1
|
Reiter A, Metzgeroth G, Cross NCP. How I diagnose and treat myeloid/lymphoid neoplasms with tyrosine kinase gene fusions. Blood 2025; 145:1758-1768. [PMID: 39046810 DOI: 10.1182/blood.2023022417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT The fifth edition of the World Health Organization (WHO) classification and the International Consensus Classification (ICC) both include a category "myeloid/lymphoid neoplasms (MLN) with eosinophilia (eo) and tyrosine kinase (TK) gene fusions" (WHO, MLN-TK; ICC, M/LN-eo-TK). This rare group comprises phenotypically and prognostically heterogeneous disorders, which present a significant diagnostic challenge. The rapid and reliable identification of patients with MLN-TK may be delayed due to genetic complexity and significant phenotypic differences, including the chronic phase and primary/secondary blast phase (BP) of myeloid, lymphoid, or mixed phenotype in the bone marrow (BP-BM) and/or at extramedullary sites (extramedullary disease [EMD]). As a result, the entire armamentarium of conventional molecular genetic and cytogenetic techniques complemented by modern sequencing technologies, such as RNA sequencing or whole-genome sequencing, are often required to identify an underlying TK fusion. TK inhibitors (TKIs) with variable efficacy are available for all fusion genes, but a long-term favorable clinical course under TKI monotherapy is currently only observed in MLN-PDGFRA/PDGFRB fusion genes on imatinib. Because primary/secondary BP-BM/EMD occurs more frequently in MLN-FGFR1/JAK2/FLT3/ETV6::ABL1, a sequential combination of selective TKIs with or without prior intensive chemotherapy, rarely local radiotherapy, and/or subsequent allogeneic hematopoietic cell transplantation should be considered.
Collapse
Affiliation(s)
- Andreas Reiter
- Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicholas C P Cross
- Wessex Genomics Laboratory Service, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Tran TH, Tasian SK. How I treat Philadelphia chromosome-like acute lymphoblastic leukemia in children, adolescents, and young adults. Blood 2025; 145:20-34. [PMID: 38657263 DOI: 10.1182/blood.2023023153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) represents a high-risk B-lineage ALL subtype characterized by adverse clinical features and poor relapse-free survival despite risk-adapted multiagent chemotherapy regimens. The advent of next-generation sequencing has unraveled the diversity of kinase-activating genetic drivers in Ph-like ALL that are potentially amenable to personalized molecularly-targeted therapies. Based upon robust preclinical data and promising case series of clinical activity of tyrosine kinase inhibitor (TKI)-based treatment in adults and children with relevant genetic Ph-like ALL subtypes, several clinical trials have investigated the efficacy of JAK- or ABL-directed TKIs in cytokine receptor-like factor 2 (CRLF2)/JAK pathway-mutant or ABL-class Ph-like ALL, respectively. The final results of these trials are pending, and standard-of-care therapeutic approaches for patients with Ph-like ALL have yet to be defined. In this How I Treat perspective, we review recent literature to guide current evidence-based treatment recommendations via illustrative clinical vignettes of children, adolescents, and young adults with newly diagnosed or relapsed/refractory Ph-like ALL, and we further highlight open and soon-to-open trials investigating immunotherapy and TKIs specifically for this high-risk patient population.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
3
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:13-22. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
4
|
Narang S, Ghebrechristos Y, Evensen NA, Murrell N, Jasinski S, Ostrow TH, Teachey DT, Raetz EA, Lionnet T, Witkowski M, Aifantis I, Tsirigos A, Carroll WL. Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia. Nat Commun 2024; 15:7425. [PMID: 39198446 PMCID: PMC11358475 DOI: 10.1038/s41467-024-51492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Relapsed pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains one of the leading causes of cancer mortality in children. We performed Hi-C, ATAC-seq, and RNA-seq on 12 matched diagnosis/relapse pediatric leukemia specimens to uncover dynamic structural variants (SVs) and 3D chromatin rewiring that may contribute to relapse. While translocations are assumed to occur early in leukemogenesis and be maintained throughout progression, we discovered novel, dynamic translocations and confirmed several fusion transcripts, suggesting functional and therapeutic relevance. Genome-wide chromatin remodeling was observed at all organizational levels: A/B compartments, TAD interactivity, and chromatin loops, including some loci shared by 25% of patients. Shared changes were found to drive the expression of genes/pathways previously implicated in resistance as well as novel therapeutic candidates, two of which (ATXN1 and MN1) we functionally validated. Overall, these results demonstrate chromatin reorganization under the selective pressure of therapy and offer the potential for discovery of novel therapeutic interventions.
Collapse
Affiliation(s)
- Sonali Narang
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Yohana Ghebrechristos
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Nikki A Evensen
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nina Murrell
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Sylwia Jasinski
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Talia H Ostrow
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth A Raetz
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Timothee Lionnet
- Institute for Systems Genetics and Department of Cell Biology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Matthew Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iannis Aifantis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
- Department of Pathology, NYU Langone Health, New York, NY, USA.
| | - Aristotelis Tsirigos
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
- Department of Pathology, NYU Langone Health, New York, NY, USA.
| | - William L Carroll
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
5
|
Mao Z, Gao Z, Long R, Guo H, Chen L, Huan S, Yin G. Mitotic catastrophe heterogeneity: implications for prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1409448. [PMID: 39015573 PMCID: PMC11250588 DOI: 10.3389/fimmu.2024.1409448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background and aims The mitotic catastrophe (MC) pathway plays an important role in hepatocellular carcinoma (HCC) progression and tumor microenvironment (TME) regulation. However, the mechanisms linking MC heterogeneity to immune evasion and treatment response remain unclear. Methods Based on 94 previously published highly correlated genes for MC, HCC patients' data from the Cancer Genome Atlas (TCGA) and changes in immune signatures and prognostic stratification were studied. Time and spatial-specific differences for MCGs were assessed by single-cell RNA sequencing and spatial transcriptome (ST) analysis. Multiple external databases (GEO, ICGC) were employed to construct an MC-related riskscore model. Results Identification of two MC-related subtypes in HCC patients from TCGA, with clear differences in immune signatures and prognostic risk stratification. Spatial mapping further associates low MC tumor regions with significant immune escape-related signaling. Nomogram combining MC riskscore and traditional indicators was validated great effect for early prediction of HCC patient outcomes. Conclusion MC heterogeneity enables immune escape and therapy resistance in HCC. The MC gene signature serves as a reliable prognostic indicator for liver cancer. By revealing clear immune and spatial heterogeneity of HCC, our integrated approach provides contextual therapeutic strategies for optimal clinical decision-making.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyu Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Sheng Huan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, China
| |
Collapse
|
6
|
Klein S, Tolkach Y, Reinhardt HC, Buettner R, Quaas A, Helbig D. Proteomic analysis of pleomorphic dermal sarcoma reveals a fibroblastic cell of origin and distinct immune evasion mechanisms. Sci Rep 2024; 14:12516. [PMID: 38822058 PMCID: PMC11143252 DOI: 10.1038/s41598-024-62927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Pleomorphic dermal sarcomas are infrequent neoplastic skin tumors, manifesting in regions of the skin exposed to ultraviolet radiation. Diagnosing the entity can be challenging and therapeutic options are limited. We analyzed 20 samples of normal healthy skin tissue (SNT), 27 malignant melanomas (MM), 20 cutaneous squamous cell carcinomas (cSCC), and 24 pleomorphic dermal sarcomas (PDS) using mass spectrometry. We explored a potential cell of origin in PDS and validated our findings using publicly available single-cell sequencing data. By correlating tumor purity (TP), inferred by both RNA- and DNA-sequencing, to protein abundance, we found that fibroblasts shared most of the proteins correlating to TP. This observation could also be made using publicly available SNT single cell sequencing data. Moreover, we studied relevant pathways of receptor/ligand (R/L) interactions. Analysis of R/L interactions revealed distinct pathways in cSCC, MM and PDS, with a prominent role of PDGFRB-PDGFD R/L interactions and upregulation of PI3K/AKT signaling pathway. By studying differentially expressed proteins between cSCC and PDS, markers such as MAP1B could differentiate between these two entities. To this end, we studied proteins associated with immunosuppression in PDS, uncovering that immunologically cold PDS cases shared a "negative regulation of interferon-gamma signaling" according to overrepresentation analysis.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
- West German Cancer Center Network, Partner Site Essen, Essen, Germany.
