1
|
Pan Y, Chen L, Jiang Q, Chen D, Wu Y, Hou L, Lang H, Yan J. Research trends in essential thrombocythemia from 2001 to 2024: a bibliometric analysis. Discov Oncol 2025; 16:528. [PMID: 40232559 PMCID: PMC11999923 DOI: 10.1007/s12672-025-02232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE This study aims to conduct a comprehensive bibliometric analysis of ET research, focusing on contributions from authors, institutions, and countries or regions, while mapping collaboration networks. Furthermore, it identifies development trends to provide insights for future research. METHODS A bibliometric analysis of ET-related publications (2001-2024) was conducted using data from the Web of Science Core Collection, focusing on publication trends, co-authorship networks, co-citation relationships, and citation bursts. RESULTS A total of 4,297 studies published in 778 journals were included in the analysis. ET research has grown rapidly, with major contributions from researchers in the United States and Europe, particularly through extensive collaborations. Leading figures such as Ayalew Tefferi and Alessandro M. Vannucchi have driven advances in ET classification, molecular mechanisms, and targeted therapies. The discovery of driver mutations, such as JAK2, has revolutionized the diagnostic and therapeutic approaches to ET. Research focus has shifted from clinical morphological diagnosis to molecular diagnostics, with the field now entering the era of targeted therapies. However, the heterogeneity of ET, the limitations of targeted therapies, particularly the lack of management experience and data for high-risk and special populations, as well as the incomplete understanding of the role of inflammation in the disease mechanism, continue to hinder both clinical and scientific progress in ET research. CONCLUSIONS Bibliometric analysis demonstrates significant advances in ET research, particularly in molecular pathology and targeted therapies. Future research should address ET heterogeneity, optimize management of high-risk and special populations, overcome the limitations of targeted therapies, and further elucidate the role of inflammation to achieve individualized precision therapy.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Lingyan Chen
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qun Jiang
- Department of Hematology, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejian Chen
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqin Wu
- Department of Hematology, Kunming Hospital of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Li Hou
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Lang
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| | - Jun Yan
- Department of Respiratory Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Thuya WL, Cao Y, Ho PCL, Wong ALA, Wang L, Zhou J, Nicot C, Goh BC. Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00003-6. [PMID: 39893129 DOI: 10.1016/j.cytogfr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.
Collapse
Affiliation(s)
- Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Yang Cao
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Laboratory Medicine, Lequn Brance, The First Hospital of Jilin University, Changchun, Jilin 130031, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Jalan Lagoon, Selangor Darul Ehsan 47500, Malaysia
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, National University Health System, 119074, Singapore
| |
Collapse
|
3
|
Petit C, de Lavallade H, Harrison C. What are the therapeutic options for previously treated myelofibrosis? Expert Rev Hematol 2024:1-12. [PMID: 39494849 DOI: 10.1080/17474086.2024.2423367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION The disruption of the JAK/STAT signaling pathway is a defining feature of myelofibrosis (MF). The introduction of JAK inhibitors (JAKi) has transformed the therapeutic approach to MF, becoming essential to treatment and reshaping the management landscape. While JAKi are now the preferred first-line treatment for most patients, various management options are available for those who do not respond to initial therapy. AREAS COVERED This review focuses on management options for patients with MF, with particular emphasis on therapeutic strategies following the failure of first-line JAKi. It provides a comprehensive overview of the current treatment landscape, including alternative JAKi and other approaches. The review is based on an extensive literature search using available databases (PubMed, Cochrane …) and relevant web resources (clinicaltrials.gov). EXPERT OPINION Ruxolitinib benefits in MF often diminish after 3-4 years, with complications like thrombocytopenia and anemia. Three newer JAKi offer alternatives with similar efficacy and varied side effects. Stem cell transplantation is a curative option for a minority, ideally timed at peak response to JAKi. Research aims to enhance first-line treatments and restore responses in resistant patients. Future therapies may include novel combinations or immunotherapies targeting specific mutations, requiring collaboration between patient, clinical, and pharmaceutical communities.
