 deploys similar RNA regulatory mechanisms in megakaryocytes as in other cell types. Our study further suggests that SRSF3 plays a role in sorting cytoplasmic megakaryocyte RNAs into platelets and demonstrates how SRSF3-mediated RNA processing forms a central part of megakaryocyte gene regulation. Understanding SRSF3 functions in megakaryocytes and platelets provides key insights into normal thrombopoiesis and platelet pathologies as SRSF3 RNA targets in megakaryocytes are associated with platelet diseases.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Tanveer Ahmad
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Monika Mohenska
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Belinda B Guo
- School of Biomedical Sciences, Pathology and Laboratory Science, University of Western Australia, WA, Australia
| | | | - Emma C Josefsson
- Walter and Eliza Hall Institute of Medical Research, VIC, Australia
- Department of Medical Biology, The University of Melbourne, VIC, Australia
| | - Sarah L Ellis
- Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Microscopy Facility and School of Cancer Medicine, La Trobe University, VIC, Australia
| | - Madara Ratnadiwakara
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
- Hudson Institute of Medical Research, VIC, Australia; and
- Department of Molecular and Translational Sciences, Monash University, VIC, Australia
| | - Huimin Cao
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | | | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Susan K Nilsson
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Minna-Liisa Änkö
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
- Hudson Institute of Medical Research, VIC, Australia; and
- Department of Molecular and Translational Sciences, Monash University, VIC, Australia
| |
Collapse
|
12
|
Bugg D, Bailey LRJ, Bretherton RC, Beach KE, Reichardt IM, Robeson KZ, Reese AC, Gunaje J, Flint G, DeForest CA, Stempien-Otero A, Davis J. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell 2022; 29:419-433.e10. [PMID: 35176223 PMCID: PMC8929295 DOI: 10.1016/j.stem.2022.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Dynamic fibroblast to myofibroblast state transitions underlie the heart's fibrotic response. Because transcriptome maturation by muscleblind-like 1 (MBNL1) promotes differentiated cell states, this study investigated whether tactical control of MBNL1 activity could alter myofibroblast activity and fibrotic outcomes. In healthy mice, cardiac fibroblast-specific overexpression of MBNL1 transitioned the fibroblast transcriptome to that of a myofibroblast and after injury promoted myocyte remodeling and scar maturation. Both fibroblast- and myofibroblast-specific loss of MBNL1 limited scar production and stabilization, which was ascribed to negligible myofibroblast activity. The combination of MBNL1 deletion and injury caused quiescent fibroblasts to expand and adopt features of cardiac mesenchymal stem cells, whereas transgenic MBNL1 expression blocked fibroblast proliferation and drove the population into a mature myofibroblast state. These data suggest MBNL1 is a post-transcriptional switch, controlling fibroblast state plasticity during cardiac wound healing.
Collapse
Affiliation(s)
- Darrian Bugg
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Logan R J Bailey
- Molecular & Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kylie E Beach
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Kalen Z Robeson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Anna C Reese
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jagadambika Gunaje
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Ren Y, Huo Y, Li W, He M, Liu S, Yang J, Zhao H, Xu L, Guo Y, Si Y, Zhao H, Rao S, Wang J, Ma Y, Wang X, Yu J, Wang F. A global screening identifies chromatin-enriched RNA-binding proteins and the transcriptional regulatory activity of QKI5 during monocytic differentiation. Genome Biol 2021; 22:290. [PMID: 34649616 PMCID: PMC8518180 DOI: 10.1186/s13059-021-02508-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cellular RNA-binding proteins (RBPs) have multiple roles in post-transcriptional control, and some are shown to bind DNA. However, the global localization and the general chromatin-binding ability of RBPs are not well-characterized and remain undefined in hematopoietic cells. RESULTS We first provide a full view of RBPs' distribution pattern in the nucleus and screen for chromatin-enriched RBPs (Che-RBPs) in different human cells. Subsequently, by generating ChIP-seq, CLIP-seq, and RNA-seq datasets and conducting combined analysis, the transcriptional regulatory potentials of certain hematopoietic Che-RBPs are predicted. From this analysis, quaking (QKI5) emerges as a potential transcriptional activator during monocytic differentiation. QKI5 is over-represented in gene promoter regions, independent of RNA or transcription factors. Furthermore, DNA-bound QKI5 activates the transcription of several critical monocytic differentiation-associated genes, including CXCL2, IL16, and PTPN6. Finally, we show that the differentiation-promoting activity of QKI5 is largely dependent on CXCL2, irrespective of its RNA-binding capacity. CONCLUSIONS Our study indicates that Che-RBPs are versatile factors that orchestrate gene expression in different cellular contexts, and identifies QKI5, a classic RBP regulating RNA processing, as a novel transcriptional activator during monocytic differentiation.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Manman He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiabin Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hongmei Zhao