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany.
| | - Yuri Tolkach
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- West German Cancer Center Network, Partner Site Essen, Essen, Germany
| | - Reinhard Buettner
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany
| | - Doris Helbig
- Department of Dermatology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
7
|
van Outersterp I, Tasian SK, Reichert CEJ, Boeree A, de Groot-Kruseman HA, Escherich G, Boer JM, den Boer ML. Tyrosine kinase inhibitor response of ABL-class acute lymphoblastic leukemia: the role of kinase type and SH3 domain. Blood 2024; 143:2178-2189. [PMID: 38394665 PMCID: PMC11143520 DOI: 10.1182/blood.2023023120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
ABSTRACT Acute lymphoblastic leukemia (ALL) with fusions of ABL-class tyrosine kinase genes other than BCR::ABL1 occurs in ∼3% of children with ALL. The tyrosine kinase genes involved in this BCR::ABL1-like (Ph-like) subtype include ABL1, PDGFRB, ABL2, and CSF1R, each of which has up to 10 described partner genes. ABL-class ALL resembles BCR::ABL1-positive ALL with a similar gene expression profile, poor response to chemotherapy, and sensitivity to tyrosine kinase inhibitors (TKIs). There is a lack of comprehensive data regarding TKI sensitivity in the heterogeneous group of ABL-class ALL. We observed variability in TKI sensitivity within and among each ABL-class tyrosine kinase gene subgroup. We showed that ALL samples with fusions for any of the 4 tyrosine kinase genes were relatively sensitive to imatinib. In contrast, the PDGFRB-fused ALL samples were less sensitive to dasatinib and bosutinib. Variation in ex vivo TKI response within the subset of samples with the same ABL-class tyrosine kinase gene was not associated with the ALL immunophenotype, 5' fusion partner, presence or absence of Src-homology-2/3 domains, or deletions of IKZF1, PAX5, or CDKN2A/B. In conclusion, the tyrosine kinase gene involved in ABL-class ALL is the main determinant of TKI sensitivity and relevant for specific TKI selection.
Collapse
Affiliation(s)
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L. den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Shomali W, Gotlib J. World Health Organization and International Consensus Classification of eosinophilic disorders: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:946-968. [PMID: 38551368 DOI: 10.1002/ajh.27287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
DISEASE OVERVIEW The eosinophilias encompass a broad range of non-hematologic (secondary or reactive) and hematologic (primary or clonal) disorders with the potential for end-organ damage. DIAGNOSIS Hypereosinophilia (HE) has generally been defined as a peripheral blood eosinophil count greater than 1.5 × 109/L, and may be associated with tissue damage. After the exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on a combination of various tests. They include morphologic review of the blood and marrow, standard cytogenetics, fluorescence in situ hybridization, molecular testing and flow immunophenotyping to detect histopathologic or clonal evidence for an acute or chronic hematolymphoid neoplasm. RISK STRATIFICATION Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2022 World Health Organization and International Consensus Classification endorse a semi-molecular classification scheme of disease subtypes. This includes the major category "myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions" (MLN-eo-TK), and the MPN subtype, "chronic eosinophilic leukemia" (CEL). Lymphocyte-variant HE is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. RISK-ADAPTED THERAPY The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (e.g., <1.5 × 109/L) without symptoms or signs of organ involvement, a watch and wait approach with close follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Pemigatinib was recently approved for patients with relapsed or refractory FGFR1-rearranged neoplasms. Corticosteroids are first-line therapy for patients with lymphocyte-variant HE and HES. Hydroxyurea and interferon-α have demonstrated efficacy as initial treatment and in steroid-refractory cases of HES. Mepolizumab, an interleukin-5 (IL-5) antagonist monoclonal antibody, is approved by the U.S Food and Drug Administration for patients with idiopathic HES. Cytotoxic chemotherapy agents, and hematopoietic stem cell transplantation have been used for aggressive forms of HES and CEL, with outcomes reported for limited numbers of patients. Targeted therapies such as the IL-5 receptor antibody benralizumab, IL-5 monoclonal antibody depemokimab, and various tyrosine kinase inhibitors for MLN-eo-TK, are under active investigation.
Collapse
Affiliation(s)
- William Shomali
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California, USA
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Liu K, Shao J, Cai J, Tang J, Shen S, Xu F, Ren Y, Zhang A, Tian X, Lu X, Hu S, Hu Q, Jiang H, Zhou F, Liang C, Leung AWK, Zhai X, Li C, Fang Y, Wang Z, Wen L, Yang H, Wang N, Jiang H. Causes of death and treatment-related mortality in newly diagnosed childhood acute lymphoblastic leukemia treatment with Chinese Children's Cancer Group study ALL-2015. Ann Hematol 2023; 102:3431-3444. [PMID: 37550503 DOI: 10.1007/s00277-023-05389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
To investigate the possible risk factors for death at post-treatment in children with acute lymphoblastic leukemia (ALL). A multivariate competing risk analysis was performed to retrospectively analyze the data of children with ALL who died after treatment with CCCG-ALL-2015 in China and to determine the possible risk factors for death at post-treatment in children with ALL. Age at the first diagnosis of ≥10 years; final risk level of high-risk; D19 minimal residual disease (MRD) (≥0.01%) and D46 MRD (≥0.01%); genetic abnormalities, such as KMT2A-rearrangement, c-Myc rearrangement, and PDGFRB rearrangement; and the presence of CNS3 (all P values, <0.05) were identified as independent risk factors, whereas the risk level at the first diagnosis of low-risk (LR) and ETV6::RUNX1 positivity was considered as independent protective factors of death in children with ALL. Among the 471 cases of death, 45 cases were treated with CCCG-ALL-2015 only, and 163 (34.61%) were treatment-related, with 62.42% due to severe infections. 55.83% of treatment-related mortality (TRM) occurred in the early phase of treatment (induction phase). TRM has a significant impact on the overall survival of pediatric patients with ALL. Moreover, the CCCG-ALL-2015 regimen has a better safety profile for treating children with ALL, with rates close to those in developed countries (registration number: ChiCTR-IPR-14005706; date of registration: June 4, 2014).
Collapse
Affiliation(s)
- Kangkang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingbo Shao
- Department of Hematology/Oncology, Children's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University of School of Medicine, Shanghai, China
| | - Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University of School of Medicine, Shanghai, China
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University of School of Medicine, Shanghai, China
| | - Fengling Xu
- Department of Hematology/Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Ren
- Department of Pediatrics, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Tian
- Department of Hematology/Oncology, Kunming Children's Hospital, Kunming, China
| | - Xiaoqian Lu
- Department of Hematology/Oncology, West China Second Hospital of Sichuan University, Chengdu, China
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Qun Hu
- Department of Pediatrics, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children Health Care Center, Guangzhou, China
| | - Fen Zhou
- Department of Pediatrics, Huazhong University of Science and Technology Tongji Medical College Union Hospital, Wuhan, China
| | - Changda Liang
- Department of Hematology/Oncology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Alex Wing Kwan Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong Children's Hospital, Hong Kong, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Chunfu Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Fang
- Department of Hematology/Oncology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhenling Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Wen
- Department of Hematology/Oncology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Hui Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Ningling Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hui Jiang
- Department of Hematology/Oncology, Children's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
10
|
Chen X, Wang W, Yeh J, Wu Y, Oehler VG, Naresh KN, Liu YJ. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J Mol Diagn 2023; 25:932-944. [PMID: 37813298 DOI: 10.1016/j.jmoldx.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Recurrent gene rearrangements result in gene fusions that encode chimeric proteins, driving the pathogenesis of many hematologic neoplasms. The fifth edition World Health Organization classification and International Consensus Classification 2022 include an expanding list of entities defined by such gene rearrangements. Therefore, sensitive and rapid methods are needed to identify a broad range of gene fusions for precise diagnosis and prognostication. In this study, we validated the FusionPlex Pan-Heme panel analysis using anchored multiplex PCR/targeted RNA next-generation sequencing for routine clinical testing. Furthermore, we assessed its utility in detecting gene fusions in myeloid and lymphoid neoplasms. The validation cohort of 61 cases demonstrated good concordance between the FusionPlex Pan-Heme panel and other methods, including chromosome analysis, fluorescence in situ hybridization, RT-PCR, and Sanger sequencing, with an analytic sensitivity and specificity of 95% and 100%, respectively. In an independent cohort of 28 patients indicated for FusionPlex testing, gene fusions were detected in 21 patients. The FusionPlex Pan-Heme panel analysis reliably detected fusion partners and patient-specific fusion sequences, allowing accurate classification of hematologic neoplasms and the discovery of new fusion partners, contributing to a better understanding of the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jeffrey Yeh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yu Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vivian G Oehler
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
11
|
Chen H, Gu M, Liang J, Song H, Zhang J, Xu W, Zhao F, Shen D, Shen H, Liao C, Tang Y, Xu X. Minimal residual disease detection by next-generation sequencing of different immunoglobulin gene rearrangements in pediatric B-ALL. Nat Commun 2023; 14:7468. [PMID: 37978187 PMCID: PMC10656538 DOI: 10.1038/s41467-023-43171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
While the prognostic role of immunoglobulin heavy chain locus (IGH) rearrangement in minimal residual disease (MRD) in pediatric B-acute lymphoblastic leukemia (B-ALL) has been reported, the contribution of light chain loci (IGK/IGL) remains elusive. This study is to evaluate the prognosis of IGH and IGK/IGL rearrangement-based MRD detected by next-generation sequencing in B-ALL at the end of induction (EOI) and end of consolidation (EOC). IGK/IGL rearrangements identify 5.5% of patients without trackable IGH clones. Concordance rates for IGH and IGK/IGL are 79.9% (cutoff 0.01%) at EOI and 81.0% (cutoff 0.0001%) at EOC, respectively. Patients with NGS-MRD < 0.01% at EOI or <0.0001% at EOC present excellent outcome, with 3-year event-free survival rates higher than 95%. IGH-MRD is prognostic at EOI/EOC, while IGK-MRD at EOI/EOC and IGL-MRD at EOI are not. At EOI, NGS identifies 26.2% of higher risk patients whose MRD < 0.01% by flow cytometry. However, analyzing IGK/IGL along with IGH fails to identify additional higher risk patients both at EOI and at EOC. In conclusion, IGH is crucial for MRD monitoring while IGK and IGL have relatively limited value.