Collapse
Affiliation(s)
- Cassandre Petit
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Hugues de Lavallade
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Mol Divers 2024; 28:3445-3456. [PMID: 38006563 DOI: 10.1007/s11030-023-10742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 11/27/2023]
Abstract
The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
6
|
Liu H, Zhou Y, Fredimoses M, Niu P, Ge Y, Wu R, Liu T, Li P, Shi Y, Shi Y, Liu K, Dong Z. Targeting leucine-rich PPR motif-containing protein/LRPPRC by 5,7,4'-trimethoxyflavone suppresses esophageal squamous cell carcinoma progression. Int J Biol Macromol 2024; 269:131966. [PMID: 38697422 DOI: 10.1016/j.ijbiomac.2024.131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
JAK2/STAT3/MYC axis is dysregulated in nearly 70 % of human cancers, but targeting this pathway therapeutically remains a big challenge in cancer therapy. In this study, genes associated with JAK2, STAT3, and MYC were analyzed, and potential target genes were selected. Leucine-rich PPR motif-containing protein (LRPPRC) whose function and regulation are not fully understood, emerged as one of top 3 genes in terms of RNA epigenetic modification. Here, we demonstrate LRPPRC may be an independent prognostic indicator besides JAK2, STAT3, and MYC. Mechanistically, LRPPRC impairs N6-methyladenosine (m6A) modification of JAK2, STAT3, and MYC to facilitate nuclear mRNA export and expression. Meanwhile, excess LRPPRC act as a scaffold protein binding to JAK2 and STAT3 to enhance stability of JAK2-STAT3 complex, thereby facilitating JAK2/STAT3/MYC axis activation to promote esophageal squamous cell carcinoma (ESCC) progression. Furthermore, 5,7,4'-trimethoxyflavone was verified to bind to LRPPRC, STAT3, and CDK1, dissociating LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 interaction, leading to impaired tumorigenesis in 4-Nitroquinoline N-oxide induced ESCC mouse models and suppressed tumor growth in ESCC patient derived xenograft mouse models. In summary, this study suggests regulation of m6A modification by LRPPRC, and identifies a novel triplex target compound, suggesting that targeting LRPPRC-mediated JAK2/STAT3/MYC axis may overcome JAK2/STAT3/MYC dependent tumor therapeutic dilemma.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Yubing Zhou
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mangaladoss Fredimoses
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Peijia Niu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunxiao Ge
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rui Wu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tingting Liu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yaqian Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
7
|
Tian Y, Qin S, Zhang F, Luo J, He X, Sun Y, Yang T. Discovery of N-(4-(Aminomethyl)phenyl)-5-methylpyrimidin-2-amine Derivatives as Potent and Selective JAK2 Inhibitors. ACS Med Chem Lett 2023; 14:1113-1121. [PMID: 37583815 PMCID: PMC10424325 DOI: 10.1021/acsmedchemlett.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
The JAK2V617F mutation leads to JAK2 autophosphorylation and activation of downstream pathways, eventually resulting in myeloproliferative neoplasms (MPNs). Selective inhibitors showed advantages in terms of side effects; therefore, there is an urgent need to develop novel selective JAK2 inhibitors for treating MPNs. In this study, we described a series of N-(4-(aminomethyl)phenyl)pyrimidin-2-amine derivatives as selective JAK2 inhibitors. Systematic exploration through opening the tetrahydroisoquinoline based on the previous lead compound 13ac led to the discovery of the optimal compound A8. Compound A8 showed excellent potency on JAK2 kinase, with an IC50 value of 5 nM, and inhibited the phosphorylation of JAK2 and its downstream signaling pathway. Moreover, A8 exhibited 38.6-, 54.6-, and 41.2-fold selectivity for JAK1, JAK3, and TYK2, respectively. Compared to the lead compound, A8 demonstrated much better metabolic stabilities, with a bioavailability of 41.1%. These findings suggest that A8 is a relatively selective JAK2 inhibitor, deserving to be developed for treating MPNs.
Collapse
Affiliation(s)
- Yang Tian
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
- Medical
Research Center. The Third People’s Hospital of Chengdu, The
Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu
Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Songhui Qin
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation
Center of Biotherapy, Chengdu 610041, China
| | - Fang Zhang
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Jing Luo
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Xi He
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Yi Sun
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Tao Yang
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation
Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
8
|
Ali S, Choo S, Hosking L, Smith A, Hughes T. A case of T-cell-Epstein-Barr virus-haemophagocytic lymphohistiocytosis and sustained remission following ruxolitinib therapy. Clin Transl Immunology 2023; 12:e1459. [PMID: 37497193 PMCID: PMC10368518 DOI: 10.1002/cti2.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
Objectives Epstein-Barr virus (EBV) is a common cause of secondary haemophagocytic lymphohistiocytosis (HLH). While B cells are reservoirs for EBV, infection within T cells and NK cells in this disease can be difficult to treat. Methods A 19-year-old female presented with a 6-week history of coryzal symptoms on a background of Crohn's disease. On examination, she was febrile and tachycardic with mild tonsillar enlargement and splenomegaly. New trilineage cytopenias and elevation in liver enzymes were detected, with acute EBV subsequently confirmed on whole blood PCR. A diagnosis of EBV-associated HLH was supported further with elevated serum ferritin, triglycerides and soluble CD25, low fibrinogen and the presence of haemophagocytosis in the bone marrow. Results Corticosteroids, IVIG and rituximab were given, and anakinra was subsequently added due to ongoing fevers. EBV infection was then demonstrated within CD8+ T cells on EBER Flow-FISH assay. Ruxolitinib was commenced and her fevers abated on day 5, with improvement in other HLH parameters. She was discharged after a 39-day hospital admission. To date, she has remained in remission of HLH, despite developing COVID-19 infection during the convalescence phase of HLH. Conclusion EBV viraemia requires adequate treatment to control EBV-associated HLH as rituximab may be insufficient, and corticosteroid resistance can result in continued EBV infection in CD8+ T cells. This entity is known as T-cell-EBV-HLH. Ruxolitinib is a novel treatment strategy in this specific context and has several advantages, including inhibition of corticosteroid resistance to promote apoptosis of EBV-infected T cells.