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Lingjie Xu
- Emergency Department of West China Hospital, Sichuan University, Chengdu, 610014, China
| | - Yuehong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Medical Epigenetic Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
14
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Chen YS, Liu CW, Lin YC, Tsai CY, Yang CH, Lin JC. The SRSF3-MBNL1-Acin1 circuit constitutes an emerging axis to lessen DNA fragmentation in colorectal cancer via an alternative splicing mechanism. Neoplasia 2020; 22:702-713. [PMID: 33142236 PMCID: PMC7586066 DOI: 10.1016/j.neo.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Altered alternative splicing (AS) events are considered pervasive causes that result in the development of carcinogenesis. Herein, we identified reprogrammed expression and splicing profiles of Muscle blind-like protein 1 (MBNL1) transcripts in tumorous tissues compared to those of adjacent normal tissues dissected from individual colorectal cancer (CRC) patients using whole-transcriptome analyses. MBNL1 transcript 8 (MBNL18) containing exons 5 and 7 was majorly generated by cancerous tissues and CRC-derived cell lines compared with those of the normal counterparts. Interplay between the exonic CA-rich element and upregulated SRSF3 facilitated the inclusion of MBNL1 exons 5 and 7, which encode a bipartite nuclear localization signal (NLS) and conformational NLS. Moreover, abundant SRSF3 interfered with the autoregulatory mechanism involved in utilization of MBNL1 exons 5 and 7, resulting in enrichment of the MBNL18 isoform in cultured CRC cell lines. Subsequently, an increase in the MBNL18 isoform drove a shift in the apoptotic chromatin condensation inducer in nucleus 1-S (Acin1-S) isoform to the Acin1-L isoform, leading to diminished DNA fragmentation in cultured CRC cells under oxidative stress. Taken together, SRSF3-MBNL1-Acin1 was demonstrated to constitute an emerging axis which is relevant to proapoptotic signatures and post-transcriptional events of CRC cells.
Collapse
Affiliation(s)
- Yi-Su Chen
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wei Liu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Science, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ying Tsai
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hui Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Voss DM, Sloan A, Spina R, Ames HM, Bar EE. The Alternative Splicing Factor, MBNL1, Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-Induced Stemness. Cancer Res 2020; 80:4681-4692. [PMID: 32928918 DOI: 10.1158/0008-5472.can-20-1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
Muscleblind-like proteins (MBNL) belong to a family of tissue-specific regulators of RNA metabolism that control premessenger RNA splicing. Inactivation of MBNL causes an adult-to-fetal alternative splicing transition, resulting in the development of myotonic dystrophy. We have previously shown that the aggressive brain cancer, glioblastoma (GBM), maintains stem-like features (glioma stem cell, GSC) through hypoxia-induced responses. Accordingly, we hypothesize here that hypoxia-induced responses in GBM might also include MBNL-based alternative splicing to promote tumor progression. When cultured in hypoxia condition, GSCs rapidly exported muscleblind-like-1 (MBNL1) out of the nucleus, resulting in significant inhibition of MBNL1 activity. Notably, hypoxia-regulated inhibition of MBNL1 also resulted in evidence of adult-to-fetal alternative splicing transitions. Forced expression of a constitutively active isoform of MBNL1 inhibited GSC self-renewal and tumor initiation in orthotopic transplantation models. Induced expression of MBNL1 in established orthotopic tumors dramatically inhibited tumor progression, resulting in significantly prolonged survival. This study reveals that MBNL1 plays an essential role in GBM stemness and tumor progression, where hypoxic responses within the tumor inhibit MBNL1 activity, promoting stem-like phenotypes and tumor growth. Reversing these effects on MBNL1 may therefore, yield potent tumor suppressor activities, uncovering new therapeutic opportunities to counter this disease. SIGNIFICANCE: This study describes an unexpected mechanism by which RNA-binding protein, MBNL1, activity is inhibited in hypoxia by a simple isoform switch to regulate glioma stem cell self-renewal, tumorigenicity, and progression.
