1
|
Pirabe A, Schrottmaier WC, Mehic D, Hackl H, Frühwirth S, Schmuckenschlager A, Beck S, Gebhart J, Gleixner K, Sperr W, Assinger A. Impaired hemostatic and immune functions of platelets after acute thrombocytopenia. J Thromb Haemost 2025; 23:1052-1065. [PMID: 39675567 DOI: 10.1016/j.jtha.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Platelets are pivotal in maintaining vascular integrity, hemostasis, and immune modulation, with newly generated, immature platelets being the most responsive in fulfilling these tasks. Therefore, the immature platelet fraction provides insights into thrombopoiesis dynamics and clinical prognostication. However, it is currently unclear how immature platelet functions change in settings of acute thrombocytopenia. OBJECTIVES We aimed to investigate the functional consequences of acute thrombocytopenia on newly generated immature platelets in various mouse models and human subjects. METHODS To examine platelet functionality after acute thrombocytopenia, we depleted either megakaryocytes using a platelet factor 4-specific inducible diphtheria toxin receptor transgenic mouse model or platelets via antibody-mediated depletion in mice, and collected blood from acute myeloid leukemia (AML) patients before and after consolidation or induction chemotherapy. Chemotherapy treatment was further repeated in an animal model. We assessed surface receptor expression of activation markers (CD62P, active GPIIb/IIIa, CD40L, CD63, CD107a) and toll-like receptors (TLR2, TLR4, TLR9) on immature and mature platelets following activation. Additionally, we investigated procoagulant platelet formation and platelet-leukocyte interactions in mouse models and patients with AML. RESULTS In murine models, acute thrombocytopenia led to impaired hemostatic function and altered surface receptor expression in newly generated immature platelets. Similarly, AML patients during regeneration post chemotherapy exhibited reduced platelet activation and procoagulant function, alongside altered receptor expression and diminished platelet-leukocyte interactions. CONCLUSION After acute thrombocytopenia platelet-mediated hemostasis and immune modulation by newly generated platelets are impaired, underscoring the clinical relevance of understanding platelet function alterations in (post)thrombocytopenic conditions for therapeutic optimization.
Collapse
Affiliation(s)
- Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. https://twitter.com/WaltraudSchrottmaier
| | - Dino Mehic
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Frühwirth
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarah Beck
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Gebhart
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karoline Gleixner
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sperr
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Zhang T, Zhang M, Guo L, Liu D, Zhang K, Bi C, Zhang P, Wang J, Fan Y, He Q, Chang ACY, Zhang J. Angiopoietin-like protein 2 inhibits thrombus formation. Mol Cell Biochem 2025; 480:1169-1181. [PMID: 38880861 PMCID: PMC11835982 DOI: 10.1007/s11010-024-05034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingliang Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lingyu Guo
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongsheng Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jin Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex C Y Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Allan HE, Vadgama A, Armstrong PC, Warner TD. Platelet ageing: A review. Thromb Res 2023; 231:214-222. [PMID: 36587993 DOI: 10.1016/j.thromres.2022.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Platelet ageing is an area of research which has gained much interest in recent years. Newly formed platelets, often referred to as reticulated platelets, young platelets or immature platelets, are defined as RNA-enriched and have long been thought to be hyper-reactive. This latter view is largely rooted in associations and observations in patient groups with shortened platelet half-lives who often present with increased proportions of newly formed platelets. Evidence from such groups suggests that an increased proportion of newly formed platelets is associated with an increased risk of thrombotic events and a reduced effectiveness of standard anti-platelet therapies. Whilst research has highlighted the existence of platelet subpopulations based on function, size and age within patient groups, the common intrinsic changes which occur as platelets age within the circulation are only just being explored. By understanding the changes that occur during the natural ageing processes of platelets, we may be able to identify the triggers for alterations in platelet life span and platelet reactivity. Here we review research on platelet ageing in the context of health and disease, paying particular attention to the experimental approaches taken and the robustness of conclusions that can be drawn.
