1
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Wu X, Zhang B, Chen K, Zhao J, Li Y, Li J, Liu C, He L, Fan T, Wang C, Li Y, Pei X, Li Y. Baffled-flow culture system enables the mass production of megakaryocytes from human embryonic stem cells by enhancing mitochondrial function. Cell Prolif 2023; 56:e13484. [PMID: 37088551 PMCID: PMC10693187 DOI: 10.1111/cpr.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Human embryonic stem cells (hESCs) have become an ideal cell source for the ex vivo generation of megakaryocyte (MK) and platelet products for clinical applications. However, an ongoing challenge is to establish scalable culture systems to maximize the yield of stem cell-derived MKs that release platelets. We defined a specific dynamic 3D manufacturing system in a baffled-flow manner that could remarkably facilitate megakaryopoiesis and increase the yield of platelet-producing MKs from hESCs within a 12-day induction period. Additionally, an increased number of >16N ploidy MKs, proplatelets, and platelets were generated from induced cells harvested on Day 12 using the specific dynamic culture method. The specific dynamic culture method significantly enhanced endothelium-to-haematopoietic transition and early haematopoiesis. More importantly, MK fate was significantly facilitated in a specific dynamic manner during early haematopoiesis. Mechanistically, this dynamic culture significantly enhanced mitochondrial function via the oxidative phosphorylation pathway and caused differentiation skewing of hESCs toward megakaryopoiesis. This study can aid in the automatic and scalable production of MKs from stem cells using baffled-flow bioreactors and assist in the manufacturing of hESC-derived MK and platelet products.
Collapse
Affiliation(s)
- Xumin Wu
- School of PharmacyGuizhou UniversityGuiyangChina
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative Medicine, SCIBGuangzhouChina
| | - Keyi Chen
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- College of Chemistry and Environmental ScienceHebei UniversityBaodingChina
| | - Jiahui Zhao
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- School of Life ScienceHebei UniversityBaodingChina
| | - Yunxing Li
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Jisheng Li
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Chuanli Liu
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative Medicine, SCIBGuangzhouChina
| | - Tao Fan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Chao Wang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Yan Li
- School of PharmacyGuizhou UniversityGuiyangChina
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative Medicine, SCIBGuangzhouChina
| | - Yanhua Li
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative Medicine, SCIBGuangzhouChina
| |
Collapse
|
3
|
Rosenthal AC, Munoz JL, Villasboas JC. Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics 2023; 15:39. [PMID: 36871057 PMCID: PMC9985856 DOI: 10.1186/s13148-023-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radiotherapy, including individualized treatment strategies, novel treatments based on monotherapies or combination therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy. RESULTS This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodgkin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain. CONCLUSION Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immunotherapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other cancer treatments to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Allison C Rosenthal
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Javier L Munoz
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - J C Villasboas
- Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
4
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Verachi P, Gobbo F, Martelli F, Martinelli A, Sarli G, Dunbar A, Levine RL, Hoffman R, Massucci MT, Brandolini L, Giorgio C, Allegretti M, Migliaccio AR. The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1 low Mice. Front Oncol 2022; 12:853484. [PMID: 35392239 PMCID: PMC8982152 DOI: 10.3389/fonc.2022.853484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
A major role for human (h)CXCL8 (interleukin-8) in the pathobiology of myelofibrosis (MF) has been suggested by observations indicating that MF megakaryocytes express increased levels of hCXCL8 and that plasma levels of this cytokine in MF patients are predictive of poor patient outcomes. Here, we demonstrate that, in addition to high levels of TGF-β, the megakaryocytes from the bone marrow of the Gata1 low mouse model of myelofibrosis express high levels of murine (m)CXCL1, the murine equivalent of hCXCL8, and its receptors CXCR1 and CXCR2. Treatment with the CXCR1/R2 inhibitor, Reparixin in aged-matched Gata1 low mice demonstrated reductions in bone marrow and splenic fibrosis. Of note, the levels of fibrosis detected using two independent methods (Gomori and reticulin staining) were inversely correlated with plasma levels of Reparixin. Immunostaining of marrow sections indicated that the bone marrow from the Reparixin-treated group expressed lower levels of TGF-β1 than those expressed by the bone marrow from vehicle-treated mice while the levels of mCXCL1, and expression of CXCR1 and CXCR2, were similar to that of vehicle-treated mice. Moreover, immunofluorescence analyses performed on bone marrow sections from Gata1 low mice indicated that treatment with Reparixin induced expression of GATA1 while reducing expression of collagen III in megakaryocytes. These data suggest that in Gata1low mice, Reparixin reduces fibrosis by reducing TGF-β1 and collagen III expression while increasing GATA1 in megakaryocytes. Our results provide a preclinical rationale for further evaluation of this drug alone and in combination with current JAK inhibitor therapy for the treatment of patients with myelofibrosis.