Collapse
Affiliation(s)
- Dillon M Voss
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anthony Sloan
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Raffaella Spina
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather M Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
18
|
Itskovich SS, Gurunathan A, Clark J, Burwinkel M, Wunderlich M, Berger MR, Kulkarni A, Chetal K, Venkatasubramanian M, Salomonis N, Kumar AR, Lee LH. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia. Nat Commun 2020; 11:2369. [PMID: 32398749 PMCID: PMC7217953 DOI: 10.1038/s41467-020-15733-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A. We finally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins.
Collapse
Affiliation(s)
- Svetlana S Itskovich
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arun Gurunathan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jason Clark
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Burwinkel
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mikaela R Berger
- College of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meenakshi Venkatasubramanian
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Lynn H Lee
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Welte T, Tuck AC, Papasaikas P, Carl SH, Flemr M, Knuckles P, Rankova A, Bühler M, Großhans H. The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev 2019; 33:1221-1235. [PMID: 31371437 PMCID: PMC6719626 DOI: 10.1101/gad.328492.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
Abstract
In this study, Welte et al. investigated the dual roles of mammalian TRIM71, a phylogenetically conserved regulator of development, in the control of stem cell fate. They demonstrate that TRIM71 shapes the transcriptome of mESCs predominantly through its RNA-binding activity and identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1/Muscleblind. TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3′ untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Liu H, Lorenzini PA, Zhang F, Xu S, Wong MSM, Zheng J, Roca X. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 2019; 46:6069-6086. [PMID: 29771377 PMCID: PMC6159523 DOI: 10.1093/nar/gky401] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
We report the detailed transcriptomic profiles of human innate myeloid cells using RNA sequencing. Monocytes migrate from blood into infected or wounded tissue to differentiate into macrophages, and control inflammation via phagocytosis or cytokine secretion. We differentiated culture primary monocytes with either GM- or M-CSF to obtain pro- or anti-inflammatory macrophages, and respectively activated them with either LPS/IFNγ or anti-inflammatory cytokines. We also treated the THP-1 monocytic cell line with PMA and similar cytokines to mimic differentiation and activation. We detected thousands of expression and alternative-splicing changes during monocyte-to-macrophage differentiation and activation, and a net increase in exon inclusion. MBNL1 knockdown phenocopies several alternative-splicing changes and strongly impairs PMA differentiation, suggesting functional defects in monocytes from Myotonic Dystrophy patients. This study provides general insights into alternative splicing in the monocyte–macrophage lineage, whose future characterization will elucidate their contribution to immune functions, which are altered in immunodeficiencies, autoimmunity, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hongfei Liu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Paolo A Lorenzini
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School (IGS), Nanyang Technological University, 637551 Singapore
| | - Fan Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore
| | - Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Mei Su M Wong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
21
|
Ubiquitination of MBNL1 Is Required for Its Cytoplasmic Localization and Function in Promoting Neurite Outgrowth. Cell Rep 2019; 22:2294-2306. [PMID: 29490267 DOI: 10.1016/j.celrep.2018.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/19/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The Muscleblind-like protein family (MBNL) plays an important role in regulating the transition between differentiation and pluripotency and in the pathogenesis of myotonic dystrophy type 1 (DM1), a CTG expansion disorder. How different MBNL isoforms contribute to the differentiation and are affected in DM1 has not been investigated. Here, we show that the MBNL1 cytoplasmic, but not nuclear, isoform promotes neurite morphogenesis and reverses the morphological defects caused by expanded CUG RNA. Cytoplasmic MBNL1 is polyubiquitinated by lysine 63 (K63). Reduced cytoplasmic MBNL1 in the DM1 mouse brain is consistent with the reduced extent of K63 ubiquitination. Expanded CUG RNA induced the deubiqutination of cytoplasmic MBNL1, which resulted in nuclear translocation and morphological impairment that could be ameliorated by inhibiting K63-linked polyubiquitin chain degradation. Our results suggest that K63-linked ubiquitination of MBNL1 is required for its cytoplasmic localization and that deubiquitination of cytoplasmic MBNL1 is pathogenic in the DM1 brain.