Collapse
Affiliation(s)
- Harriet E Allan
- Centre for Immunobiology, Blizard Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Ami Vadgama
- Centre for Immunobiology, Blizard Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
4
|
Armstrong PC, Allan HE, Kirkby NS, Gutmann C, Joshi A, Crescente M, Mitchell JA, Mayr M, Warner TD. Temporal in vivo platelet labeling in mice reveals age-dependent receptor expression and conservation of specific mRNAs. Blood Adv 2022; 6:6028-6038. [PMID: 36037520 PMCID: PMC9699941 DOI: 10.1182/bloodadvances.2022007099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
The proportion of young platelets, also known as newly formed or reticulated, within the overall platelet population has been clinically correlated with adverse cardiovascular outcomes. However, our understanding of this is incomplete because of limitations in the technical approaches available to study platelets of different ages. In this study, we have developed and validated an in vivo temporal labeling approach using injectable fluorescent antiplatelet antibodies to subdivide platelets by age and assess differences in functional and molecular characteristics. With this approach, we found that young platelets (<24 hours old) in comparison with older platelets respond to stimuli with greater calcium flux and degranulation and contribute more to the formation of thrombi in vitro and in vivo. Sequential sampling confirmed this altered functionality to be independent of platelet size, with distribution of sizes of tracked platelets commensurate with the global platelet population throughout their 5-day lifespan in the circulation. The age-associated decrease in thrombotic function was accompanied by significant decreases in the surface expression of GPVI and CD31 (PECAM-1) and an increase in CD9. Platelet messenger RNA (mRNA) content also decreased with age but at different rates for individual mRNAs indicating apparent conservation of those encoding granule proteins. Our pulse-chase-type approach to define circulating platelet age has allowed timely reexamination of commonly held beliefs regarding size and reactivity of young platelets while providing novel insights into the temporal regulation of receptor and protein expression. Overall, future application of this validated tool will inform age-based platelet heterogeneity in physiology and disease.
Collapse
Affiliation(s)
- Paul C. Armstrong
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Correspondence: Paul C. Armstrong, Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, United Kingdom;
| | - Harriet E. Allan
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas S. Kirkby
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London United Kingdom
| | - Clemens Gutmann
- King’s British Heart Foundation Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Abhishek Joshi
- King’s British Heart Foundation Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Marilena Crescente
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jane A. Mitchell
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London United Kingdom
| | - Manuel Mayr
- King’s British Heart Foundation Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Timothy D. Warner
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
GPVI expression is linked to platelet size, age, and reactivity. Blood Adv 2022; 6:4162-4173. [PMID: 35561312 PMCID: PMC9327529 DOI: 10.1182/bloodadvances.2021006904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Juvenile platelets show increased GPVI expression. These platelets are highly responsive and more abundant among large platelets.
Platelets within one individual display heterogeneity in reactivity, size, age, and expression of surface receptors. To investigate the combined intraindividual contribution of platelet size, platelet age, and receptor expression levels on the reactivity of platelets, we studied fractions of large and small platelets from healthy donors separated by using differential centrifugation. Size-separated platelet fractions were perfused over a collagen-coated surface to assess thrombus formation. Multicolor flow cytometry was used to characterize resting and stimulated platelet subpopulations, and platelet age was determined based on RNA and HLA-I labeling. Signal transduction was analyzed by measuring consecutive phosphorylation of serine/threonine-protein kinase Akt. Compared with small platelets, large platelets adhered faster to collagen under flow and formed larger thrombi. Among the large platelets, a highly reactive juvenile platelet subpopulation was identified with high glycoprotein VI (GPVI) expression. Elevated GPVI expression correlated with high HLA-I expression, RNA content, and increased platelet reactivity. There was a stronger difference in Akt phosphorylation and activation upon collagen stimulation between juvenile and older platelets than between large and small platelets. GPVI expression and platelet reactivity decreased throughout platelet storage at 22°C and was better maintained throughout cold storage at 4°C. We further detected higher GPVI expression in platelets of patients with immune thrombocytopenia. Our findings show that high GPVI expression is a feature of highly reactive juvenile platelets, which are predominantly found among the large platelet population, explaining the better performance of large platelets during thrombus formation. These data are important for studies of thrombus formation, platelet storage, and immune thrombocytopenia.