Collapse
Affiliation(s)
- Paola Verachi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | - Francesca Gobbo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Martinelli
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Santà, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrew Dunbar
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ronald Hoffman
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | | | | | - Anna Rita Migliaccio
- Center for Integrated Biomedical Research, Campus Bio-medico, Rome, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
6
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Ballerini P, Contursi A, Bruno A, Mucci M, Tacconelli S, Patrignani P. Inflammation and Cancer: From the Development of Personalized Indicators to Novel Therapeutic Strategies. Front Pharmacol 2022; 13:838079. [PMID: 35308229 PMCID: PMC8927697 DOI: 10.3389/fphar.2022.838079] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal (CRC) and hepatocellular carcinoma (HCC) are associated with chronic inflammation, which plays a role in tumor development and malignant progression. An unmet medical need in these settings is the availability of sensitive and specific noninvasive biomarkers. Their use will allow surveillance of high-risk populations, early detection, and monitoring of disease progression. Moreover, the characterization of specific fingerprints of patients with nonalcoholic fatty liver disease (NAFLD) without or with nonalcoholic steatohepatitis (NASH) at the early stages of liver fibrosis is necessary. Some lines of evidence show the contribution of platelets to intestinal and liver inflammation. Thus, low-dose Aspirin, an antiplatelet agent, reduces CRC and liver cancer incidence and mortality. Aspirin also produces antifibrotic effects in NAFLD. Activated platelets can trigger chronic inflammation and tissue fibrosis via the release of soluble mediators, such as thromboxane (TX) A2 and tumor growth factor (TGF)-β, and vesicles containing genetic material (including microRNA). These platelet-derived products contribute to cyclooxygenase (COX)-2 expression and prostaglandin (PG)E2 biosynthesis by tumor microenvironment cells, such as immune and endothelial cells and fibroblasts, alongside cancer cells. Enhanced COX-2-dependent PGE2 plays a crucial role in chronic inflammation and promotes tumor progression, angiogenesis, and metastasis. Antiplatelet agents can indirectly prevent the induction of COX-2 in target cells by inhibiting platelet activation. Differently, selective COX-2 inhibitors (coxibs) block the activity of COX-2 expressed in the tumor microenvironment and cancer cells. However, coxib chemopreventive effects are hampered by the interference with cardiovascular homeostasis via the coincident inhibition of vascular COX-2-dependent prostacyclin biosynthesis, resulting in enhanced risk of atherothrombosis. A strategy to improve anti-inflammatory agents' use in cancer prevention could be to develop tissue-specific drug delivery systems. Platelet ability to interact with tumor cells and transfer their molecular cargo can be employed to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity associated with anti-inflammatory agents in these settings. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer patient platelets show specific proteomic and transcriptomic expression profiles that could be used as biomarkers for early cancer detection and disease monitoring.