Collapse
Affiliation(s)
- Haipin Chen
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Miner Gu
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Juan Liang
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Hua Song
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Jingying Zhang
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Weiqun Xu
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Fenying Zhao
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Diying Shen
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Heping Shen
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Chan Liao
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China
| | - Yongmin Tang
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China.
| | - Xiaojun Xu
- Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, No. 57 Zhugan Lane, Yan'an Street, 310003, Hangzhou, People's Republic of China.
| |
Collapse
|
12
|
Qiu HR, Qiao C, Yang H, Guo R, Shi Y, Zhao XL, Li JY, Zhu Y. [ST13-PDGFRβ positive acute myeloid leukaemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:676-679. [PMID: 37803843 PMCID: PMC10520237 DOI: 10.3760/cma.j.issn.0253-2727.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 10/08/2023]
Affiliation(s)
- H R Qiu
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - C Qiao
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - H Yang
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - R Guo
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Y Shi
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - X L Zhao
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - J Y Li
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Y Zhu
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Zhu XF. [Optimized treatment of childhood B-lineage acute lymphoblastic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:344-349. [PMID: 37073837 PMCID: PMC10120335 DOI: 10.7499/j.issn.1008-8830.2211041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/01/2023] [Indexed: 04/20/2023]
Abstract
Childhood acute lymphoblastic leukemia (ALL) accounts for about 75% of childhood leukemia cases, and B-lineage acute lymphoblastic leukemia (B-ALL) accounts for more than 80% of childhood ALL cases. Over the past half century, new molecular biological targets discovered by new techniques have been used in precise stratification of disease prognosis, and there has been a gradual increase in the 5-year overall survival rate of childhood ALL. With the increasing attention to long-term quality of life, the treatment of childhood B-ALL has been constantly optimized from induction therapy to the intensity of maintenance therapy, including the treatment of extramedullary leukemia without radiotherapy, which has been tried with successful results. The realization of optimized treatment also benefits from the development of new techniques associated with immunology and molecular biology and the establishment of standardized clinical cohorts and corresponding biobanks. This article summarizes the relevant research on the implementation of precise stratification and the intensity reduction and optimization treatment of B-ALL in recent years, providing reference for clinicians.
Collapse
Affiliation(s)
- Xiao-Fan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| |
Collapse
|
14
|
CAR-T cell therapy followed by allogenic hematopoietic stem cell transplantation yielded comparable outcome between Ph like ALL and other high-risk ALL. Biomark Res 2023; 11:19. [PMID: 36793095 PMCID: PMC9930301 DOI: 10.1186/s40364-023-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 02/17/2023] Open
Abstract
It was previously believed that patients with Ph-like ALL had poorer prognosis compared with other B-ALL subgroups due to resistance to conventional chemotherapy and lack of targeted drugs. CAR-T therapy has been successfully applied in the treatment of relapsed and refractory B-ALL. Currently, there are few data on whether CAR-T therapy can alter the outcome of Ph-like ALL. Here we included 17 Ph-like, 23 Ph+ and 51 other B-ALL patients, who received autologous CAR T-cell therapy and subsequently allogenic stem cell transplantation. Patients in the Ph-like group and B-ALL-others group were younger that those in the Ph+ group (P=0.001). Ph-like and Ph+ ALL patients showed higher white blood cell counts at diagnosis (P=0.025). The percentage of patients with active disease before receiving CAR T-cells infusion was 64.7%, 39.1% and 62.7% in the Ph-like, Ph+ and B-ALL-others groups. The response rates to CAR-T therapy were 94.1% (16/17), 95.6% (22/23) and 98.0% (50/51) in the Ph-like, Ph+ and B-ALL-others groups. Measurable residual disease negative CR was achieved in 64.7% (11/17), 60.9% (14/23) and 54.9% (28/51) in the Ph-like, Ph+ and B-ALL-others groups, respectively. The estimated rates of 3-year overall survival (65.9%±16.5%, 59.7%±10.5% and 61.6%±7.3%, P=0.758) and 3-year relapse-free survival (59.8%±14.8%, 63.1%±10.5% and 56.3%±7.1%, P=0.764) were comparable among the Ph-like, Ph+ and B-ALL-others groups. Estimated 3-year cumulative relapse rate was 7.8%±0.6%, 23.4%±0.9% and 29.0%±0.4% (P=0.241). Our findings suggest that CART followed by allo-HSCT results in a comparable prognosis in Ph-like ALL and other high-risk B-ALL.Trial registration ClinicalTrials. gov, NCT03275493, Registered on September 7, 2017, prospectively registered and NCT03614858, Registered on August 3, 2018, prospectively registered.
Collapse
|
15
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
16
|
Genomic and Clinical Analysis of Children with Acute Lymphoblastic Leukemia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7904293. [PMID: 36017149 PMCID: PMC9398850 DOI: 10.1155/2022/7904293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
Abstract
Objective. This study investigated the types and significance of mutant genes in children with acute lymphoblastic leukemia (ALL). Methods. The gene sequencing data of 89 ALL children were retrospectively analyzed. Log-rank test was used to analyze the effect of different numbers of mutant genes on the clinical characteristics of the patients and disease. Results. Known gene mutations were detected in 64% (57/89) of the children, including one gene mutation in 31% and two or more gene mutations in 33% of the patients. Gene sequencing showed that most mutations occurred in KRAS (17%), NRAS (15%), FLT3 (7%), TP53 (7%), and PTPN11 (7%), and functional clustering analysis showed that most were signaling pathway genes (50%). In the overall cohort, no association was found between clinical characteristics and gene mutation. The children were then classified into three groups: group A (no gene mutation), group B (one gene mutation), and group C (two or more gene mutations). Correlation analysis showed that group A had significantly more children with medium risk ALL (
), and group C had markedly more children with high risk ALL (
). Further analysis showed that children with mutant genes took significantly more time to enter the maintenance phase than children without mutations. Conclusion. Children with ALL had a high gene mutation rate, especially in KRAS and NRAS genes, and the mutant genes were mainly signal pathway-related. The gene mutations were significantly correlated with clinical phenotype and the time taken to enter the maintenance phase.