Collapse
|
6
|
Bleeding diathesis in mice lacking JAK2 in platelets. Blood Adv 2021; 5:2969-2981. [PMID: 34342643 DOI: 10.1182/bloodadvances.2020003032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine kinase JAK2 is a critical component of intracellular JAK/STAT cytokine signaling cascades that is prevalent in hematopoietic cells, such as hematopoietic stem cells and megakaryocytes (MKs). Individuals expressing the somatic JAK2 V617F mutation commonly develop myeloproliferative neoplasms (MPNs) associated with venous and arterial thrombosis, a leading cause of mortality. The role of JAK2 in hemostasis remains unclear. We investigated the role of JAK2 in platelet hemostatic function using Jak2fl/fl Pf4-Cre (Jak2Plt-/-) mice lacking JAK2 in platelets and MKs. Jak2Plt-/- mice developed MK hyperplasia and splenomegaly associated with severe thrombocytosis and bleeding. This notion was supported by failure to occlude in a ferric chloride carotid artery injury model and by a cremaster muscle laser-induced injury assay, in which Jak2Plt-/- platelets failed to form stable thrombi. Jak2Plt-/- platelets formed thrombi poorly after adhesion to type 1 collagen under arterial shear rates. Jak2Plt-/- platelets spread poorly on collagen under static conditions or on fibrinogen in response to the collagen receptor GPVI-specific agonist, collagen-related peptide (CRP). After activation with collagen, CRP, or the CLEC-2 agonist rhodocytin, Jak2Plt-/- platelets displayed decreased α-granule secretion and integrin αIIbβ3 activation or aggregation, but showed normal responses to thrombin. Jak2Plt-/- platelets had impaired intracellular signaling when activated via GPVI, as assessed by tyrosine phosphorylation. Together, the results show that JAK2 deletion impairs platelet immunoreceptor tyrosine-based activation motif signaling and hemostatic function in mice and suggest that aberrant JAK2 signaling in patients with MPNs affects GPVI signaling, leading to hemostatic platelet function.
Collapse
|
7
|
Huang W, Gu H, Zhan Z, Wang R, Song L, Zhang Y, Zhang Y, Li S, Li J, Zang Y, Li Y, Qian B. The plant hormone abscisic acid stimulates megakaryocyte differentiation from human iPSCs in vitro. Platelets 2021; 33:462-470. [PMID: 34223794 DOI: 10.1080/09537104.2021.1944616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the clinic, the supply of platelets is frequently insufficient to meet transfusion needs. To address this issue, many scientists have established the derivation of functional platelets from CD34+ cells or human pluripotent stem cells (PSCs). However, the yield of platelets is still far below what is required. Here we found that the plant hormone abscisic acid (ABA) could increase the generation of megakaryocytes (MKs) and platelets from human induced PSCs (hiPSCs). During platelet derivation, ABA treatment promoted the generation of CD34+/CD45+ HPCs and CD41+ MKs on day 14 and then increased CD41+/CD42b+ MKs and platelets on day 19. Moreover, we found ABA-mediated activation of Akt and ERK1/2 signal pathway through receptors LANCL2 and GRP78 in a PKA-dependent manner on CD34+/CD45+ cells. In conclusion, our data suggest that ABA treatment can promote CD34+/CD45+ HPC proliferation and CD41+ MK differentiation.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China.,Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Haihui Gu
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Zhiyan Zhan
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Ruoru Wang
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Lili Song
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yan Zhang
- Department of Hematology, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Yingwen Zhang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Jinqi Li
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Yan Zang