Collapse
Affiliation(s)
- Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University, Chieti, Italy
| | - Matteo Mucci
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
8
|
Olschok K, Han L, de Toledo MAS, Böhnke J, Graßhoff M, Costa IG, Theocharides A, Maurer A, Schüler HM, Buhl EM, Pannen K, Baumeister J, Kalmer M, Gupta S, Boor P, Gezer D, Brümmendorf TH, Zenke M, Chatain N, Koschmieder S. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes. Stem Cell Reports 2021; 16:2768-2783. [PMID: 34678208 PMCID: PMC8581168 DOI: 10.1016/j.stemcr.2021.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs. CALR-mutated iPSCs allow efficient modeling of human MPN disease CRISPR-mediated repair of CALR mutations rescues normal iPSC function Megakaryopoiesis in CALR-mutated iPSCs is hyperplastic and accelerated Transcriptome screen of mutated megakaryocytes identifies novel therapeutic options
Collapse
Affiliation(s)
- Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Janik Böhnke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Graßhoff
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexandre Theocharides
- Division of Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Herdit M Schüler
- Institute for Human Genetics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Siddharth Gupta
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Peter Boor
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
9
|
Blom T, Meinsma R, di Summa F, van den Akker E, van Kuilenburg ABP, Hansen M, Tytgat GAM. Thrombocytopenia after meta-iodobenzylguanidine (MIBG) therapy in neuroblastoma patients may be caused by selective MIBG uptake via the serotonin transporter located on megakaryocytes. EJNMMI Res 2021; 11:81. [PMID: 34424429 PMCID: PMC8382772 DOI: 10.1186/s13550-021-00823-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, primarily consisting of severe and persistent thrombocytopenia. We hypothesize that this is caused by selective uptake of MIBG via the serotonin transporter (SERT) located on platelets and megakaryocytes. In this study, we have investigated whether in vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG and whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent this radiotoxic MIBG uptake. Methods Peripheral blood CD34+ cells were differentiated to human megakaryocytic cells using a standardized culture protocol. Prior to [3H]serotonin and [125I]MIBG uptake experiments, the differentiation status of megakaryocyte cultures was assessed by flow cytometry. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess SERT and NET (norepinephrine transporter) mRNA expression. On day 10 of differentiation, [3H]serotonin and [125I]MIBG uptake assays were conducted. Part of the samples were co-incubated with the SSRI citalopram to assess SERT-specific uptake. HEK293 cells transfected with SERT, NET, and empty vector served as controls. Results In vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG. After 10 days of differentiation, megakaryocytic cell culture batches from three different hematopoietic stem and progenitor cell donors showed on average 9.2 ± 2.4 nmol of MIBG uptake per milligram protein per hour after incubation with 10–7 M MIBG (range: 6.6 ± 1.0 to 11.2 ± 1.0 nmol/mg/h). Co-incubation with the SSRI citalopram led to a significant reduction (30.1%—41.5%) in MIBG uptake, implying SERT-specific uptake of MIBG. A strong correlation between the number of mature megakaryocytes and SERT-specific MIBG uptake was observed. Conclusion Our study demonstrates that human megakaryocytes cultured in vitro are capable of MIBG uptake. Moreover, the SSRI citalopram selectively inhibits MIBG uptake via the serotonin transporter. The concomitant administration of citalopram to neuroblastoma patients during [131I]MIBG therapy might be a promising strategy to prevent the onset of thrombocytopenia. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00823-5.
Collapse
Affiliation(s)
- Thomas Blom
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rutger Meinsma
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Franca di Summa
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marten Hansen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
10
|
He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia 2021; 35:2151-2165. [PMID: 34017074 DOI: 10.1038/s41375-021-01285-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease and represents the most common subtype of lymphoma. Although 60-70% of all patients can be cured by the current standard of care in the frontline setting, the majority of the remaining patients will experience treatment resistance and have a poor clinical outcome. Numerous efforts have been made to improve the efficacy of the standard regimen by, for example, dose intensification or adding novel agents. However, these results generally failed to demonstrate significant clinical benefits. Hence, understanding treatment resistance is a pressing need to optimize the outcome of those patients. In this Review, we first describe the conceptual sources of treatment resistance in DLBCL and then provide detailed and up-to-date molecular insight into the mechanisms of resistance to the current treatment options in DLBCL. We lastly highlight the potential strategies for rationally managing treatment resistance from both the preventive and interventional perspectives.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Borst S, Nations CC, Klein JG, Pavani G, Maguire JA, Camire RM, Drazer MW, Godley LA, French DL, Poncz M, Gadue P. Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Reports 2021; 16:1458-1467. [PMID: 34019812 PMCID: PMC8190596 DOI: 10.1016/j.stemcr.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/29/2022] Open
Abstract
Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.