Collapse
|
22
|
Tang L, Zhao P, Kong D. Muscleblind‑like 1 destabilizes Snail mRNA and suppresses the metastasis of colorectal cancer cells via the Snail/E‑cadherin axis. Int J Oncol 2019; 54:955-965. [PMID: 30664186 PMCID: PMC6365040 DOI: 10.3892/ijo.2019.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) play a fundamental role in the recurrence and metastasis of colorectal cancer (CRC). In this study, we identified muscleblind-like 1 (MBNL1), an RBP implicated in developmental control, as a robust suppressor of CRC cell metastasis in vitro. By using a scratch assay coupled with time-lapse live cell imaging, our findings revealed that the knockdown of MBNL1 induced epithelial-to-mesenchymal transition (EMT)-like morphological changes in the HCT-116 cells, accompanied by an enhanced cell motility, and by the downregulation of E-cadherin and the upregulation of Snail expression. By contrast, the ectopic overexpression of MBNL1 suppressed EMT, characterized by the upregulation of E-cadherin and the downregulation of Snail expression. Mechanistically, Snail rather than E-cadherin, was identified as a direct downstream target gene of MBNL1. The ectopic the overexpression of MBNL1 markedly enhanced the recruitment of Snail transcripts to processing bodies (P-bodies), leading to the increased degradation of Snail mRNA and consequent translational silencing. Furthermore, the effect of MBNL1 on CRC cell migration was confirmed in additional CRC cell lines. SW480 and HT-29 cells exhibited similar changes in migratory capacity and the expression of Snail/E-cadherin to those observed in HCT-116 cells. On the whole, this study demonstrates that MBNL1 destabilizes Snail transcripts and, in turn, suppresses the EMT of CRC cells through the Snail/E-cadherin axis in vitro. Therefore, this EMT-related MBNL1/Snail/E-cadherin axis may prove to be a novel therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Liang Tang
- Department of Colorectal Cancer, Cancer Hospital of Tianjin Medical University, Key Laboratory of Cancer Prevention and Therapy, and National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Peng Zhao
- Department of Colorectal Cancer, Cancer Hospital of Tianjin Medical University, Key Laboratory of Cancer Prevention and Therapy, and National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Dalu Kong
- Department of Colorectal Cancer, Cancer Hospital of Tianjin Medical University, Key Laboratory of Cancer Prevention and Therapy, and National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
23
|
Vella V, Nicolosi ML, Cantafio P, Massimino M, Lappano R, Vigneri P, Ciuni R, Gangemi P, Morrione A, Malaguarnera R, Belfiore A. DDR1 regulates thyroid cancer cell differentiation via IGF-2/IR-A autocrine signaling loop. Endocr Relat Cancer 2019; 26:197-214. [PMID: 30121624 DOI: 10.1530/erc-18-0310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Patients with thyroid cancers refractory to radioiodine (RAI) treatment show a limited response to various therapeutic options and a low survival rate. The recent use of multikinase inhibitors has also met limited success. An alternative approach relies on drugs that induce cell differentiation, as the ensuing increased expression of the cotransporter for sodium and iodine (NIS) may partially restore sensitivity to radioiodine. The inhibition of the ERK1/2 pathway has shown some efficacy in this context. Aggressive thyroid tumors overexpress the isoform-A of the insulin receptor (IR-A) and its ligand IGF-2; this IGF-2/IR-A loop is associated with de-differentiation and stem-like phenotype, resembling RAI-refractory tumors. Importantly, IR-A has been shown to be positively modulated by the non-integrin collagen receptor DDR1 in human breast cancer. Using undifferentiated human thyroid cancer cells, we now evaluated the effects of DDR1 on IGF-2/IR-A loop and on markers of cell differentiation and stemness. DDR1 silencing or downregulation caused significant reduction of IR-A and IGF-2 expression, and concomitant increased levels of differentiation markers (NIS, Tg, TSH, TPO). Conversely, markers of epithelial-to-mesenchymal transition (Vimentin, Snail-2, Zeb1, Zeb2 and N-Cadherin) and stemness (OCT-4, SOX-2, ABCG2 and Nanog) decreased. These effects were collagen independent. In contrast, overexpression of either DDR1 or its kinase-inactive variant K618A DDR1-induced changes suggestive of less differentiated and stem-like phenotype. Collagen stimulation was uneffective. In conclusion, in poorly differentiated thyroid cancer, DDR1 silencing or downregulation blocks the IGF-2/IR-A autocrine loop and induces cellular differentiation. These results may open novel therapeutic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Veronica Vella
- School of Human and Social Sciences, 'Kore' University of Enna, Enna, Italy
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Patrizia Cantafio
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, AOU Policlinico Vittorio Emanuele, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Paolo Vigneri
- Center of Experimental Oncology and Hematology, AOU Policlinico Vittorio Emanuele, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Ciuni
- Unit of Thyroid and Neck Surgery, Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Pietro Gangemi
- Unit of Pathology, Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
24
|
Yien YY, Shi J, Chen C, Cheung JTM, Grillo AS, Shrestha R, Li L, Zhang X, Kafina MD, Kingsley PD, King MJ, Ablain J, Li H, Zon LI, Palis J, Burke MD, Bauer DE, Orkin SH, Koehler CM, Phillips JD, Kaplan J, Ward DM, Lodish HF, Paw BH. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 2018; 293:19797-19811. [PMID: 30366982 DOI: 10.1074/jbc.ra118.002742] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.