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Yanxin Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Baohua Qian
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| |
Collapse
|
8
|
Acquired platelet GPVI receptor dysfunction in critically ill patients with sepsis. Blood 2021; 137:3105-3115. [PMID: 33827131 DOI: 10.1182/blood.2020009774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein VI (GPVI), the platelet immunoreceptor tyrosine activating motif (ITAM) receptor for collagen, plays a striking role on vascular integrity in animal models of inflammation and sepsis. Understanding ITAM-receptor signaling defects in humans suffering from sepsis may improve our understanding of the pathophysiology, especially during disease onset. In a pilot study, platelets from 15 patients with sepsis were assessed consecutively at day of admission, day 5 to 7, and the day of intensive care unit (ICU) discharge and subjected to comprehensive analyses by flow cytometry, aggregometry, and immunoblotting. Platelet function was markedly reduced in all patients. The defect was most prominent after GPVI stimulation with collagen-related peptide. In 14 of 15 patients, GPVI dysfunction was already present at time of ICU admission, considerably before the critical drop in platelet counts. Sepsis platelets failed to transduce the GPVI-mediated signal to trigger tyrosine phosphorylation of Syk kinase or LAT. GPVI deficiency was partially inducible in platelets of healthy donors through coincubation in whole blood, but not in plasma from patients with sepsis. Platelet aggregation upon GPVI stimulation increased only in those patients whose condition ameliorated. As blunted GPVI signaling occurred early at sepsis onset, this defect could be exploited as an indicator for early sepsis diagnosis, which needs to be confirmed in prospective studies.
Collapse
|
9
|
Hemostasis vs. homeostasis: Platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc Natl Acad Sci U S A 2020; 117:24316-24325. [PMID: 32929010 DOI: 10.1073/pnas.2007642117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets are best known for their vasoprotective responses to injury and inflammation. Here, we have asked whether they also support vascular integrity when neither injury nor inflammation is present. Changes in vascular barrier function in dermal and meningeal vessels were measured in real time in mouse models using the differential extravasation of fluorescent tracers as a biomarker. Severe thrombocytopenia produced by two distinct methods caused increased extravasation of 40-kDa dextran from capillaries and postcapillary venules but had no effect on extravasation of 70-kDa dextran or albumin. This reduction in barrier function required more than 4 h to emerge after thrombocytopenia was established, reverting to normal as the platelet count recovered. Barrier dysfunction was also observed in mice that lacked platelet-dense granules, dense granule secretion machinery, glycoprotein (GP) VI, or the GPVI signaling effector phospholipase C (PLC) γ2. It did not occur in mice lacking α-granules, C type lectin receptor-2 (CLEC-2), or protease activated receptor 4 (PAR4). Notably, although both meningeal and dermal vessels were affected, intracerebral vessels, which are known for their tighter junctions between endothelial cells, were not. Collectively, these observations 1) highlight a role for platelets in maintaining vascular homeostasis in the absence of injury or inflammation, 2) provide a sensitive biomarker for detecting changes in platelet-dependent barrier function, 3) identify which platelet processes are required, and 4) suggest that the absence of competent platelets causes changes in the vessel wall itself, accounting for the time required for dysfunction to emerge.