Collapse
Affiliation(s)
- Sara Borst
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Joshua G Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rodney M Camire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mortimer Poncz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Xu MX, Liu LP, Li YM, Zheng YW. The Opportunities and Challenges regarding Induced Platelets from Human Pluripotent Stem Cells. Stem Cells Int 2021; 2021:5588165. [PMID: 34054969 PMCID: PMC8112939 DOI: 10.1155/2021/5588165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
As a standard clinical treatment, platelet transfusion has been employed to prevent hemorrhage in patients with thrombocytopenia or platelet dysfunctions. Platelets also show therapeutic potential for aiding liver regeneration and bone healing and regeneration and for treating dermatological conditions. However, the supply of platelets rarely meets the rising clinical demand. Other issues, including short shelf life, strict storage temperature, and allogeneic immunity caused by frequent platelet transfusions, have become serious challenges that require the development of high-yielding alternative sources of platelets. Human pluripotent stem cells (hPSCs) are an unlimited substitution source for regenerative medicine, and patient-derived iPSCs can provide novel research models to explore the pathogenesis of some diseases. Many studies have focused on establishing and modifying protocols for generating functional induced platelets (iPlatelets) from hPSCs. To reach high efficiency production and eliminate the exogenous antigens, media supplements and matrix have been optimized. In addition, the introduction of some critical transgenes, such as c-MYC, BMI1, and BCL-XL, can also significantly increase hPSC-derived platelet production; however, this may pose some safety concerns. Furthermore, many novel culture systems have been developed to scale up the production of iPlatelets, including 2D flow systems, 3D rotary systems, and vertical reciprocal motion liquid culture bioreactors. The development of new gene-editing techniques, such as CRISPR/Cas9, can be used to solve allogeneic immunity of platelet transfusions by knocking out the expression of B2M. Additionally, the functions of iPlatelets were also evaluated from multiple aspects, including but not limited to morphology, structure, cytoskeletal organization, granule content, DNA content, and gene expression. Although the production and functions of iPlatelets are close to meeting clinical application requirements in both quantity and quality, there is still a long way to go for their large-scale production and clinical application. Here, we summarize the diverse methods of platelet production and update the progresses of iPlatelets. Furthermore, we highlight recent advances in our understanding of key transcription factors or molecules that determine the platelet differentiation direction.
Collapse
Affiliation(s)
- Meng-Xue Xu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki 305-8575, Japan
- Yokohama City University School of Medicine, Yokohama, Kanagawa 234-0006, Japan
| |
Collapse
|
13
|
Yeung AK, Villacorta-Martin C, Hon S, Rock JR, Murphy GJ. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv 2020; 4:6204-6217. [PMID: 33351116 PMCID: PMC7757004 DOI: 10.1182/bloodadvances.2020002843] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Megakaryocytes (MKs) are responsible for platelet biogenesis, which is believed to occur canonically in adult bone marrow (BM) and in the fetal liver during development. However, emerging evidence highlights the lung as a previously underappreciated residence for MKs that may contribute significantly to circulating platelet mass. Although a diversity of cells specific to the BM is known to promote the maturation and trafficking of MKs, little investigation into the impact of the lung niche on the development and function of MKs has been done. Here, we describe the application of single-cell RNA sequencing, coupled with histological, ploidy, and flow cytometric analyses, to profile primary MKs derived from syngeneic mouse lung and hematopoietic tissues. Transcriptional profiling demonstrated that lung MKs have a unique signature distinct from their hematopoietic counterparts, with lung MKs displaying enrichment for maturation markers, potentially indicating a propensity for more efficient platelet production. Reciprocally, fetal lung MKs also showed the robust expression of cytokines and growth factors that are known to promote lung development. Lastly, lung MKs possess an enrichment profile skewed toward roles in immunity and inflammation. These findings highlight the existence of a lung-specific MK phenotype and support the notion that the lung plays an independent role in the development and functional maturation of MKs. The immune phenotype displayed by lung MKs also introduces their potential role in microbial surveillance and antigen presentation.