Collapse
Affiliation(s)
- Syed Ali
- Department of Clinical Immunology and AllergyFlinders Medical CentreBedford ParkSAAustralia
- School of Medicine and Public HealthFlinders UniversityBedford ParkSAAustralia
| | - Sharon Choo
- Department of Allergy and ImmunologyRoyal Children's HospitalParkvilleVICAustralia
- Immunology LaboratoryRoyal Children's HospitalParkvilleVICAustralia
| | - Laine Hosking
- Department of Allergy and ImmunologyRoyal Children's HospitalParkvilleVICAustralia
- Immunology LaboratoryRoyal Children's HospitalParkvilleVICAustralia
| | - Anthony Smith
- Department of Clinical Immunology and AllergyFlinders Medical CentreBedford ParkSAAustralia
- School of Medicine and Public HealthFlinders UniversityBedford ParkSAAustralia
| | - Tiffany Hughes
- Department of Clinical Immunology and AllergyFlinders Medical CentreBedford ParkSAAustralia
- School of Medicine and Public HealthFlinders UniversityBedford ParkSAAustralia
| |
Collapse
|
9
|
Loscocco GG, Vannucchi AM. Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives. Int J Hematol 2022; 115:626-644. [PMID: 35352288 DOI: 10.1007/s12185-022-03335-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022]
Abstract
Classic Philadelphia-negative myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), classified as primary (PMF), or secondary to PV or ET. All MPN, regardless of the underlying driver mutation in JAK2/CALR/MPL, are invariably associated with dysregulation of JAK/STAT pathway. The discovery of JAK2V617F point mutation prompted the development of small molecules inhibitors of JAK tyrosine kinases (JAK inhibitors-JAKi). To date, among JAKi, ruxolitinib (RUX) and fedratinib (FEDR) are approved for intermediate and high-risk MF, and RUX is also an option for high-risk PV patients inadequately controlled by or intolerant to hydroxyurea. While not yet registered, pacritinib (PAC) and momelotinib (MMB), proved to be effective particularly in thrombocytopenic and anemic MF patients, respectively. In most cases, JAKi are effective in reducing splenomegaly and alleviating disease-related symptoms. However, almost 50% lose response by three years and dose-dependent toxicities may lead to suboptimal dosing or treatment discontinuation. To date, although not being disease-modifying agents, JAKi represent the therapeutic backbone particularly in MF patient. To optimize therapeutic strategies, many trials with drug combinations of JAKi with novel molecules are ongoing. This review critically discusses the role of JAKi in the modern management of patients with MPN.
Collapse
Affiliation(s)
- Giuseppe G Loscocco
- Department of Experimental and Clinical Medicine, University of Florence, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3 pad 27B, 50134, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3 pad 27B, 50134, Florence, Italy.
| |
Collapse
|
10
|
Maffioli M, Mora B, Ball S, Iurlo A, Elli EM, Finazzi MC, Polverelli N, Rumi E, Caramella M, Carraro MC, D’Adda M, Molteni A, Sissa C, Lunghi F, Vismara A, Ubezio M, Guidetti A, Caberlon S, Anghilieri M, Komrokji R, Cattaneo D, Della Porta MG, Giorgino T, Bertù L, Brociner M, Kuykendall A, Passamonti F. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv 2022; 6:1855-1864. [PMID: 35130339 PMCID: PMC8941454 DOI: 10.1182/bloodadvances.2021006889] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Ruxolitinib (RUX) is extensively used in myelofibrosis (MF). Despite its early efficacy, most patients lose response over time and, after discontinuation, have a worse overall survival (OS). Currently, response criteria able to predict OS in RUX-treated patients are lacking, leading to uncertainty regarding the switch to second-line treatments. In this study, we investigated predictors of survival collected after 6 months of RUX in 209 MF patients participating in the real-world ambispective observational RUXOREL-MF study (NCT03959371). Multivariable analysis identified the following risk factors: (1) RUX dose <20 mg twice daily at baseline, months 3 and 6 (hazard ratio [HR], 1.79; 95% confidence interval [CI], 1.07-3.00; P = .03), (2) palpable spleen length reduction from baseline ≤30% at months 3 and 6 (HR, 2.26; 95% CI, 1.40-3.65; P = .0009), (3) red blood cell (RBC) transfusion need at months 3 and/or 6 (HR, 1.66; 95% CI, 0.95-2.88; P = .07), and (4) RBC transfusion need at all time points (ie, baseline and months 3 and 6; HR, 2.32; 95% CI, 1.19-4.54; P = .02). Hence, we developed a prognostic model, named Response to Ruxolitinib After 6 Months (RR6), dissecting 3 risk categories: low (median OS, not reached), intermediate (median OS, 61 months; 95% CI, 43-80), and high (median OS, 33 months; 95% CI, 21-50). The RR6 model was validated and confirmed in an external cohort comprised of 40 MF patients. In conclusion, the RR6 prognostic model allows for the early identification of RUX-treated MF patients with impaired survival who might benefit from a prompt treatment shift.