Collapse
|
17
|
Xu GF, Liu LM, Wang M, Zhang ZB, Xie JD, Qiu HY, Chen SN. Treatments of Ph-like acute lymphoblastic leukemia: a real-world retrospective analysis from a single large center in China. Leuk Lymphoma 2022; 63:2652-2662. [DOI: 10.1080/10428194.2022.2090550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Guo-fa Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
- Department of Hematology, Chongqing University FuLing Hospital, Chongqing, P.R. China
| | - Li-min Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Man Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Zhi-bo Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Jun-dan Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Hui-ying Qiu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Su-ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| |
Collapse
|
18
|
Doculara L, Trahair TN, Bayat N, Lock RB. Circulating Tumor DNA in Pediatric Cancer. Front Mol Biosci 2022; 9:885597. [PMID: 35647029 PMCID: PMC9133724 DOI: 10.3389/fmolb.2022.885597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The measurement of circulating tumor DNA (ctDNA) has gained increasing prominence as a minimally invasive tool for the detection of cancer-specific markers in plasma. In adult cancers, ctDNA detection has shown value for disease-monitoring applications including tumor mutation profiling, risk stratification, relapse prediction, and treatment response evaluation. To date, there are ctDNA tests used as companion diagnostics for adult cancers and it is not understood why the same cannot be said about childhood cancer, despite the marked differences between adult and pediatric oncology. In this review, we discuss the current understanding of ctDNA as a disease monitoring biomarker in the context of pediatric malignancies, including the challenges associated with ctDNA detection in liquid biopsies. The data and conclusions from pediatric cancer studies of ctDNA are summarized, highlighting treatment response, disease monitoring and the detection of subclonal disease as applications of ctDNA. While the data from retrospective studies highlight the potential of ctDNA, large clinical trials are required for ctDNA analysis for routine clinical use in pediatric cancers. We outline the requirements for the standardization of ctDNA detection in pediatric cancers, including sample handling and reproducibility of results. With better understanding of the advantages and limitations of ctDNA and improved detection methods, ctDNA analysis may become the standard of care for patient monitoring in childhood cancers.
Collapse
Affiliation(s)
- Louise Doculara
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N. Trahair
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Narges Bayat
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Richard B. Lock,
| |
Collapse
|
19
|
Illango J, Sreekantan Nair A, Gor R, Wijeratne Fernando R, Malik M, Siddiqui NA, Hamid P. A Systematic Review of the Role of Runt-Related Transcription Factor 1 (RUNX1) in the Pathogenesis of Hematological Malignancies in Patients With Inherited Bone Marrow Failure Syndromes. Cureus 2022; 14:e25372. [PMID: 35765406 PMCID: PMC9233622 DOI: 10.7759/cureus.25372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Somatic runt-related transcription factor 1 (RUNX1) mutations are the most common mutations in various hematological malignancies, such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Mono-allelic RUNX1 mutations in germline cells may cause familial platelet disorder (FPD), an inherited bone marrow failure syndrome (IBMFS) associated with an increased lifetime risk of AML. It is suspected that additional RUNX1 mutations may play a role in the pathogenesis of hematological malignancies in IBMFS. This review aims to study the role of RUNX1 mutations in the pathogenesis of hematological malignancies in patients with IBMFS. A PubMed database search was conducted using the following medical subject heading (MeSH) terms: "inherited bone marrow failure syndromes," "hematological neoplasms," "gene expression regulation, leukemic," "RUNX1 protein, human," "RUNX1 protein, mouse," and "Neutropenia, Severe Congenital, Autosomal recessive." Three studies published in 2020 were identified as meeting our inclusion and exclusion criteria. Leukemic progression in severe congenital neutropenia was used as a disease model to evaluate the clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Studies in mice and genetically reprogrammed or induced pluripotent stem cells (iPSCs) have shown that isolated RUNX1 mutations are weakly leukemogenic and only initiate hyperproduction of immature hematopoietic cells when in combination with granulocyte colony-stimulating factor 3 receptor (GCSF3R) mutations. Despite this, whole-exome sequencing (WES) performed on leukemogenic transformed cells revealed that all AML cells had an additional mutation in the CXXC finger protein 4 (CXXC4) gene that caused hyperproduction of the ten-eleven translocation (TET2) protein. This protein causes inflammation in cells with RUNX1 mutations. This process is thought to be critical for clonal myeloid malignant transformation (CMMT) of leukemogenic cells. In conclusion, the combinations of GCSF3R and RUNX1 mutations have a prominent effect on myeloid differentiation resulting in the hyperproduction of myeloblasts. In other studies, it has been noted that the mutations in GCSF3R and RUNX1 genes are not sufficient for the full transformation of leukemogenic cells to AML, and an additional clonal mutation in the CXXC4 gene is essential for full transformation to occur. These data have implicitly demonstrated that RUNX1 mutations are critical in the pathogenesis of various hematological malignancies, and further investigations into the role of RUNX1 are paramount for the development of new cancer treatments.
Collapse
Affiliation(s)
- Janan Illango
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Archana Sreekantan Nair
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rajvi Gor
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Mushrin Malik
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nabeel A Siddiqui
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
20
|
Elucidating minimal residual disease of paediatric B-cell acute lymphoblastic leukaemia by single-cell analysis. Nat Cell Biol 2022; 24:242-252. [PMID: 35145224 DOI: 10.1038/s41556-021-00814-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022]
Abstract
Minimal residual disease that persists after chemotherapy is the most valuable prognostic marker for haematological malignancies and solid cancers. Unfortunately, our understanding of the resistance elicited in minimal residual disease is limited due to the rarity and heterogeneity of the residual cells. Here we generated 161,986 single-cell transcriptomes to analyse the dynamic changes of B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis, residual and relapse by combining single-cell RNA sequencing and B-cell-receptor sequencing. In contrast to those at diagnosis, the leukaemic cells at relapse tended to shift to poorly differentiated states, whereas the changes in the residual cells were more complicated. Differential analyses highlighted the activation of the hypoxia pathway in residual cells, resistant clones and B-ALL with MLL rearrangement. Both in vitro and in vivo models demonstrated that inhibition of the hypoxia pathway sensitized leukaemic cells to chemotherapy. This single-cell analysis of minimal residual disease opens up an avenue for the identification of potent treatment opportunities for B-ALL.
Collapse
|
21
|
Shomali W, Gotlib J. World Health Organization-defined eosinophilic disorders: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:129-148. [PMID: 34533850 DOI: 10.1002/ajh.26352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary or clonal) disorders with potential for end-organ damage. DIAGNOSIS Hypereosinophilia (HE) has generally been defined as a peripheral blood eosinophil count greater than 1.5 × 109 /L. After exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on morphologic review of the blood and marrow, standard cytogenetics, fluorescence in situ hybridization, next generation sequencing gene assays, and flow immunophenotyping to detect histopathologic or clonal evidence for an acute or chronic hematolymphoid neoplasm. RISK STRATIFICATION Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2016 World Health Organization endorses a semi-molecular classification scheme of disease subtypes. This includes the major category "myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2", and the myeloproliferative neoplasm subtype, "chronic eosinophilic leukemia, not otherwise specified" (CEL, NOS). Lymphocyte-variant HE is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. RISK-ADAPTED THERAPY The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (eg, < 1.5 × 109 /L) without symptoms or signs of organ involvement, a watch and wait approach with close follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Corticosteroids are first-line therapy for patients with lymphocyte-variant HE and HES. Hydroxyurea and interferon-α have demonstrated efficacy as initial treatment and in steroid-refractory cases of HES. Mepolizumab, an interleukin-5 (IL-5) antagonist monoclonal antibody, was recently approved by the US Food and Drug Administration for patients with idiopathic HES. The use of the IL-5 receptor antibody benralizumab, as well as other targeted therapies such as JAK2 and FGFR1 inhibitors, is under active investigation.
Collapse
Affiliation(s)
- William Shomali
- Division of Hematology, Stanford Cancer Institute Stanford University School of Medicine Stanford California USA
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute Stanford University School of Medicine Stanford California USA
| |
Collapse
|
22
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Borogovac A, Sahu KK, Vishwanathan GK, Miron PM, Cerny J. A Case of Acute Myeloid Leukemia Harboring a Rare Three-Way Translocation t(5;7;7) Involving the PDGFRB Gene and Successfully Treated with Imatinib. Cancer Manag Res 2021; 13:8841-8847. [PMID: 34858057 PMCID: PMC8629764 DOI: 10.2147/cmar.s324718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Platelet-derived growth factor-beta (PDGFRB) gene maps for the receptor tyrosine kinase PDGRFβ. PDGFRB gene fusions have been implicated in multiple myeloid and lymphoid neoplasms and have shown exquisite sensitivity to tyrosine kinase inhibitors. We report a case of a 29-year-old male who presented with acute myeloid leukemia who was eventually found to harbor a unique three-way translocation t(5;7;7)(q33.2;q32;q11.2) involving the PDGFRB gene. The patient initially achieved a complete response after induction with daunorubicin and cytarabine, but when he returned for consolidation, his white cell count had increased, and he was found to have an underlying myeloproliferative neoplasm. He was given consolidation with high-dose cytarabine and imatinib with excellent response, and ultimately received a matched unrelated donor transplant. The patient remains in remission to this day more than eight years later.