Collapse
Affiliation(s)
- Anthony K Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Section of Hematology and Medical Oncology and
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
| | - Stephanie Hon
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jason R Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - George J Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Section of Hematology and Medical Oncology and
| |
Collapse
|
14
|
Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. Int J Mol Sci 2020; 21:ijms21249585. [PMID: 33339204 PMCID: PMC7765591 DOI: 10.3390/ijms21249585] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell-cell communication. In particular, their interaction with cancer cells can enhance their malignancy and facilitate the invasion and colonization of distant organs. These findings suggest the use of antiplatelet agents to restrain cancer development and progression. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer-patient platelets show specific proteomic and transcriptomic expression patterns, a phenomenon called tumor-educated platelets (TEP). The transcriptomic/proteomic profile of platelets can provide information for the early detection of cancer and disease monitoring. Platelet ability to interact with tumor cells and transfer their molecular cargo has been exploited to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity often associated with traditional chemotherapy. Platelets are extraordinary cells with many functions whose exploitation will improve cancer diagnosis and treatment.
Collapse
|
15
|
Andrade SS, Faria AVDS, Girão MJBC, Fuhler GM, Peppelenbosch MP, Ferreira-Halder CV. Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0. Int J Mol Sci 2020; 21:E6061. [PMID: 32842455 PMCID: PMC7503652 DOI: 10.3390/ijms21176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/21/2022] Open
Abstract
The increasing discoveries regarding the biology and functions of platelets in the last decade undoubtedly show that these cells are one of the most biotechnological human cells. This review summarizes new advances in platelet biology, functions, and new concepts of biotech-educated platelets that connect advanced biomimetic science to platelet-based additive manufacturing for tissue regeneration. As highly responsive and secretory cells, platelets could be explored to develop solutions that alter injured microenvironments through platelet-based synthetic biomaterials with instructive extracellular cues for morphogenesis in tissue engineering beyond tissue regeneration 2.0.
Collapse
Affiliation(s)
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil; (A.V.d.S.F.); (C.V.F.-H.)
- Department of Gastroenterology and Hepatology Medical Center Rotterdam, NL-3000 CA Rotterdam, The Netherlands; (G.M.F.); (M.P.P.)
| | | | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology Medical Center Rotterdam, NL-3000 CA Rotterdam, The Netherlands; (G.M.F.); (M.P.P.)
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology Medical Center Rotterdam, NL-3000 CA Rotterdam, The Netherlands; (G.M.F.); (M.P.P.)
| | - Carmen V. Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil; (A.V.d.S.F.); (C.V.F.-H.)
| |
Collapse
|
16
|
Thom CS, Jobaliya CD, Lorenz K, Maguire JA, Gagne A, Gadue P, French DL, Voight BF. Tropomyosin 1 genetically constrains in vitro hematopoiesis. BMC Biol 2020; 18:52. [PMID: 32408895 PMCID: PMC7227211 DOI: 10.1186/s12915-020-00783-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Identifying causal variants and genes from human genetic studies of hematopoietic traits is important to enumerate basic regulatory mechanisms underlying these traits, and could ultimately augment translational efforts to generate platelets and/or red blood cells in vitro. To identify putative causal genes from these data, we performed computational modeling using available genome-wide association datasets for platelet and red blood cell traits. RESULTS Our model identified a joint collection of genomic features enriched at established trait associations and plausible candidate variants. Additional studies associating variation at these loci with change in gene expression highlighted Tropomyosin 1 (TPM1) among our top-ranked candidate genes. CRISPR/Cas9-mediated TPM1 knockout in human induced pluripotent stem cells (iPSCs) enhanced hematopoietic progenitor development, increasing total megakaryocyte and erythroid cell yields. CONCLUSIONS Our findings may help explain human genetic associations and identify a novel genetic strategy to enhance in vitro hematopoiesis. A similar trait-specific gene prioritization strategy could be employed to help streamline functional validation experiments for virtually any human trait.