Collapse
Affiliation(s)
| | - Barbara Mora
- Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| | - Somedeb Ball
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Maria Elli
- Hematology Division and Bone Marrow Unit, Ospedale San Gerardo, ASST Monza e Brianza, Monza, Italy
| | | | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Caramella
- Department of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Mariella D’Adda
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Cinzia Sissa
- Department of Hematology and Transfusion Medicine, ASST Mantova, Mantova, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Vismara
- Internal Medicine Department and Hematology Unit, ASST Rhodense, Rho (Milan), Italy
| | - Marta Ubezio
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Milan), Italy
| | - Anna Guidetti
- Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milan, Milan, Italy
| | | | | | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Giovanni Della Porta
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Milan), Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele (Milan), Italy
| | - Toni Giorgino
- Institute of Biophysics (IBF-CNR), National Research Council, Milan, Italy; and
| | - Lorenza Bertù
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Brociner
- Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| | - Andrew Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Francesco Passamonti
- Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| |
Collapse
|
11
|
Luo Q, Xiao Z, Peng L. Effects of ruxolitinib on infection in patients with myeloproliferative neoplasm: a meta-analysis. Hematology 2021; 26:663-669. [PMID: 34493151 DOI: 10.1080/16078454.2021.1967256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Infections in ruxolitinib-treated myeloproliferative neoplasm (MPN) patients were reported frequently. This work aimed to systematically estimate the risk of infection associated with ruxolitinib in MPN patients. METHODS The PUBMED, CNKI, EMBASE, Cochrane and CBM databases were searched to identify all related studies. Odds ratio (OR) and 95% confidence interval (CI) were used to express the difference between groups. I2 was calculated to evaluate heterogeneity. Revman software was used to conduct the analysis. RESULTS Eleven randomized control trials were included in this analysis. The risk of overall infections was not different at the early stage of ruxolitinib use (OR, 95%CI: 1.23, [0.91, 1.67]). In the extension phase, overall infection was significantly lower in patients receiving ruxolitinib (OR, 95%CI: 0.53, [0.36, 0.79]). Herpes zoster infection was at higher risk both at early stage and in the extension phase (OR, 95%CI: 7.39, [1.33, 41.07]), (OR, 95%CI: 5.23, [1.46, 18.79]), respectively. CONCLUSION Our study suggested that ruxolitinib increased the risk of herpes zoster infection. However, current studies were not enough to estimate the effects of ruxolitinib on the risk of overall infection in patients with myeloproliferative neoplasm.
Collapse
Affiliation(s)
- Qingsong Luo
- Department of Hematology Oncology, The People's Hospital of NanChuan District, ChongQing, People's Republic of China
| | - Zhiji Xiao
- Department of Hematology Oncology, The People's Hospital of NanChuan District, ChongQing, People's Republic of China
| | - Liming Peng
- Department of Hematology Oncology, The People's Hospital of NanChuan District, ChongQing, People's Republic of China
| |
Collapse
|
12
|
Wang L, Li R, Song C, Chen Y, Long H, Yang L. Small-Molecule Anti-Cancer Drugs From 2016 to 2020: Synthesis and Clinical Application. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211040326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malignant tumors have become a significant public health problem that severely threatens human health. Drug-targeting therapy is essential for tumor therapy, along with surgery and radiotherapy. Of the 378 novel drugs approved over the past five years, those for oncological therapy remains at the top (25%). These drugs are used to treat patients with various cancers by acting on corresponding targets, such as EGFR, JAK, BTK, IDH, and FLT3. This review examines anti-tumor agents approved between 2016 and 2020, classifying them according to indication (such as lung cancer, leukemia, breast cancer, and myeloma). These drugs are reviewed according to their route of administration, first-in-class designation, approval dates, and expedited review categories. Furthermore, this paper summarizes the targets and modes of action of the approved anti-tumor drugs while systematically discussing their synthetic routes for medicinal chemistry or industrial use, which will benefit next-generation drug discovery.
Collapse
Affiliation(s)
| | - Rong Li
- Xihua University, Chengdu, Sichuan, China
| | - Chen Song
- Xihua University, Chengdu, Sichuan, China
| | - Yanli Chen
- Xihua University, Chengdu, Sichuan, China
| | - Haiyue Long
- The Air Force Hospital of Western Theater command
| | | |
Collapse
|
13
|
Lambert J, Saliba J, Calderon C, Sii-Felice K, Salma M, Edmond V, Alvarez JC, Delord M, Marty C, Plo I, Kiladjian JJ, Soler E, Vainchenker W, Villeval JL, Rousselot P, Prost S. PPARγ agonists promote the resolution of myelofibrosis in preclinical models. J Clin Invest 2021; 131:136713. [PMID: 33914703 DOI: 10.1172/jci136713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Myelofibrosis (MF) is a non-BCR-ABL myeloproliferative neoplasm associated with poor outcomes. Current treatment has little effect on the natural history of the disease. MF results from complex interactions between (a) the malignant clone, (b) an inflammatory context, and (c) remodeling of the bone marrow (BM) microenvironment. Each of these points is a potential target of PPARγ activation. Here, we demonstrated the therapeutic potential of PPARγ agonists in resolving MF in 3 mouse models. We showed that PPARγ agonists reduce myeloproliferation, modulate inflammation, and protect the BM stroma in vitro and ex vivo. Activation of PPARγ constitutes a relevant therapeutic target in MF, and our data support the possibility of using PPARγ agonists in clinical practice.