Collapse
Affiliation(s)
- Yvette Y Yien
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, .,the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jiahai Shi
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Caiyong Chen
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jesmine T M Cheung
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Anthony S Grillo
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rishna Shrestha
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Liangtao Li
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Xuedi Zhang
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Martin D Kafina
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul D Kingsley
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Matthew J King
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Julien Ablain
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hojun Li
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leonard I Zon
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - James Palis
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Martin D Burke
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel E Bauer
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Stuart H Orkin
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Carla M Koehler
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - John D Phillips
- the Division of Hematology and Hematologic Malignancy, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jerry Kaplan
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Diane M Ward
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Harvey F Lodish
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barry H Paw
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
25
|
Abstract
During erythropoiesis, hematopoietic stem and progenitor cells transition to erythroblasts en route to terminal differentiation into enucleated red blood cells. Transcriptome-wide changes underlie distinct morphological and functional characteristics at each cell division during this process. Many studies of gene expression have historically been carried out in erythroblasts, and the biogenesis of β-globin mRNA—the most highly expressed transcript in erythroblasts—was the focus of many seminal studies on the mechanisms of pre-mRNA splicing. We now understand that pre-mRNA splicing plays an important role in shaping the transcriptome of developing erythroblasts. Recent advances have provided insight into the role of alternative splicing and intron retention as important regulatory mechanisms of erythropoiesis. However, dysregulation of splicing during erythropoiesis is also a cause of several hematological diseases, including β-thalassemia and myelodysplastic syndromes. With a growing understanding of the role that splicing plays in these diseases, we are well poised to develop gene-editing treatments. In this review, we focus on changes in the developing erythroblast transcriptome caused by alternative splicing, the molecular basis of splicing-related blood diseases, and therapeutic advances in disease treatment using CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
26
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
27
|
Huang Y, Hale J, Wang Y, Li W, Zhang S, Zhang J, Zhao H, Guo X, Liu J, Yan H, Yazdanbakhsh K, Huang G, Hillyer CD, Mohandas N, Chen L, Sun L, An X. SF3B1 deficiency impairs human erythropoiesis via activation of p53 pathway: implications for understanding of ineffective erythropoiesis in MDS. J Hematol Oncol 2018; 11:19. [PMID: 29433555 PMCID: PMC5810112 DOI: 10.1186/s13045-018-0558-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SF3B1 is a core component of splicing machinery. Mutations in SF3B1 are frequently found in myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ringed sideroblasts (RARS), characterized by isolated anemia. SF3B1 mutations have been implicated in the pathophysiology of RARS; however, the physiological function of SF3B1 in erythropoiesis remains unknown. METHODS shRNA-mediated approach was used to knockdown SF3B1 in human CD34+ cells. The effects of SF3B1 knockdown on human erythroid cell differentiation, cell cycle, and apoptosis were assessed by flow cytometry. RNA-seq, qRT-PCR, and western blot analyses were used to define the mechanisms of phenotypes following knockdown of SF3B1. RESULTS We document that SF3B1 knockdown in human CD34+ cells leads to increased apoptosis and cell cycle arrest of early-stage erythroid cells and generation of abnormally nucleated late-stage erythroblasts. RNA-seq analysis of SF3B1-knockdown erythroid progenitor CFU-E cells revealed altered splicing of an E3 ligase Makorin Ring Finger Protein 1 (MKRN1) and subsequent activation of p53 pathway. Importantly, ectopic expression of MKRN1 rescued SF3B1-knockdown-induced alterations. Decreased expression of genes involved in mitosis/cytokinesis pathway including polo-like kinase 1 (PLK1) was noted in SF3B1-knockdown polychromatic and orthochromatic erythroblasts comparing to control cells. Pharmacologic inhibition of PLK1 also led to generation of abnormally nucleated erythroblasts. CONCLUSIONS These findings enabled us to identify novel roles for SF3B1 in human erythropoiesis and provided new insights into its role in regulating normal erythropoiesis. Furthermore, these findings have implications for improved understanding of ineffective erythropoiesis in MDS patients with SF3B1 mutations.