Collapse
Affiliation(s)
- Christopher Stephen Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Chintan D Jobaliya
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Lorenz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Franklin Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Sermer D, Pasqualucci L, Wendel HG, Melnick A, Younes A. Emerging epigenetic-modulating therapies in lymphoma. Nat Rev Clin Oncol 2019; 16:494-507. [PMID: 30837715 DOI: 10.1038/s41571-019-0190-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite considerable advances in the treatment of lymphoma, the prognosis of patients with relapsed and/or refractory disease continues to be poor; thus, a continued need exists for the development of novel approaches and therapies. Epigenetic dysregulation might drive and/or promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. Over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of patients with haematological malignancies. In this Review, we provide a concise overview of the most promising epigenetic therapies for the treatment of lymphomas, including inhibitors of histone deacetylases (HDACs), DNA methyltransferases (DNMTs), enhancer of zeste homologue 2 (EZH2), bromodomain and extra-terminal domain proteins (BETs), protein arginine N-methyltransferases (PRMTs) and isocitrate dehydrogenases (IDHs), and highlight the most promising future directions of research in this area.
Collapse
Affiliation(s)
- David Sermer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari Melnick
- Weill-Cornell Medical College, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Bhatlekar S, Basak I, Edelstein LC, Campbell RA, Lindsey CR, Italiano JE, Weyrich AS, Rowley JW, Rondina MT, Sola-Visner M, Bray PF. Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood. Haematologica 2019; 104:2075-2083. [PMID: 30733267 PMCID: PMC6886406 DOI: 10.3324/haematol.2018.204685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a recognized limitation to generating large numbers of megakaryocytes in culture. The genes responsible have been rigorously studied in vivo in mice, but are poorly characterized in human culture systems. As CD34-positive (+) cells isolated from human umbilical vein cord blood were differentiated into megakaryocytes in culture, two distinct cell populations were identified by flow cytometric forward and side scatter: larger size, lower granularity (LLG), and smaller size, higher granularity (SHG). The LLG cells were CD41aHigh CD42aHigh phosphatidylserineLow, had an electron microscopic morphology similar to mature bone marrow megakaryocytes, developed proplatelets, and displayed a signaling response to platelet agonists. The SHG cells were CD41aLowCD42aLowphosphatidylserineHigh, had a distinctly apoptotic morphology, were unable to develop proplatelets, and showed no signaling response. Screens of differentiating megakaryocytes for expression of 24 apoptosis genes identified BCL2L2 as a novel candidate megakaryocyte apoptosis regulator. Lentiviral BCL2L2 overexpression decreased megakaryocyte apoptosis, increased CD41a+ LLG cells, and increased proplatelet formation by 58%. An association study in 154 healthy donors identified a significant positive correlation between platelet number and platelet BCL2L2 mRNA levels. This finding was consistent with the observed increase in platelet-like particles derived from cultured megakaryocytes over-expressing BCL2L2 BCL2L2 also induced small, but significant increases in thrombin-induced platelet-like particle αIIbβ3 activation and P-selectin expression. Thus, BCL2L2 restrains apoptosis in cultured megakaryocytes, promotes proplatelet formation, and is associated with platelet number. BCL2L2 is a novel target for improving megakaryocyte and platelet yields in in vitro culture systems.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Robert A Campbell
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Cory R Lindsey
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | | | - Andrew S Weyrich
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jesse W Rowley
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
- George E. Wahlen VAMC GRECC, Salt Lake City, UT
| | | | - Paul F Bray
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Six KR, Sicot G, Devloo R, Feys HB, Baruch D, Compernolle V. A comparison of haematopoietic stem cells from umbilical cord blood and peripheral blood for platelet production in a microfluidic device. Vox Sang 2019; 114:330-339. [PMID: 30900265 PMCID: PMC6850637 DOI: 10.1111/vox.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/31/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Several sources of haematopoietic stem cells have been used for static culture of megakaryocytes to produce platelets in vitro. This study compares and characterizes platelets produced in shear flow using precursor cells from either umbilical (UCB) or adult peripheral blood (PB). MATERIALS AND METHODS The efficiency of platelet production of the cultured cells was studied after perfusion in custom-built von Willebrand factor-coated microfluidic flow chambers. Platelet receptor expression and morphology were investigated by flow cytometry and microscopy, respectively. RESULTS Proliferation of stem cells isolated out of UCB was significantly higher (P < 0·0001) compared to PB. Differentiation of these cells towards megakaryocytes was significantly lower from PB compared to UCB where the fraction of CD42b/CD41 double positive events was 44 ± 9% versus 76 ± 11%, respectively (P < 0·0001). However, in vitro platelet production under hydrodynamic conditions was more efficient with 7·4 platelet-like particles per input cell from PB compared to 4·2 from UCB (P = 0·02). The percentage of events positive for CD42b, CD41 and CD61 was comparable between both stem cell sources. The mean number of receptors per platelet from UCB and PB was similar to that on blood bank platelets with on average 28 000 CD42b, 57 000 CD61 and 5500 CD49b receptors. Microscopy revealed platelets appearing similar to blood bank platelets in morphology, size and actin cytoskeleton, alongside smaller fragments and source megakaryocytes. CONCLUSION This characterization study suggests that platelets produced in vitro under flow either from UCB or from PB share receptor expression and morphology with donor platelets stored in the blood bank.