Collapse
Affiliation(s)
- Azra Borogovac
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamal Kant Sahu
- Division of Hematology and Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Patricia Minehart Miron
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Jan Cerny
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| |
Collapse
|
24
|
Fu R, Qin P, Zou X, Hu Z, Hong N, Wang Y, Jin W. A Comprehensive Characterization of Monoallelic Expression During Hematopoiesis and Leukemogenesis via Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:702897. [PMID: 34722498 PMCID: PMC8548578 DOI: 10.3389/fcell.2021.702897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate monoallelic expression (MAE) in various developmental and pathological processes. However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited. In this study, we conducted a systematic interrogation of MAEs in bone marrow mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of BMMCs. We identified 1,020 constitutive MAEs in BMMCs, which included imprinted genes such as MEG8, NAP1L5, and IRAIN. We classified the BMMCs into six cell types and identified 74 cell type specific MAEs including MTSS1, MOB1A, and TCF12. We further identified 114 random MAEs (rMAEs) at single-cell level, with 78.1% single-allele rMAE and 21.9% biallelic mosaic rMAE. Many MAEs identified in BMMCs have not been reported and are potentially hematopoietic specific, supporting MAEs are functional relevance. Comparison of BMMC samples from a leukemia patient with multiple clinical stages showed the fractions of constitutive MAE were correlated with fractions of leukemia cells in BMMCs. Further separation of the BMMCs into leukemia cells and normal cells showed that leukemia cells have much higher constitutive MAE and rMAEs than normal cells. We identified the leukemia cell-specific MAEs and relapsed leukemia cell-specific MAEs, which were enriched in immune-related functions. These results indicate MAE is prevalent and is an important gene regulation mechanism during hematopoiesis and leukemogenesis. As the first systematical interrogation of constitutive MAEs, cell type specific MAEs, and rMAEs during hematopoiesis and leukemogenesis, the study significantly increased our knowledge about the features and functions of MAEs.
Collapse
Affiliation(s)
- Ruiqing Fu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pengfei Qin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ni Hong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yun Wang
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Tran TH, Nguyen JV, Stecula A, Akutagawa J, Moorman AV, Braun BS, Sali A, Mullighan CG, Shah NP, Dai Y, Devidas M, Roberts KG, Smith CC, Loh ML. The EBF1-PDGFRB T681I mutation is highly resistant to imatinib and dasatinib in vitro and detectable in clinical samples prior to treatment. Haematologica 2021; 106:2242-2245. [PMID: 33626861 PMCID: PMC8327742 DOI: 10.3324/haematol.2020.261354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA.
| | - Jonathan V Nguyen
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | - Jon Akutagawa
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne
| | - Benjamin S Braun
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | | | - Neil P Shah
- Division of Hematology-Oncology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Yunfeng Dai
- Department of Biostatistics, College of Medicine and Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Catherine C Smith
- Division of Hematology-Oncology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
26
|
Zhang CF, Wang HM, Wu A, Li Y, Tian XL. FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1884-1894. [PMID: 33471274 DOI: 10.1007/s11427-020-1844-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Angiogenic factor with G-patch and FHA domains 1 (AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechanism of this nucleocytoplasmic transport remains unknown. Here, we demonstrate that the dynamic distribution is essential for AGGF1 to execute its angiogenic function. To search the structural bases for this nucleocytoplasmic transport, we characterized three potential nuclear localization regions, one potential nuclear export region, forkhead-associated (FHA), and G-patch domains to determine their effects on nucleocytoplasmic transport and angiogenesis, and we show that AGGF1 remains intact during the dynamic subcellular distribution and the region from 260 to 288 amino acids acts as a signal for its nuclear localization. The distribution of AGGF1 in cytoplasm needs both FHA domain and 14-3-3α/β. Binding of AGGF1 via FHA domain to 14-3-3α/β is required to complete the transport. Thus, we for the first time established structural bases for the nucleocytoplasmic transport of AGGF1 and revealed that the FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis.
Collapse
Affiliation(s)
- Cui-Fang Zhang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Han-Ming Wang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Li
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
27
|
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2021; 22:E808. [PMID: 33467425 PMCID: PMC7829804 DOI: 10.3390/ijms22020808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a relevant form of childhood neoplasm, as it accounts for over 80% of all leukaemia cases. T-cell ALL constitutes a genetically heterogeneous cancer derived from T-lymphoid progenitors. The diagnosis of T-ALL is based on morphologic, immunophenotypic, cytogenetic, and molecular features, thus the results are used for patient stratification. Due to the expression of surface and intracellular antigens, several subtypes of T-ALL can be distinguished. Although the aetiology of T-ALL remains unclear, a wide spectrum of rearrangements and mutations affecting crucial signalling pathways has been described so far. Due to intensive chemotherapy regimens and supportive care, overall cure rates of more than 80% in paediatric T-ALL patients have been accomplished. However, improved knowledge of the mechanisms of relapse, drug resistance, and determination of risk factors are crucial for patients in the high-risk group. Even though some residual disease studies have allowed the optimization of therapy, the identification of novel diagnostic and prognostic markers is required to individualize therapy. The following review summarizes our current knowledge about genetic abnormalities in paediatric patients with T-ALL. As molecular biology techniques provide insights into the biology of cancer, our study focuses on new potential therapeutic targets and predictive factors which may improve the outcome of young patients with T-ALL.
Collapse
Affiliation(s)
- Anna Mroczek
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
28
|
Qin P, Pang Y, Hou W, Fu R, Zhang Y, Wang X, Meng G, Liu Q, Zhu X, Hong N, Cheng T, Jin W. Integrated decoding hematopoiesis and leukemogenesis using single-cell sequencing and its medical implication. Cell Discov 2021; 7:2. [PMID: 33408321 PMCID: PMC7788081 DOI: 10.1038/s41421-020-00223-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA sequencing provides exciting opportunities to unbiasedly study hematopoiesis. However, our understanding of leukemogenesis was limited due to the high individual differences. Integrated analyses of hematopoiesis and leukemogenesis potentially provides new insights. Here we analyzed ~200,000 single-cell transcriptomes of bone marrow mononuclear cells (BMMCs) and its subsets from 23 clinical samples. We constructed a comprehensive cell atlas as hematopoietic reference. We developed counterpart composite index (CCI; available at GitHub: https://github.com/pengfeeei/cci) to search for the healthy counterpart of each leukemia cell subpopulation, by integrating multiple statistics to map leukemia cells onto reference hematopoietic cells. Interestingly, we found leukemia cell subpopulations from each patient had different healthy counterparts. Analysis showed the trajectories of leukemia cell subpopulations were similar to that of their healthy counterparts, indicating that developmental termination of leukemia initiating cells at different phases leads to different leukemia cell subpopulations thus explained the origin of leukemia heterogeneity. CCI further predicts leukemia subtypes, cellular heterogeneity, and cellular stemness of each leukemia patient. Analyses of leukemia patient at diagnosis, refractory, remission and relapse vividly presented dynamics of cell population during leukemia treatment. CCI analyses showed the healthy counterparts of relapsed leukemia cells were closer to the root of hematopoietic tree than that of other leukemia cells, although single-cell transcriptomic genetic variants and haplotype tracing analyses showed the relapsed leukemia cell were derived from an early minor leukemia cell population. In summary, this study developed a unified framework for understanding leukemogenesis with hematopoiesis reference, which provided novel biological and medical implication.
Collapse
Affiliation(s)
- Pengfei Qin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenhong Hou
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ruiqing Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pediatric Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xuefei Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guofeng Meng
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pediatric Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ni Hong
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Heatley SL, Asari K, Schutz CE, Leclercq TM, McClure BJ, Eadie LN, Hughes TP, Yeung DT, White DL. In-vitro modeling of TKI resistance in the high-risk B-cell acute lymphoblastic leukemia fusion gene RANBP2-ABL1 - implications for targeted therapy. Leuk Lymphoma 2021; 62:1157-1166. [PMID: 33390067 DOI: 10.1080/10428194.2020.1861275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acute lymphoblastic leukemia remains a leading cause of cancer-related death in children. Furthermore, subtypes such as Ph-like ALL remain at high-risk of relapse, and treatment resistance remains a significant clinical issue. The patient-derived Ph-like ALL RANBP2-ABL1 fusion gene was transduced into Ba/F3 cells and allowed to become resistant to the tyrosine kinase inhibitors (TKIs) imatinib or dasatinib, followed by secondary resistance to ponatinib. RANBP2-ABL1 Ba/F3 cells developed the clinically relevant ABL1 p.T315I mutation and upon secondary resistance to ponatinib, developed compound mutations, including a novel ABL1 p.L302H mutation. Significantly, compound mutations were targetable with a combination of asciminib and ponatinib. In-vitro modeling of Ph-like ALL RANBP2-ABL1 has identified kinase domain mutations in response to TKI treatment, that may have important clinical ramifications. Early detection of mutations is paramount to guide treatment strategies and improve survival in this high-risk group of patients.