Collapse
Affiliation(s)
- Juliette Lambert
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Department of Hematology and Oncology, Centre Hospitalier de Versailles, Le Chesnay, France.,Opale Carnot Institute, Paris, France
| | - Joseph Saliba
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Carolina Calderon
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Opale Carnot Institute, Paris, France
| | - Karine Sii-Felice
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie Edmond
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Jean-Claude Alvarez
- Département de Pharmacologie-Toxicologie, Hôpitaux Universitaires Paris Ile-de-France Ouest, AP-HP, Hôpital Raymond-Poincaré, FHU Sepsis, Garches, France.,MasSpecLab, Plateforme de spectrométrie de masse, INSERM U-1173, Université Paris-Saclay (Versailles Saint-Quentin-en-Yvelines), UFR des sciences de la santé, Montigny-le-Bretonneux, France
| | - Marc Delord
- Recherche Clinique, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Caroline Marty
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Jean-Jacques Kiladjian
- Opale Carnot Institute, Paris, France.,Université de Paris, AP-HP, Hôpital Saint-Louis, Centre d'Investigations Cliniques CIC 1427, INSERM, Paris, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | | | - Jean-Luc Villeval
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Philippe Rousselot
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Department of Hematology and Oncology, Centre Hospitalier de Versailles, Le Chesnay, France.,Opale Carnot Institute, Paris, France.,Université Paris-Saclay (Versailles Saint-Quentin-en-Yvelines), UFR des sciences de la santé, Montigny-le-Bretonneux, France
| | - Stéphane Prost
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Opale Carnot Institute, Paris, France
| |
Collapse
|
14
|
Sauvage M, Tavitian S, Sibaud V, Boulinguez S, Pages-Laurent C, Lamant L, Tournier E, Recher C, Meyer N. Aggressive locoregional behavior of cutaneous squamous cell carcinoma during ruxolitinib use. Ann Dermatol Venereol 2021; 148:140-141. [PMID: 33478822 DOI: 10.1016/j.annder.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023]
Affiliation(s)
- M Sauvage
- Department of Dermatology, Institut Universitaire du Cancer de Toulouse, Centre Hospitalier Universitaire de Toulouse, Université Paul-Sabatier Toulouse-III, 31100 Toulouse, France
| | - S Tavitian
- Department of Hematology, Institut Universitaire du Cancer de Toulouse - Oncopole, Centre Hospitalier Universitaire de Toulouse, 31100 Toulouse, France
| | - V Sibaud
- Department of Oncodermatology, Institut Universitaire du Cancer de Toulouse - Oncopole, 31100 Toulouse, France
| | - S Boulinguez
- Department of Dermatology, Institut Universitaire du Cancer de Toulouse, Centre Hospitalier Universitaire de Toulouse, Université Paul-Sabatier Toulouse-III, 31100 Toulouse, France
| | - C Pages-Laurent
- Department of Oncodermatology, Institut Universitaire du Cancer de Toulouse - Oncopole, 31100 Toulouse, France
| | - L Lamant
- Department of Histopathology, Institut Universitaire du Cancer de Toulouse - Oncopole, Centre Hospitalier Universitaire de Toulouse, 31100 Toulouse, France
| | - E Tournier
- Department of Histopathology, Institut Universitaire du Cancer de Toulouse - Oncopole, Centre Hospitalier Universitaire de Toulouse, 31100 Toulouse, France
| | - C Recher
- Department of Hematology, Institut Universitaire du Cancer de Toulouse - Oncopole, Centre Hospitalier Universitaire de Toulouse, 31100 Toulouse, France
| | - N Meyer
- Department of Dermatology, Institut Universitaire du Cancer de Toulouse, Centre Hospitalier Universitaire de Toulouse, Université Paul-Sabatier Toulouse-III, 31100 Toulouse, France.
| |
Collapse
|
15
|
N-(Pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine Derivatives as Selective Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. J Med Chem 2020; 63:14921-14936. [PMID: 33256400 DOI: 10.1021/acs.jmedchem.0c01488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, we described a series of N-(pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine derivatives as selective JAK2 (Janus kinase 2) inhibitors. Systematic exploration of the structure-activity relationship though cyclization modification based on previously reported compound 18e led to the discovery of the superior derivative 13ac. Compound 13ac showed excellent potency on JAK2 kinase, SET-2, and Ba/F3V617F cells (high expression of JAK2V617F mutation) with IC50 values of 3, 11.7, and 41 nM, respectively. Further mechanistic studies demonstrated that compound 13ac could downregulate the phosphorylation of downstream proteins of JAK2 kinase in cells. Compound 13ac also showed good selectivity in kinase scanning and potent in vivo antitumor efficacy with 82.3% tumor growth inhibition in the SET-2 xenograft model. Moreover, 13ac significantly ameliorated the disease symptoms in a Ba/F3-JAK2V617F allograft model, with 77.1% normalization of spleen weight, which was more potent than Ruxolitinib.