Collapse
Affiliation(s)
- Katrijn R Six
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dominique Baruch
- PlatOD, Paris, France.,INSERM, UMR_S1140, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
20
|
Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors. Blood Adv 2019; 2:597-606. [PMID: 29545255 DOI: 10.1182/bloodadvances.2017010975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
In vitro-grown megakaryocytes for generating platelets may have value in meeting the increasing demand for platelet transfusions. Remaining challenges have included the poor yield and quality of in vitro-generated platelets. We have shown that infusing megakaryocytes leads to intrapulmonary release of functional platelets. A Src kinase inhibitor (SU6656), a Rho-associated kinase inhibitor (Y27632), and an aurora B kinase inhibitor (AZD1152) have been shown to increase megakaryocyte ploidy and in vitro proplatelet release. We now tested whether megakaryocytes generated from CD34+ hematopoietic cells in the presence of these inhibitors could enhance functional platelet yield following megakaryocyte infusion. As expected, all inhibitors increased megakaryocyte ploidy, size, and granularity, but these inhibitors differed in whether they injured terminal megakaryocytes: SU6656 was protective, whereas Y27632 and AZD1152 increased injury. Upon infusion, inhibitor-treated megakaryocytes released threefold to ninefold more platelets per initial noninjured megakaryocyte relative to control, but only SU6656-treated megakaryocytes had a significant increase in platelet yield when calculated based on the number of initial CD34+ cells; this was fourfold over nontreated megakaryocytes. The released platelets from drug-treated, but healthy, megakaryocytes contained similar percentages of young, uninjured platelets that robustly responded to agonists and were well incorporated into a growing thrombus in vivo as controls. These studies suggest that drug screens that select megakaryocytes with enhanced ploidy, cell size, and granularity may include a subset of drugs that can enhance the yield and function of platelets, and may have clinical application for ex vivo-generated megakaryocytes and platelet transfusion.
Collapse
|
21
|
Slukvin II, Uenishi GI. Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Exp Hematol 2018; 71:3-12. [PMID: 30500414 DOI: 10.1016/j.exphem.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the de novo production of blood cells for transfusion, immunotherapies, and transplantation. However, even with advanced hematopoietic differentiation methods, the primitive and myeloid-restricted waves of hematopoiesis dominate in hPSC differentiation cultures, whereas cell surface markers to distinguish these waves of hematopoiesis from lympho-myeloid hematopoiesis remain unknown. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelium (HE) lining arteries, but not veins. This observation led to a long-standing hypothesis that arterial specification is an essential prerequisite to initiate the HSC program. It has also been established that lymphoid potential in the yolk sac and extraembryonic vasculature is mostly confined to arteries, whereas myeloid-restricted hematopoiesis is not specific to arterial vessels. Here, we review how the link between arterialization and the subsequent definitive multilineage hematopoietic program can be exploited to identify HE enriched in lymphoid progenitors and aid in in vitro approaches to enhance the production of lymphoid cells and potentially HSCs from hPSCs. We also discuss alternative models of hematopoietic specification at arterial sites and recent advances in our understanding of hematopoietic development and the production of engraftable hematopoietic cells from hPSCs.