Collapse
Affiliation(s)
- Susan L Heatley
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.,Australian and New Zealand Children's Oncology/Haematology Group (ANZCHOG), Melbourne, Australia
| | - Kartini Asari
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Caitlin E Schutz
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Tamara M Leclercq
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Timothy P Hughes
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.,Australian and New Zealand Children's Oncology/Haematology Group (ANZCHOG), Melbourne, Australia.,Australian Genomics Health Alliance, Melbourne, Australia.,Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Oya S, Morishige S, Ozawa H, Sasaki K, Semba Y, Yamasaki Y, Nakamura T, Aoyama K, Seki R, Mouri F, Osaki K, Miyamoto T, Maeda T, Nagafuji K. Beneficial tyrosine kinase inhibitor therapy in a patient with relapsed BCR-ABL1-like acute lymphoblastic leukemia with CCDC88C-PDGFRB fusion. Int J Hematol 2020; 113:285-289. [PMID: 32951102 DOI: 10.1007/s12185-020-03006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a neoplasm of lymphoblasts committed to the B-cell lineage that lack the BCR-ABL1 translocation but show a pattern of gene expression very similar to that seen in ALL with BCR-ABL1 with poor prognosis. A 22-year-old female was diagnosed with common-B-cell-ALL positive for CD10, CD19, CD22, CD79a, CD34, HLA-DR, and TdT in January 2017, and achieved complete remission (CR) with induction therapy, followed by consolidation therapy and maintenance therapy. In March 2020, 6 months after the completion of maintenance therapy, she relapsed. Inotuzumab ozogamicin (IO) was administered, and on day 28, bone marrow evaluation showed a morphologic CR. She had an HLA-identical sibling, and transplantation in her 2nd CR was planned. Because her ALL had been identified as BCR-ABL1-like ALL with CCDC88C-PDGFRB fusion, she was treated with imatinib for 2 months accompanied by 2 intrathecal methotrexate therapies, and 1 course of L-asparaginase, vincristine, and prednisolone in an outpatient setting. MRD analysis revealed potent efficacy of 2 months imatinib therapy; IgH MRD decreased from 1 × 10-2 to 1 × 10-3, and CCDC88C-PDGFRB/104ABL from 37.3 to 0. It is earnestly desired that well-designed clinical trials of TKI in ABL class-mutant BCR-ABL1-like ALL be conducted in Japan.
Collapse
Affiliation(s)
- Shuki Oya
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Satoshi Morishige
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hidetoshi Ozawa
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yoshitaka Yamasaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kazutoshi Aoyama
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Ritsuko Seki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Fumihiko Mouri
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Koichi Osaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
31
|
Gerds AT, Gotlib J, Bose P, Deininger MW, Dunbar A, Elshoury A, George TI, Gojo I, Gundabolu K, Hexner E, Hobbs G, Jain T, Jamieson C, Kuykendall AT, McMahon B, Mohan SR, Oehler V, Oh S, Pardanani A, Podoltsev N, Ranheim E, Rein L, Salit R, Snyder DS, Stein BL, Talpaz M, Thota S, Vachhani P, Wadleigh M, Walsh K, Ward DC, Bergman MA, Sundar H. Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1248-1269. [PMID: 32886902 DOI: 10.6004/jnccn.2020.0042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophilic disorders and related syndromes represent a heterogeneous group of neoplastic and nonneoplastic conditions, characterized by more eosinophils in the peripheral blood, and may involve eosinophil-induced organ damage. In the WHO classification of myeloid and lymphoid neoplasms, eosinophilic disorders characterized by dysregulated tyrosine kinase (TK) fusion genes are recognized as a new category termed, myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1 or with PCM1-JAK2. In addition to these aforementioned TK fusion genes, rearrangements involving FLT3 and ABL1 genes have also been described. These new NCCN Guidelines include recommendations for the diagnosis, staging, and treatment of any one of the myeloid/lymphoid neoplasms with eosinophilia (MLN-Eo) and a TK fusion gene included in the 2017 WHO Classification, as well as MLN-Eo and a FLT3 or ABL1 rearrangement.
Collapse
Affiliation(s)
- Aaron T Gerds
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | | | - Ivana Gojo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | - Vivian Oehler
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Stephen Oh
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | - Rachel Salit
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | - Katherine Walsh
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Dawn C Ward
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|
32
|
Li Y, Wang JS, Zhang T, Wang HC, Li LP. Identification of New Therapeutic Targets for Gastric Cancer With Bioinformatics. Front Genet 2020; 11:865. [PMID: 33014013 PMCID: PMC7461879 DOI: 10.3389/fgene.2020.00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
We aimed to identify new targets affecting gastric cancer (GC) prognosis. Six target genes were identified from hub genes based on their relationship with important factors affecting tumor progression, like immune infiltration, purity, tumor mutation burden (TMB), and tumor microenvironment (TME) score. The effect of target genes' somatic mutations and copy number alteration (CNA) was examined to determine their effect on GC prognosis. Six target genes (FBN1, FN1, HGF, MMP9, THBS1, and VCAN) were identified. Reduced expression of each target gene, except MMP9, indicated better prognosis and lower grade in GC. FBN1, THBS1, and VCAN showed lower expression in stage I GC. Non-silencing mutations of the six genes played a role in significantly higher TMB and TME scores. THBS1 mutation was associated with earlier stage GC, and VCAN mutation was associated with lower grade GC. However, patients with target gene CNA displayed higher tumor purity. MMP9, THBS1, and VCAN CNA was associated with lower grade GC, while FBN1 CNA reflected earlier T stage. Additionally, the target genes may affect GC prognosis by influencing multiple oncogenic signaling pathways. FBN1, FN1, HGF, MMP9, THBS1, and VCAN may be new GC prognostic targets by affecting tumor purity, TMB, TME score, and multiple oncogenic signaling pathways.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Shen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Hong-Chang Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Le-Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
33
|
Fang H, Tang G, Loghavi S, Greipp P, Wang W, Verstovsek S, Medeiros LJ, Reichard KK, Miranda RN, Wang SA. Systematic use of fluorescence in-situ hybridisation and clinicopathological features in the screening of PDGFRB rearrangements of patients with myeloid/lymphoid neoplasms. Histopathology 2020; 76:1042-1054. [PMID: 32083752 DOI: 10.1111/his.14097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
AIMS Rearrangement of the platelet-derived growth factor receptor B (PDGFRB) gene defines a unique group of myeloid/lymphoid neoplasms with frequent eosinophilia and high sensitivity to tyrosine kinase inhibitors. This genetic abnormality is also rarely reported in Philadelphia-like B-cell acute lymphoblastic leukaemia/lymphoma (B-ALL). PDGFRB rearrangement was initially thought to only occur in cases with 5q31-33 rearrangement as determined with conventional cytogenetics; however, there are reported cases with cryptic rearrangements. We aim to develop a broader strategy for screening of PDGFRB rearrangements of patients with myeloid/lymphoid neoplasms. METHODS AND RESULTS We performed fluorescence in-situ hybridisation (FISH) for PDGFRB rearrangement in 197 patients, including 70 with B-ALL, 10 with myeloid neoplasms with 5q31-33 rearrangements, and 117 with eosinophilia (≥0.5 × 109 /l in peripheral blood or ≥5% in bone marrow), and identified PDGFRB rearrangement in four of 197 (2.0%) cases. In an attempt to identify clinicopathological and genetic features that may have a stronger association with PDGFRB rearrangement, we analysed 13 patients with confirmed PDGFRB rearrangements, including 10 with myeloid neoplasms and three with B-ALL. Among the 10 patients with myeloid neoplasms, eosinophilia was present in eight, monocytosis in two, 5q31-33 rearrangement in seven, and abnormal bone marrow morphology in all. All patients with myeloid neoplasms showed an excellent response to imatinib, including a patient in blast crisis. The three B-ALL patients presented de novo, showed no eosinophilia, had a complex karyotype including 5q31-33 rearrangement, and had clinically aggressive courses with ultimate patient demise. CONCLUSIONS These findings suggest that a higher yield for the identification of PDGFRB rearrangement may result from an index of suspicion in patients with eosinophilia, monocytosis, bone marrow features of a myeloid neoplasm, and 5q31-33 rearrangement, and patients with Philadelphia-like B-ALL.