Collapse
Affiliation(s)
- Yumin Huang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
| | - John Hale
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 USA
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Wei Li
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 People’s Republic of China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Jieying Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410078 People’s Republic of China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
| | - Jing Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410078 People’s Republic of China
| | - Hongxia Yan
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, New York, NY 10065 USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | | | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 USA
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Xiuli An
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| |
Collapse
|
28
|
Raz V, Riaz M, Tatum Z, Kielbasa SM, 't Hoen PAC. The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. FASEB J 2018; 32:1579-1590. [PMID: 29141996 DOI: 10.1096/fj.201700861r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adult muscles have a vast adaptation capacity, enabling function switches in response to altered conditions. During intensive physical activity, disease, or aging, adult skeletal muscles change and adjust their functions. The competence to adjust varies among muscles. Muscle-specific molecular mechanisms in healthy and normal conditions could designate changes in physiologic and pathologic conditions. We generated deep mRNA-sequencing data in adult fast and slow mouse muscles, and applying paired analysis, we identified that the muscle-specific signatures are composed of half of the muscle transcriptome. The fast muscles showed a more compact gene network that is concordant with homogenous myofiber typing, compared with the pattern in the slow muscle. The muscle-specific mRNA landscape did not correlate with alternative spicing, alternative polyadenylation, or the expression of muscle transcription factor gene networks. However, we found significant correlation between the differentially expressed noncoding RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and their target genes. More than 25% of the genes expressed in a muscle-specific fashion were found to be targets of muscle-specific miRNAs and lncRNAs. We suggest that muscle-specific miRNAs and lncRNAs contribute to the establishment of muscle-specific transcriptomes in adult muscles.-Raz, V., Riaz, M., Tatum, Z., Kielbasa, S. M., 't Hoen, P. A. C. The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Muhammad Riaz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Zuotian Tatum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Bioinformatics Center of Expertise, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RECENT FINDINGS RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. SUMMARY Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.
Collapse
|
30
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 868] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
31
|
Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne) 2017; 8:133. [PMID: 28680417 PMCID: PMC5478874 DOI: 10.3389/fendo.2017.00133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the worldwide obesity epidemic and currently affects one-third of adults or about one billion people worldwide. NAFLD is predicted to affect over 50% of the world's population by the end of the next decade. It is the most common form of liver disease and is associated with increased risk for progression to a more severe form non-alcoholic steatohepatitis, as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepatocellular carcinoma. This review article will focus on the role of alternative splicing in normal liver physiology and dysregulation in liver disease.
Collapse
Affiliation(s)
- Nicholas J. G. Webster
- Medical Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, School of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Nicholas J. G. Webster,
| |
Collapse
|
32
|
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:32-44. [PMID: 27260399 DOI: 10.1016/j.ibmb.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.
Collapse
Affiliation(s)
- Gajula Gopinath
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Javaregowda Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| |
Collapse
|
33
|
Fish L, Pencheva N, Goodarzi H, Tran H, Yoshida M, Tavazoie SF. Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts. Genes Dev 2016; 30:386-98. [PMID: 26883358 PMCID: PMC4762424 DOI: 10.1101/gad.270645.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Post-transcriptional deregulation is a defining feature of metastatic cancer. While many microRNAs have been implicated as regulators of metastatic progression, less is known about the roles and mechanisms of RNA-binding proteins in this process. We identified muscleblind-like 1 (MBNL1), a gene implicated in myotonic dystrophy, as a robust suppressor of multiorgan breast cancer metastasis. MBNL1 binds the 3' untranslated regions (UTRs) of DBNL (drebrin-like protein) and TACC1 (transforming acidic coiled-coil containing protein 1)-two genes that we implicate as metastasis suppressors. By enhancing the stability of these genes' transcripts, MBNL1 suppresses cell invasiveness. Consistent with these findings, elevated MBNL1 expression in human breast tumors is associated with reduced metastatic relapse likelihood. Our findings delineate a post-transcriptional network that governs breast cancer metastasis through RNA-binding protein-mediated transcript stabilization.