Collapse
Affiliation(s)
- Igor I Slukvin
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Gene I Uenishi
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| |
Collapse
|
22
|
An HH, Poncz M, Chou ST. Induced Pluripotent Stem Cell-Derived Red Blood Cells, Megakaryocytes, and Platelets: Progress and Challenges. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0144-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Gertz JM, McLean KC, Bouchard BA. Endocytosed factor V is trafficked to CD42b + proplatelet extensions during differentiation of human umbilical cord blood-derived megakaryocytes. J Cell Physiol 2018; 233:8691-8700. [PMID: 29761851 DOI: 10.1002/jcp.26749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023]
Abstract
Plasma- and platelet-derived factor Va are essential for thrombin generation catalyzed by the prothrombinase complex; however, several observations demonstrate that the platelet-derived cofactor, which is formed following megakaryocyte endocytosis and modification of the plasma procofactor, factor V, is more hemostatically relevant. Factor V endocytosis, as a function of megakaryocyte differentiation and proplatelet formation, was assessed by flow cytometry and microscopy in CD34+ hematopoietic progenitor cells isolated from human umbilical cord blood and cultured for 12 days in the presence of cytokines to induce ex vivo differentiation into megakaryocytes. Expression of an early marker of megakaryocyte differentiation, CD41, endocytosis of factor V, and the percentage of CD41+ cells that endocytosed factor V increased from days 6 to 12 of differentiation. In contrast, statistically significant decreases in expression of the stem cell marker, CD34, and in the percentage of CD34+ cells that endocytosed factor V were observed. A statistically significant increase in the expression of CD42b, a late marker of megakaryocyte differentiation, was also observed over time, such that by Day 12, all CD42b+ cells endocytosed factor V and expressed CD41. This endocytosed factor V was trafficked to proplatelet extensions and was localized in a punctate pattern in the cytoplasm consistent with its storage in α-granules. In conclusion, loss of CD34 and expression of CD42b define cells capable of factor V endocytosis and trafficking to proplatelet extensions during differentiation of megakaryocytes ex vivo from progenitor cells isolated from umbilical cord blood.
Collapse
Affiliation(s)
- Jacqueline M Gertz
- Department of Biochemistry, The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Kelley C McLean
- Department of Obstetrics, Gynecology and Reproductive Sciences, The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Beth A Bouchard
- Department of Biochemistry, The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| |
Collapse
|
24
|
Attatippaholkun N, Kosaisawe N, U-Pratya Y, Supraditaporn P, Lorthongpanich C, Pattanapanyasat K, Issaragrisil S. Selective Tropism of Dengue Virus for Human Glycoprotein Ib. Sci Rep 2018; 8:2688. [PMID: 29426910 PMCID: PMC5807543 DOI: 10.1038/s41598-018-20914-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 11/10/2022] Open
Abstract
Since the hemorrhage in severe dengue seems to be primarily related to the defect of the platelet, the possibility that dengue virus (DENV) is selectively tropic for one of its surface receptors was investigated. Flow cytometric data of DENV-infected megakaryocytic cell line superficially expressing human glycoprotein Ib (CD42b) and glycoprotein IIb/IIIa (CD41 and CD41a) were analyzed by our custom-written software in MATLAB. In two-dimensional analyses, intracellular DENV was detected in CD42b+, CD41+ and CD41a+ cells. In three-dimensional analyses, the DENV was exclusively detected in CD42b+ cells but not in CD42b- cells regardless of the other expressions. In single-cell virus-protein analyses, the amount of DENV was directly correlated with those of CD42b at the Pearson correlation coefficient of 0.9. Moreover, RT- PCR and apoptosis assays showed that DENV was able to replicate itself and release its new progeny from the infected CD42b+ cells and eventually killed those cells. These results provide evidence for the involvement of CD42b in DENV infection.
Collapse
Affiliation(s)
- Nattapol Attatippaholkun
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Laboratory for System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Nont Kosaisawe
- Siriraj Laboratory for System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panthipa Supraditaporn
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
25
|
Megakaryocyte and polyploidization. Exp Hematol 2018; 57:1-13. [DOI: 10.1016/j.exphem.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
26
|
Factor V marks platelet-primed megakaryocytes. Blood 2017; 130:102-103. [PMID: 28705856 DOI: 10.1182/blood-2017-05-782649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|