Collapse
|
16
|
New drug approvals for 2019: Synthesis and clinical applications. Eur J Med Chem 2020; 205:112667. [DOI: 10.1016/j.ejmech.2020.112667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
|
17
|
Bose P, Masarova L, Verstovsek S. Novel Concepts of Treatment for Patients with Myelofibrosis and Related Neoplasms. Cancers (Basel) 2020; 12:cancers12102891. [PMID: 33050168 PMCID: PMC7599937 DOI: 10.3390/cancers12102891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Myelofibrosis (MF) is an advanced form of a group of rare, related bone marrow cancers termed myeloproliferative neoplasms (MPNs). Some patients develop myelofibrosis from the outset, while in others, it occurs as a complication of the more indolent MPNs, polycythemia vera (PV) or essential thrombocythemia (ET). Patients with PV or ET who require drug treatment are typically treated with the chemotherapy drug hydroxyurea, while in MF, the targeted therapies termed Janus kinase (JAK) inhibitors form the mainstay of treatment. However, these and other drugs (e.g., interferons) have important limitations. No drug has been shown to reliably prevent the progression of PV or ET to MF or transformation of MPNs to acute myeloid leukemia. In PV, it is not conclusively known if JAK inhibitors reduce the risk of blood clots, and in MF, these drugs do not improve low blood counts. New approaches to treating MF and related MPNs are, therefore, necessary. Abstract Janus kinase (JAK) inhibition forms the cornerstone of the treatment of myelofibrosis (MF), and the JAK inhibitor ruxolitinib is often used as a second-line agent in patients with polycythemia vera (PV) who fail hydroxyurea (HU). In addition, ruxolitinib continues to be studied in patients with essential thrombocythemia (ET). The benefits of JAK inhibition in terms of splenomegaly and symptoms in patients with MF are undeniable, and ruxolitinib prolongs the survival of persons with higher risk MF. Despite this, however, “disease-modifying” effects of JAK inhibitors in MF, i.e., bone marrow fibrosis and mutant allele burden reduction, are limited. Similarly, in HU-resistant/intolerant PV, while ruxolitinib provides excellent control of the hematocrit, symptoms and splenomegaly, reduction in the rate of thromboembolic events has not been convincingly demonstrated. Furthermore, JAK inhibitors do not prevent disease evolution to MF or acute myeloid leukemia (AML). Frontline cytoreductive therapy for PV generally comprises HU and interferons, which have their own limitations. Numerous novel agents, representing diverse mechanisms of action, are in development for the treatment of these three classic myeloproliferative neoplasms (MPNs). JAK inhibitor-based combinations, all of which are currently under study for MF, have been covered elsewhere in this issue. In this article, we focus on agents that have been studied as monotherapy in patients with MF, generally after JAK inhibitor resistance/intolerance, as well as several novel compounds in development for PV/ET.
Collapse
|
18
|
Le BV, Podszywalow-Bartnicka P, Maifrede S, Sullivan-Reed K, Nieborowska-Skorska M, Golovine K, Yao JC, Nejati R, Cai KQ, Caruso LB, Swatler J, Dabrowski M, Lian Z, Valent P, Paietta EM, Levine RL, Fernandez HF, Tallman MS, Litzow MR, Huang J, Challen GA, Link D, Tempera I, Wasik MA, Piwocka K, Skorski T. TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Rep 2020; 33:108221. [PMID: 33027668 DOI: 10.1016/j.celrep.2020.108221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFβR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-β1). Genetic and/or pharmacological targeting of the TGF-β1-TGFβR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFβR inhibitor in patients receiving PARPis.