Collapse
|
10
|
Nishiura N, Kashiwagi H, Akuta K, Hayashi S, Kato H, Kanakura Y, Tomiyama Y. Reevaluation of platelet function in chronic immune thrombocytopenia: impacts of platelet size, platelet‐associated anti‐αIIbβ3 antibodies and thrombopoietin receptor agonists. Br J Haematol 2020; 189:760-771. [DOI: 10.1111/bjh.16439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Nobuko Nishiura
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
| | - Hirokazu Kashiwagi
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
| | - Keigo Akuta
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
| | - Satoru Hayashi
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
| | - Hisashi Kato
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
| | - Yoshiaki Tomiyama
- Department of Hematology and Oncology Graduate School of Medicine Osaka University Suita Japan
- Department of Blood Transfusion Osaka University Hospital Suita Japan
| |
Collapse
|
11
|
Angénieux C, Dupuis A, Gachet C, de la Salle H, Maître B. Cell surface expression of HLA I molecules as a marker of young platelets. J Thromb Haemost 2019; 17:1511-1521. [PMID: 31207003 DOI: 10.1111/jth.14537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate identification of the proportion of young platelets is important to distinguish peripheral thrombocytopenia from a deficit in platelet production. Young platelets are defined by their higher RNA content and are often assessed as thiazole orange bright (TObright ) by flow cytometry. In clinical practice, their proportion is estimated by automatic blood counter according to their greater RNA content, which identifies a so-called immature platelet fraction (IPF). However, the detected IPFs are not strictly identical to the young TObright platelet population observed by flow cytometry. OBJECTIVES The aim of this study was to assess the reliability of HLA I/major histocompatibility I (MHC I) cell surface expression as a marker of young platelets. METHODS The HLA I/MHC I expression was evaluated by flow cytometry after costaining blood with TO and antibodies directed against HLA I/MHC I molecules. RESULTS We found that platelets with a higher expression of plasma membrane-localized MHC I molecules displayed an increased TO staining and a higher content in ribosomal P-antigen. Transfusion experiments in mice showed that the number of MHC I molecules expressed on the cell surface of young murine platelets decreased during platelet aging, reaching basal levels within 24 h. Finally, we demonstrated that for patients with thrombocytopenias, the identification of young platelets is better assessed by the flow cytometric determination of the level of HLA I expression than by TO staining or the use of hematological blood counter. CONCLUSION Overall, our results highlight the relevance of MHC I/HLA I expression as a valuable parameter to identify young platelets.
Collapse
Affiliation(s)
- Catherine Angénieux
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Arnaud Dupuis
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Christian Gachet
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Henri de la Salle
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Blandine Maître
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Semeniak D, Faber K, Öftering P, Manukjan G, Schulze H. Impact of Itga2-Gp6-double collagen receptor deficient mice for bone marrow megakaryocytes and platelets. PLoS One 2019; 14:e0216839. [PMID: 31398205 PMCID: PMC6688823 DOI: 10.1371/journal.pone.0216839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
The two main collagen receptors on platelets, GPVI and integrin α2β1, play an important role for the recognition of exposed collagen at sites of vessel injury, which leads to platelet activation and subsequently stable thrombus formation. Both receptors are already expressed on megakaryocytes, the platelet forming cells within the bone marrow. Megakaryocytes are in permanent contact with collagen filaments in the marrow cavity and at the basal lamina of sinusoids without obvious preactivation. The role of both collagen receptors for megakaryocyte maturation and thrombopoiesis is still poorly understood. To investigate the function of both collagen receptors, we generated mice that are double deficient for Gp6 and Itga2. Flow cytometric analyses revealed that the deficiency of both receptors had no impact on platelet number and led to the expected lack in GPVI responsiveness. Integrin activation and degranulation ability was comparable to wildtype mice. By immunofluorescence microscopy, we could demonstrate that both wildtype and double-deficient megakaryocytes were overall normally distributed within the bone marrow. We found megakaryocyte count and size to be normal, the localization within the bone marrow, the degree of maturation, as well as their association to sinusoids were also unaltered. However, the contact of megakaryocytes to collagen type I filaments was decreased at sinusoids compared to wildtype mice, while the interaction to type IV collagen was unaffected. Our results imply that GPVI and α2β1 have no influence on the localization of megakaryocytes within the bone marrow, their association to the sinusoids or their maturation. The decreased contact of megakaryocytes to collagen type I might at least partially explain the unaltered platelet phenotype in these mice, since proplatelet formation is mediated by these receptors and their interaction to collagen. It is rather likely that other compensatory signaling pathways and receptors play a role that needs to be elucidated.