Collapse
Affiliation(s)
- Lisa Fish
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Nora Pencheva
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Hien Tran
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Mitsukuni Yoshida
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
34
|
Khatri R, Krishnan S, Roy S, Chattopadhyay S, Kumar V, Mukhopadhyay A. Reactive Oxygen Species Limit the Ability of Bone Marrow Stromal Cells to Support Hematopoietic Reconstitution in Aging Mice. Stem Cells Dev 2016; 25:948-58. [PMID: 27140293 PMCID: PMC4928131 DOI: 10.1089/scd.2015.0391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aging of organ and abnormal tissue regeneration are recurrent problems in physiological and pathophysiological conditions. This is most crucial in case of high-turnover tissues, like bone marrow (BM). Using reciprocal transplantation experiments in mouse, we have shown that self-renewal potential of hematopoietic stem and progenitor cells (HSPCs) and BM cellularity are markedly influenced with the age of the recipient mice rather than donor mice. Moreover, accumulation of excessive reactive oxygen species (ROS) in BM stromal cells compared to HSPC compartment, in time-dependent manner, suggests that oxidative stress is involved in suppression of BM cellularity by affecting microenvironment in aged mice. Treatment of these mice with a polyphenolic antioxidant curcumin is found to partially quench ROS, thereby rescues stromal cells from oxidative stress-dependent cellular injury. This rejuvenation of stromal cells significantly improves hematopoietic reconstitution in 18-month-old mice compared to age control mice. In conclusion, this study implicates the role of ROS in perturbation of stromal cell function upon aging, which in turn affects BM's reconstitution ability in aged mice. Thus, a rejuvenation therapy using curcumin, before HSPC transplantation, is found to be an efficient strategy for successful marrow reconstitution in older mice.
Collapse
Affiliation(s)
- Rahul Khatri
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | - Shyam Krishnan
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | - Sushmita Roy
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | | | - Vikash Kumar
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| |
Collapse
|
35
|
A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. Blood 2016; 127:e24-e34. [PMID: 26962124 DOI: 10.1182/blood-2016-01-692764] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intron retention (IR) is a form of alternative splicing that can impact mRNA levels through nonsense-mediated decay or by nuclear mRNA detention. A complex, dynamic IR pattern has been described in maturing mammalian granulocytes, but it is unknown whether IR occurs broadly in other hematopoietic lineages. We globally assessed IR in primary maturing mammalian erythroid and megakaryocyte (MK) lineages as well as their common progenitor cells (MEPs). Both lineages exhibit an extensive differential IR program involving hundreds of introns and genes with an overwhelming loss of IR in erythroid cells and MKs compared to MEPs. Moreover, complex IR patterns were seen throughout murine erythroid maturation. Similarly complex patterns were observed in human erythroid differentiation, but not involving the murine orthologous introns or genes. Despite the common origin of erythroid cells and MKs, and overlapping gene expression patterns, the MK IR program is entirely distinct from that of the erythroid lineage with regards to introns, genes, and affected gene ontologies. Importantly, our results suggest that IR serves to broadly regulate mRNA levels. These findings highlight the importance of this understudied form of alternative splicing in gene regulation and provide a useful resource for studies on gene expression in the MK and erythroid lineages.
Collapse
|
36
|
Hekman JP, Johnson JL, Kukekova AV. Transcriptome Analysis in Domesticated Species: Challenges and Strategies. Bioinform Biol Insights 2016; 9:21-31. [PMID: 26917953 PMCID: PMC4756862 DOI: 10.4137/bbi.s29334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 12/13/2022] Open
Abstract
Domesticated species occupy a special place in the human world due to their economic and cultural value. In the era of genomic research, domesticated species provide unique advantages for investigation of diseases and complex phenotypes. RNA sequencing, or RNA-seq, has recently emerged as a new approach for studying transcriptional activity of the whole genome, changing the focus from individual genes to gene networks. RNA-seq analysis in domesticated species may complement genome-wide association studies of complex traits with economic importance or direct relevance to biomedical research. However, RNA-seq studies are more challenging in domesticated species than in model organisms. These challenges are at least in part associated with the lack of quality genome assemblies for some domesticated species and the absence of genome assemblies for others. In this review, we discuss strategies for analyzing RNA-seq data, focusing particularly on questions and examples relevant to domesticated species.