Collapse
Affiliation(s)
- Bac Viet Le
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | | | - Silvia Maifrede
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Margaret Nieborowska-Skorska
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Konstantin Golovine
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Julian Swatler
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | - Michal Dabrowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Bioinformatics, Warsaw, Poland
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Elisabeth M Paietta
- Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo F Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL, USA
| | - Martin S Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Italo Tempera
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Passamonti F, Cattaneo C, Arcaini L, Bruna R, Cavo M, Merli F, Angelucci E, Krampera M, Cairoli R, Della Porta MG, Fracchiolla N, Ladetto M, Gambacorti Passerini C, Salvini M, Marchetti M, Lemoli R, Molteni A, Busca A, Cuneo A, Romano A, Giuliani N, Galimberti S, Corso A, Morotti A, Falini B, Billio A, Gherlinzoni F, Visani G, Tisi MC, Tafuri A, Tosi P, Lanza F, Massaia M, Turrini M, Ferrara F, Gurrieri C, Vallisa D, Martelli M, Derenzini E, Guarini A, Conconi A, Cuccaro A, Cudillo L, Russo D, Ciambelli F, Scattolin AM, Luppi M, Selleri C, Ortu La Barbera E, Ferrandina C, Di Renzo N, Olivieri A, Bocchia M, Gentile M, Marchesi F, Musto P, Federici AB, Candoni A, Venditti A, Fava C, Pinto A, Galieni P, Rigacci L, Armiento D, Pane F, Oberti M, Zappasodi P, Visco C, Franchi M, Grossi PA, Bertù L, Corrao G, Pagano L, Corradini P. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol 2020; 7:e737-e745. [PMID: 32798473 PMCID: PMC7426107 DOI: 10.1016/s2352-3026(20)30251-9] [Citation(s) in RCA: 414] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Several small studies on patients with COVID-19 and haematological malignancies are available showing a high mortality in this population. The Italian Hematology Alliance on COVID-19 aimed to collect data from adult patients with haematological malignancies who required hospitalisation for COVID-19. METHODS This multicentre, retrospective, cohort study included adult patients (aged ≥18 years) with diagnosis of a WHO-defined haematological malignancy admitted to 66 Italian hospitals between Feb 25 and May 18, 2020, with laboratory-confirmed and symptomatic COVID-19. Data cutoff for this analysis was June 22, 2020. The primary outcome was mortality and evaluation of potential predictive parameters of mortality. We calculated standardised mortality ratios between observed death in the study cohort and expected death by applying stratum-specific mortality rates of the Italian population with COVID-19 and an Italian cohort of 31 993 patients with haematological malignancies without COVID-19 (data up to March 1, 2019). Multivariable Cox proportional hazards model was used to identify factors associated with overall survival. This study is registered with ClinicalTrials.gov, NCT04352556, and the prospective part of the study is ongoing. FINDINGS We enrolled 536 patients with a median follow-up of 20 days (IQR 10-34) at data cutoff, 85 (16%) of whom were managed as outpatients. 440 (98%) of 451 hospitalised patients completed their hospital course (were either discharged alive or died). 198 (37%) of 536 patients died. When compared with the general Italian population with COVID-19, the standardised mortality ratio was 2·04 (95% CI 1·77-2·34) in our whole study cohort and 3·72 (2·86-4·64) in individuals younger than 70 years. When compared with the non-COVID-19 cohort with haematological malignancies, the standardised mortality ratio was 41·3 (38·1-44·9). Older age (hazard ratio 1·03, 95% CI 1·01-1·05); progressive disease status (2·10, 1·41-3·12); diagnosis of acute myeloid leukaemia (3·49, 1·56-7·81), indolent non-Hodgin lymphoma (2·19, 1·07-4·48), aggressive non-Hodgkin lymphoma (2·56, 1·34-4·89), or plasma cell neoplasms (2·48, 1·31-4·69), and severe or critical COVID-19 (4·08, 2·73-6·09) were associated with worse overall survival. INTERPRETATION This study adds to the evidence that patients with haematological malignancies have worse outcomes than both the general population with COVID-19 and patients with haematological malignancies without COVID-19. The high mortality among patients with haematological malignancies hospitalised with COVID-19 highlights the need for aggressive infection prevention strategies, at least until effective vaccination or treatment strategies are available. FUNDING Associazione italiana contro le leucemie, linfomi e mieloma-Varese Onlus.
Collapse
Affiliation(s)
- Francesco Passamonti
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy.
| | | | - Luca Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Bruna
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Ospedale Maggiore della Carità, Novara, Italy
| | - Michele Cavo
- Seràgnoli Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
| | - Francesco Merli
- Hematology, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | | | - Mauro Krampera
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Roberto Cairoli
- Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Matteo Giovanni Della Porta
- Humanitas Clinical and Research Hospital-IRCCS and Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Marco Ladetto
- Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Marco Salvini
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Monia Marchetti
- Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Roberto Lemoli
- Dipartimento di Medicina interna e Specialità mediche, University of Genoa, Genoa, Italy
| | | | - Alessandro Busca
- Stem Cell Transplant Center, AOU Citta' della Salute e della Scienza, Turin, Italy
| | - Antonio Cuneo
- Hematology, Azienda Ospedaliero Universitaria Sant'Anna, Ferrara, Italy
| | - Alessandra Romano
- Hematology, Dipartimento di Chirurgia e Specialità Medico Chirurgiche, Università degli Studi di Catania, Catania, Italy
| | - Nicola Giuliani
- Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Morotti
- Department of Clinical and Biological Sciences, Università di Torino, Turin, Italy