Collapse
Affiliation(s)
- Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Greipp
- Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Arroyo MM, Berral-González A, Bueno-Fortes S, Alonso-López D, De Las Rivas J. Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations. Biomolecules 2020; 10:biom10050667. [PMID: 32344870 PMCID: PMC7277587 DOI: 10.3390/biom10050667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer is a complex disease affecting millions of people worldwide, with over a hundred clinically approved drugs available. In order to improve therapy, treatment, and response, it is essential to draw better maps of the targets of cancer drugs and possible side interactors. This study presents a large-scale screening method to find associations of cancer drugs with human genes. The analysis is focused on the current collection of Food and Drug Administration (FDA)-approved drugs (which includes about one hundred chemicals). The approach integrates global gene-expression transcriptomic profiles with drug-activity profiles of a set of 60 human cell lines obtained for a collection of chemical compounds (small bioactive molecules). Using a standardized expression for each gene versus standardized activity for each drug, Pearson and Spearman correlations were calculated for all possible pairwise gene-drug combinations. These correlations were used to build a global bipartite network that includes 1007 gene-drug significant associations. The data are integrated into an open web-tool called GEDA (Gene Expression and Drug Activity) which includes a relational view of cancer drugs and genes, disclosing the putative indirect interactions found for FDA-approved drugs as well as the known targets of these drugs. The results also provide insight into the complex action of pharmaceuticals, presenting an alternative view to address predicted pleiotropic effects of the drugs.
Collapse
Affiliation(s)
- Monica M. Arroyo
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (A.B.-G.); (S.B.-F.); (D.A.-L.)
- Department of Chemistry, Pontifical Catholic University of Puerto Rico (PCUPR), 00717 Ponce, Puerto Rico
- Correspondence: (M.M.A.); (J.D.L.R.); Tel.: +34-923-294819 (J.D.L.R.)
| | - Alberto Berral-González
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (A.B.-G.); (S.B.-F.); (D.A.-L.)
| | - Santiago Bueno-Fortes
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (A.B.-G.); (S.B.-F.); (D.A.-L.)
| | - Diego Alonso-López
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (A.B.-G.); (S.B.-F.); (D.A.-L.)
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (A.B.-G.); (S.B.-F.); (D.A.-L.)
- Correspondence: (M.M.A.); (J.D.L.R.); Tel.: +34-923-294819 (J.D.L.R.)
| |
Collapse
|
35
|
Alves J, Dexheimer GM, Reckzigel L, Goettert M, Biolchi V, Abujamra AL. Changes in IDH2, TET2 and KDM2B Gene Expression After Treatment With Classic Chemotherapeutic Agents and Decitabine in Myelogenous Leukemia Cell Lines. J Hematol 2020; 8:89-101. [PMID: 32300452 PMCID: PMC7153660 DOI: 10.14740/jh531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 11/11/2022] Open
Abstract
Background Hematological malignancies are a heterogeneous group of tumors with increased proliferative and auto-replicative capacity. Despite treatment advances, post-treatment quality of life remains highly affected. Studies addressing the molecular mechanisms of these diseases are critical for the development of effective, rapid and selective therapies, since few therapeutic strategies succeed in being effective without triggering high-grade toxicities or debilitating late effects. Our aim of this study was to verify changes in the expression of genes involved in the malignant phenotype of hematological malignancies, by treating human cell lines in vitro with classic chemotherapeutic agents and the demethylating agent, decitabine. Methods KASUMI-1 and K-562 human myeloid leukemia cell lines were plated at a density of 3 × 104 cells/well and treated with increasing concentrations of different chemotherapeutic agents commonly used in the clinical setting. After 24 and 48 h of treatment, cell viability was tested, and RNA was extracted. Complementary DNA (cDNA) was synthesized and quantitative real-time polymerase chain reaction (qPCR) was performed to evaluate the gene expression of IDH2, TET2 and KDM2B. Results A modulation in gene expression was observed before and after treatment with classic chemotherapeutic agents. It was possible to demonstrate a difference in gene expression when cells were treated with chemotherapeutic agents or decitabine alone when compared to chemotherapeutic agents in association with decitabine. Conclusions The genes tested, and the modulation of their expression during in vitro treatments suggest that IDH2, TET2, and KDM2B should be further investigated as potential biomarkers for ongoing treatment response and follow-up for patients diagnosed with hematological malignancies of the myeloid lineage.
Collapse
Affiliation(s)
- Jayse Alves
- Graduate Program in Biotechnology, Univates, Lajeado, R.S., 95914-014, Brazil
| | | | - Laura Reckzigel
- Biological and Health Sciences Center, Univates, Lajeado, R.S., 95914-014, Brazil
| | - Marcia Goettert
- Graduate Program in Biotechnology, Univates, Lajeado, R.S., 95914-014, Brazil
| | - Vanderlei Biolchi
- Biological and Health Sciences Center, Univates, Lajeado, R.S., 95914-014, Brazil
| | - Ana Lucia Abujamra
- Graduate Program in Biotechnology, Univates, Lajeado, R.S., 95914-014, Brazil
| |
Collapse
|
36
|
|
37
|
Gruner SE, Sayeed H, Suarez-Ferguson L, Perez C, Rouce R, Fisher KE, Rau RE. Ponatinib use in two pediatric patients with relapsed Ph + ALL with ABL1 kinase domain mutations. Pediatr Hematol Oncol 2019; 36:514-519. [PMID: 31510844 DOI: 10.1080/08880018.2019.1656685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Stephanie E Gruner
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hadi Sayeed
- Department of Pathology & Immunology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lizmery Suarez-Ferguson
- Department of Pathology & Immunology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Cintia Perez
- Department of Pathology & Immunology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rayne Rouce
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Kevin E Fisher
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology & Immunology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rachel E Rau
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
|
39
|
Frisch A, Ofran Y. How I diagnose and manage Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica 2019; 104:2135-2143. [PMID: 31582548 PMCID: PMC6821607 DOI: 10.3324/haematol.2018.207506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 01/31/2023] Open
Abstract
Advances in our understanding of mechanisms of leukemogenesis and driver mutations in acute lymphoblastic leukemia (ALL) lead to a more precise and informative sub-classification, mainly of B-cell ALL. In parallel, in recent years, novel agents have been approved for the therapy of B-cell ALL, and many others are in active clinical research. Among the newly recognized disease subtypes, Philadelphia-chromosome-like ALL is the most heterogeneous and thus, diagnostically challenging. Given that this subtype of B-cell ALL is associated with a poorer prognosis, improvement of available therapeutic approaches and protocols is a burning issue. Herein, we summarize, in a clinically relevant manner, up-to-date information regarding diagnostic strategies developed for the identification of patients with Philadelphia-chromosome-like ALL. Common therapeutic dilemmas, presented as several case scenarios, are also discussed. It is currently acceptable that patients with B-cell ALL, treated with an aim of cure, irrespective of their age, be evaluated for a Philadelphia-chromosome-like signature as early as possible. Following Philadelphia-chromosome-like recognition, a higher risk of resistance or relapse must be realized and treatment should be modified based on the patient’s specific genetic driver and clinical features. However, while active targeted therapeutic options are limited, there is much more to do than just prescribe a matched inhibitor to the identified mutated driver genes. In this review, we present a comprehensive evidence-based approach to the diagnosis and management of Philadelphia-chromosome-like ALL at different time-points during the disease course.
Collapse
Affiliation(s)
- Avraham Frisch
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa .,Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Shomali W, Gotlib J. World Health Organization-defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol 2019; 94:1149-1167. [PMID: 31423623 DOI: 10.1002/ajh.25617] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
DISEASE OVERVIEW The eosinophilias encompass a broad range of non-hematologic (secondary or reactive) and hematologic (primary, clonal) disorders with potential for end-organ damage. DIAGNOSIS Hypereosinophilia has generally been defined as a peripheral blood eosinophil count greater than 1.5 × 109 /L, and may be associated with tissue damage. After exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on a combination of various tests. They include morphologic review of the blood and marrow, standard cytogenetics, fluorescence in situ-hybridization, flow immunophenotyping, and T-cell clonality assessment to detect histopathologic or clonal evidence for an acute or chronic hematolymphoid neoplasm. RISK STRATIFICATION Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2016 World Health Organization endorses a semi-molecular classification scheme of disease subtypes. This includes the major category "myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2", and the MPN subtype, "chronic eosinophilic leukemia, not otherwise specified" (CEL, NOS). Lymphocyte-variant hypereosinophilia is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. RISK-ADAPTED THERAPY The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (eg, <1.5 × 109 /L) without symptoms or signs of organ involvement, a watch and wait approach with close-follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Corticosteroids are first-line therapy for patients with lymphocyte-variant hypereosinophilia and HES. Hydroxyurea and interferon-alfa have demonstrated efficacy as initial treatment and in steroid-refractory cases of HES. In addition to hydroxyurea, second line cytotoxic chemotherapy agents, and hematopoietic stem cell transplantation have been used for aggressive forms of HES and CEL, with outcomes reported for limited numbers of patients. The use of antibodies against interleukin-5 (IL-5) (mepolizumab), the IL-5 receptor (benralizumab), as well as other targets on eosinophils remains an active area of investigation.