Collapse
Affiliation(s)
- Jessica P. Hekman
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jennifer L. Johnson
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Anna V. Kukekova
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
37
|
Ajiro M, Jia R, Yang Y, Zhu J, Zheng ZM. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Res 2015; 44:1854-70. [PMID: 26704980 PMCID: PMC4770227 DOI: 10.1093/nar/gkv1500] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Rong Jia
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, System Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, System Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
38
|
Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res 2015; 44:838-51. [PMID: 26531823 PMCID: PMC4737145 DOI: 10.1093/nar/gkv1168] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023] Open
Abstract
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.
Collapse
Affiliation(s)
- Harold Pimentel
- Department of Computer Science, University of California, Berkeley, CA 94720, USA
| | - Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sherry L Gee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | - Lior Pachter
- Department of Mathematics, University of California, Berkeley, CA 94720, USA Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Coram RJ, Stillwagon SJ, Guggilam A, Jenkins MW, Swanson MS, Ladd AN. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC DEVELOPMENTAL BIOLOGY 2015; 15:36. [PMID: 26472242 PMCID: PMC4608261 DOI: 10.1186/s12861-015-0087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Background Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor β (TGFβ) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFβ signaling and EMT in chicken endocardial cushions ex vivo. Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1∆E3/∆E3 mice, which are null for MBNL1 protein. Methods Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFβ signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves. Results As in chicken, the loss of MBNL1 promotes precocious TGFβ signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1∆E3/∆E3 mice exhibit valve dysmorphia with elevated TGFβ signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1∆E3/∆E3 mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy. Conclusions Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFβ signaling, and is required for normal valve morphogenesis and homeostasis in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0087-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Coram
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
| | - Samantha J Stillwagon
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Anuradha Guggilam
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, College of Medicine, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Andrea N Ladd
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
40
|
Conte S, Katayama S, Vesterlund L, Karimi M, Dimitriou M, Jansson M, Mortera-Blanco T, Unneberg P, Papaemmanuil E, Sander B, Skoog T, Campbell P, Walfridsson J, Kere J, Hellström-Lindberg E. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts. Br J Haematol 2015; 171:478-90. [PMID: 26255870 PMCID: PMC4832260 DOI: 10.1111/bjh.13610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34+ marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up‐regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down‐regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis‐splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.
Collapse
Affiliation(s)
- Simona Conte
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Shintaro Katayama
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Liselotte Vesterlund
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Mohsen Karimi
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Marios Dimitriou
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Monika Jansson
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Per Unneberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm, Sweden
| | - Elli Papaemmanuil
- Cancer Genetics & Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Birgitta Sander
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Tiina Skoog
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Peter Campbell
- Cancer Genetics & Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Julian Walfridsson
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Juha Kere
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| |
Collapse
|
41
|
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015; 125:2405-17. [PMID: 25724378 DOI: 10.1182/blood-2014-08-590968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.
Collapse
|
42
|
Chau A, Kalsotra A. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn 2015; 244:377-90. [PMID: 25504326 DOI: 10.1002/dvdy.24240] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involves many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Department of Medical Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois
| | | |
Collapse
|
43
|
Yien YY, Gnanapragasam MN, Gupta R, Rivella S, Bieker JJ. Alternative splicing of EKLF/KLF1 in murine primary erythroid tissues. Exp Hematol 2015; 43:65-70. [PMID: 25283745 PMCID: PMC4268327 DOI: 10.1016/j.exphem.2014.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/16/2022]
Abstract
Alternative splicing has emerged as a vital way to expand the functional repertoire of a set number of mammalian genes. For example, such changes can dramatically alter the function and cellular localization of transcription factors. With this in mind, we addressed whether EKLF/KLF1 mRNA, coding for a transcription factor that plays a critical role in erythropoietic gene regulation, is alternatively spliced. We find that EKLF mRNA undergoes exon skipping only in primary tissues and that this splice variant (SV) remains at a very low level in both embryonic and adult erythroid cells, as well as during terminal differentiation. The resultant protein is truncated and partially encodes a non-erythroid Krüppel-like factor amino acid sequence. Its overexpression can alter full-length erythroid Krüppel-like factor function at selected promoters. We discuss these results in the context of stress and with respect to recent global studies on the role of alternative splicing during terminal erythroid differentiation.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Merlin Nithya Gnanapragasam
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Ritama Gupta
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Stefano Rivella
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - James J Bieker
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States; Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States.
| |
Collapse
|
44
|
|