Collapse
Affiliation(s)
- Daniela Semeniak
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Faber
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Taylor KA, Emerson M. Refinement of a mouse cardiovascular model: Development, application and dissemination. F1000Res 2018; 7:593. [PMID: 29904600 PMCID: PMC5974574 DOI: 10.12688/f1000research.14456.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 12/25/2022] Open
Abstract
European and UK legislation requires all animal procedures to be conducted with consideration to reduction, refinement and replacement. In this review, 3Rs developments are discussed in the field of platelet biology and thromboembolism. Platelet research requires the use of animal models, and mice are widely used in the field. When working
in vitro, conventional light transmission techniques have been scaled down allowing reduction in animal numbers.
In vivo, vascular injury models are widely used and work is ongoing to develop
ex vivo approaches that use fewer animals. Thromboembolic mortality models, which inflict considerable pain and suffering, have also been used widely. A published and characterised refinement of this mortality model allows real-time monitoring of radiolabelled platelets under general anaesthesia and reduces both the severity level and the numbers of mice used in a typical experiment. This technique is more sensitive than the mortality approach and has opened up new avenues of research, which would not have been feasible by using death as an end-point. To drive uptake of real-time monitoring, a more simplistic approach has been developed involving micro-sampling and cell counting. Thromboembolic mortality models should therefore be considered obsolete due to the emergence of 3Rs models with improved scientific outcomes and that can be implemented relatively easily.
Collapse
Affiliation(s)
- Kirk A Taylor
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Michael Emerson
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Hardy AT, Palma-Barqueros V, Watson SK, Malcor JD, Eble JA, Gardiner EE, Blanco JE, Guijarro-Campillo R, Delgado JL, Lozano ML, Teruel-Montoya R, Vicente V, Watson SP, Rivera J, Ferrer-Marín F. Significant Hypo-Responsiveness to GPVI and CLEC-2 Agonists in Pre-Term and Full-Term Neonatal Platelets and following Immune Thrombocytopenia. Thromb Haemost 2018; 118:1009-1020. [PMID: 29695020 PMCID: PMC6202930 DOI: 10.1055/s-0038-1646924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neonatal platelets are hypo-reactive to the tyrosine kinase-linked receptor agonist collagen. Here, we have investigated whether the hypo-responsiveness is related to altered levels of glycoprotein VI (GPVI) and integrin α2β1, or to defects in downstream signalling events by comparison to platelet activation by C-type lectin-like receptor 2 (CLEC-2). GPVI and CLEC-2 activate a Src- and Syk-dependent signalling pathway upstream of phospholipase C (PLC) γ2. Phosphorylation of a conserved YxxL sequence known as a (hemi) immunotyrosine-based-activation-motif (ITAM) in both receptors is critical for Syk activation. Platelets from human pre-term and full-term neonates display mildly reduced expression of GPVI and CLEC-2, as well as integrin αIIbβ3, accounted for at the transcriptional level. They are also hypo-responsive to the two ITAM receptors, as shown by measurement of integrin αIIbβ3 activation, P-selectin expression and Syk and PLCγ2 phosphorylation. Mouse platelets are also hypo-responsive to GPVI and CLEC-2 from late gestation to 2 weeks of age, as determined by measurement of integrin αIIbβ3 activation. In contrast, the response to G protein-coupled receptor agonists was only mildly reduced and in some cases not altered in neonatal platelets of both species. A reduction in response to GPVI and CLEC-2, but not protease-activated receptor 4 (PAR-4) peptide, was also observed in adult mouse platelets following immune thrombocytopenia, whereas receptor expression was not impaired. Our results demonstrate developmental differences in platelet responsiveness to GPVI and CLEC-2, and also following immune platelet depletion leading to reduced Syk activation. The rapid generation of platelets during development or following platelet depletion is achieved at the expense of signalling by ITAM-coupled receptors.
Collapse
Affiliation(s)
- Alexander T Hardy
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Stephanie K Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - José E Blanco
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Rafael Guijarro-Campillo
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Juan L Delgado
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Steve P Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Francisca Ferrer-Marín
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain.,Grado de Medicina, Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
15
|
An exit strategy for new platelets. Blood 2018. [PMID: 29519929 DOI: 10.1182/blood-2018-01-826453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|