Collapse
Affiliation(s)
- William Shomali
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California
| |
Collapse
|
41
|
Opportunities and challenges of personalized therapy of patients with HR ALL. Hemasphere 2019; 3:HEMASPHERE-2019-0052. [PMID: 35309807 PMCID: PMC8925720 DOI: 10.1097/hs9.0000000000000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022] Open
|
42
|
Yao HH, Zhao YJ, He YF, Huang DB, Wang W. Knockdown of AGGF1 inhibits the invasion and migration of gastric cancer via epithelial-mesenchymal transition through Wnt/β-catenin pathway. Cancer Cell Int 2019; 19:41. [PMID: 30858758 PMCID: PMC6391764 DOI: 10.1186/s12935-019-0765-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background Angiogenic factor with G-patch and FHA domain 1 (AGGF1), as a newly identified human angiogenic factor, is overexpressed in some types of malignant tumors and closely associated with patient’s prognosis. However, the mechanisms involved in the regulation of AGGF1 in gastric cancer (GC) still remain unclear. Methods In this study, AGGF1 level in GC tissues and cell lines was analyzed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). After knockdown of AGGF expression by RNA interference in GC cell lines MKN-45 and MGC-803, wound healing and transwell assays were conducted to examine the effects of AGGF1 on migration and invasion. Tumor growth was assessed in a mouse xenograft model in vivo. Furthermore, expression levels of epithelial–mesenchymal transition (EMT) biomarkers and involvement of the Wnt/β-catenin pathway were detected by western blot and qRT-PCR. Results Compared to those in normal groups, the protein and mRNA of AGGF1 expression levels were significantly higher both in GC tissues and cell lines (all P < 0.05). Knockdown of AGGF1 dramatically inhibited the invasion and migration of MKN-45 and MGC-803 cells (all P < 0.01) in vitro, and suppressed the tumor growth of nude mice xenograft model in vivo. Western blot revealed alterations in EMT biomarkers, suggesting the role of AGGF1 in EMT. Moreover, we found that downregulated expression of AGGF1 attenuated Wnt/β-catenin related protein expression. Conclusions Collectively, knockdown of AGGF1 inhibits the invasion and migration of gastric cancer via epithelial–mesenchymal transition through Wnt/β-catenin pathway. Electronic supplementary material The online version of this article (10.1186/s12935-019-0765-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han-Hui Yao
- 1Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001 P.R. China
| | - Ya-Jun Zhao
- 1Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001 P.R. China
| | - Yi-Fu He
- 2Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei, Anhui, 230001 P.R. China
| | - Da-Bing Huang
- 2Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei, Anhui, 230001 P.R. China
| | - Wei Wang
- 2Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei, Anhui, 230001 P.R. China
| |
Collapse
|
43
|
Wang G, Shi B, Fu Y, Zhao S, Qu K, Guo Q, Li K, She J. Hypomethylated gene NRP1 is co-expressed with PDGFRB and associated with poor overall survival in gastric cancer patients. Biomed Pharmacother 2019; 111:1334-1341. [PMID: 30841447 DOI: 10.1016/j.biopha.2019.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) has been an increasingly serious problem in public health. However, there is still a lack of efficient approach to diagnosis and treatment in time, especially in the field of targeted therapy. Increasing evidences demonstrated that DNA methylation plays an essential role in tumorigenesis and progression of GC. Thus the present study aims to identify DNA methylation-based prognostic biomarkers in GC. Two methylation array datasets (GSE25869 and GSE30601) and RNA-seq based gene profiling dataset (TCGA-STAD) were employed for exploring candidate DNA methylation-based biomarkers. Univariate Cox regression analysis was used to select the most efficient prognostic genes in GC patients. Weighted gene correlation network analysis (WGCNA) was performed to screen the cluster of co-expressed genes. As a result, our data proved that NRP1 was a hypomethylated / upregulated gene in GC tissues, and PDGFRB was strongly co-expressed with it. Both of them were significantly associated with the overall survival of patients. More importantly, high expression levels of NRP1 and PDGFRB were associated with malignant phenotypes in GC patients, including Laurén histological diffuse type and higher histological grade. Patients carrying high expression level of NRP1 and PDGFRB had a nearly two-fold increased death risk than others. In summary, the hypomethylated gene, NRP1, and its co-expressed gene, PDGFRB, were significantly correlated with tumor malignant phenotypes, which might serve as potential prognostic biomarkers for GC patients.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bin Shi
- Department of Gastroenterology Surgery, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shasha Zhao
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qingbo Guo
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China.
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
44
|
Design, synthesis, and biological evaluation of radioiodinated benzo[d]imidazole-quinoline derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg Med Chem 2019; 27:383-393. [DOI: 10.1016/j.bmc.2018.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
|
45
|
Starý J, Zuna J, Zaliova M. New biological and genetic classification and therapeutically relevant categories in childhood B-cell precursor acute lymphoblastic leukemia. F1000Res 2018; 7. [PMID: 30345005 PMCID: PMC6173109 DOI: 10.12688/f1000research.16074.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Traditionally, genetic abnormalities detected by conventional karyotyping, fluorescence in situ hybridization, and polymerase chain reaction divided childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into well-established genetic subtypes. This genetic classification has been prognostically relevant and thus used for the risk stratification of therapy. Recently, the introduction of genome-wide approaches, including massive parallel sequencing methods (whole-genome, -exome, and -transcriptome sequencing), enabled extensive genomic studies which, together with gene expression profiling, largely expanded our understanding of leukemia pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been described. Exact identification of recurrent genetic alterations and their combinations facilitates more precise risk stratification of patients. Discovery of targetable lesions in subsets of patients enables the introduction of new treatment modalities into clinical practice and stimulates the transfer of modern methods from research laboratories to routine practice.
Collapse
Affiliation(s)
- Jan Starý
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| |
Collapse
|
46
|
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL), or BCR-ABL1-like ALL, is a high-risk subtype of B-cell precursor ALL characterized by a gene expression profile similar to Ph-positive ALL, a high frequency of IKZF1 alterations, and poor outcome. The prevalence of Ph-like ALL is common among all ages, ranging from 10% to 15% in children to over 25% in young adults. Patients with Ph-like ALL harbor a diverse range of genetic alterations that activate cytokine receptor and kinase signaling and can be targeted with tyrosine kinase inhibitors. The majority of Ph-like ALL alterations are divided into two main groups based on activation of ABL-class or JAK-STAT alterations. Accordingly, preclinical studies and anecdotal reports suggest patients harboring ABL-class fusions are candidates for ABL1-inhibitors, whilst alterations activating the JAK-STAT pathway may be amenable to treatment with JAK inhibitors. Diagnostic screening approaches and precision medicine trials are now being developed and implemented to test the efficacy of targeted therapy with a backbone of chemotherapy, similar to the treatment of Ph-positive ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS342, Memphis, TN, 38105, USA.
| |
Collapse
|
47
|
Khan M, Siddiqi R, Tran TH. Philadelphia chromosome-like acute lymphoblastic leukemia: A review of the genetic basis, clinical features, and therapeutic options. Semin Hematol 2018; 55:235-241. [PMID: 30502852 DOI: 10.1053/j.seminhematol.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/12/2018] [Accepted: 05/06/2018] [Indexed: 12/21/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a recently identified high-risk subtype of B-lineage ALL (B-ALL), characterized by a gene expression profile similar to that of Philadelphia-positive (Ph+) ALL, but without the hallmark BCR-ABL1 oncoprotein. Ph-like ALL represents approximately 15% of childhood ALL and its frequency rises with age, peaking among adolescents, and young adults with B-ALL. This subtype is associated with adverse clinical features, persistence of minimal residual disease, and a poor prognosis despite modern chemotherapy regimens. While Ph-like ALL lacks the BCR-ABL1 fusion, it is characterized by a diverse spectrum of kinase fusions and cytokine receptor gene rearrangements that may be similarly amenable to molecularly targeted therapies. While survival rates for childhood ALL have drastically improved with intensive conventional chemotherapy, Ph-like ALL represents a novel paradigm of precision medicine in ALL. This review aims to provide a comprehensive review of the clinical picture and genetic basis of Ph-like ALL and to illustrate how these findings can translate into tailored targeted therapies with the hopes of improving the outcomes of Ph-like ALL patients.
Collapse
Affiliation(s)
- Maliha Khan
- Division of Hematology, Leukemia Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rabbia Siddiqi
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
|