| | | | | | | | - Giuseppe Visani
- Dipartimento di Onco- Ematologia, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | | | - Agostino Tafuri
- Hematology, University Hospital Sant'Andrea, Sapienza, Rome, Italy; Department of Clinical and Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - Patrizia Tosi
- Hematology, Ospedale degli Infermi di Rimini, Rimini, Italy
| | | | | | | | | | - Carmela Gurrieri
- Dipartimento Strutturale Aziendale Medicina, University of Padova, Padova, Italy
| | | | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | | | | | | | | | - Laura Cudillo
- Hematology, San Giovanni Addolorata Hospital, Rome, Italy
| | - Domenico Russo
- Dipartimento di Scienze Cliniche e Sperimentali, University of Brescia, Brescia, Italy
| | | | | | - Mario Luppi
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, University of Modena and Reggio Emilia, Azienda Ospedaliera Universitaria, Modena, Italy
| | - Carmine Selleri
- Hematology, Ospedale San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Elettra Ortu La Barbera
- UOC Ematologia con Trapianto, Ospedale Santa Maria Goretti, Latina, Italy; Hematology, Ospedale Santa Maria Goretti, Latina, Italy
| | - Celestino Ferrandina
- Hematology, Ospedali Riuniti Azienda Ospedaliera Universitaria di Foggia, Foggia, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | | | - Monica Bocchia
- Hematology Unit, University of Siena, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | | | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation, "Aldo Moro" University School of Medicine and Unit of Hematology and Stem Cell Transplantation, AOU Consorziale Policlinico, Bari, Italy
| | | | - Anna Candoni
- Dipartimento di Medicina Specialistica, University of Udine, Udine, Italy
| | | | - Carmen Fava
- Department of Clinical and Biological Sciences, Università di Torino, Turin, Italy
| | - Antonio Pinto
- Hematology, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", Naples, Italy
| | | | | | - Daniele Armiento
- Unit of Hematology, Stem Cell Transplantation, University Campus Bio-Medico, Rome, Italy
| | - Fabrizio Pane
- Department of Clinical Medicine and Surgery, Federico II Hospital, Naples, Italy
| | | | - Patrizia Zappasodi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Matteo Franchi
- Laboratory of Healthcare Research & Pharmacoepidemiology, Department of Statistics and Quantitative Methods, Università degli Studi di Milano-Bicocca, Milan, Italy; National Centre for Healthcare Research and Pharmacoepidemiology, Milan, Italy
| | - Paolo Antonio Grossi
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Lorenza Bertù
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Giovanni Corrao
- Laboratory of Healthcare Research & Pharmacoepidemiology, Department of Statistics and Quantitative Methods, Università degli Studi di Milano-Bicocca, Milan, Italy; National Centre for Healthcare Research and Pharmacoepidemiology, Milan, Italy
| | - Livio Pagano
- Dipartimento di Scienze Radiologiche ed Ematologiche, Fondazione Policlinico Universitario A Gemelli-IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Corradini
- Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milano
| |
Collapse
|
20
|
Greenfield G, McPherson S, Smith J, Mead A, Harrison C, Mills K, McMullin MF. Modification of the Histone Landscape with JAK Inhibition in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092669. [PMID: 32962027 PMCID: PMC7563593 DOI: 10.3390/cancers12092669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
Dysregulation of epigenetic processes is increasingly understood to play a role in the pathogenesis of myeloproliferative neoplasms (MPNs). Ruxolitinib, a JAK/STAT inhibitor, has proved a useful addition to the therapeutic arsenal for these disorders, but has limited disease modifying activity. We determined the effect of JAK inhibition on the histone landscape of MPN cells in cell line models of MPNs and validated using samples from the MAJIC randomised clinical trial of ruxolitinib in polycythaemia vera and essential thrombocythaemia. We demonstrated an epigenetic modifying effect of ruxolitinib using a histone modification assay. The majority of 21 histone H3 modifications were upregulated, with H3K27me3 and H3K36me2 significant in the combined cell line results. Chromatin immunoprecipitation and sequencing (CHIP-seq) for three marks of interest, H3K4me1, H3K4me3 and H3K27ac, was consistent with the histone modification assay showing a significant increase in H3K4me3 and H3K27ac peaks at promoter regions, both marks of active transcription. In contrast, RNA sequencing demonstrates a coordinated reduction in gene expression in a number of cell pathways including PI3K-AKT signalling, transcriptional misregulation in cancer and JAK-STAT signalling in spite of these histone changes. This highlights the complex mechanisms of transcriptional control within the cells which was reflected in analysis of the histone landscape in patient samples following ruxolitinib treatment.
Collapse
Affiliation(s)
- Graeme Greenfield
- Blood Cancer Research Group, Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (G.G.); (S.M.); (J.S.); (K.M.)
| | - Suzanne McPherson
- Blood Cancer Research Group, Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (G.G.); (S.M.); (J.S.); (K.M.)
| | - James Smith
- Blood Cancer Research Group, Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (G.G.); (S.M.); (J.S.); (K.M.)
- Division of Genetics and Epidemiology, Institute of Cancer Research, London SW7 3RP, UK
| | - Adam Mead
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
| | - Claire Harrison
- Department of Haematology, Guys and St Thomas Hospital, London SE1 9RT, UK;
| | - Ken Mills
- Blood Cancer Research Group, Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (G.G.); (S.M.); (J.S.); (K.M.)
| | - Mary Frances McMullin
- Centre for Medical Education, Queen’s University Belfast, Belfast BT9 7BL, UK
- Correspondence:
| |
Collapse
|
21
|
Short-term effectiveness of ruxolitinib in the treatment of recurrent or refractory hemophagocytic lymphohistiocytosis in children. Int J Hematol 2020; 112:568-576. [DOI: 10.1007/s12185-020-02936-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
|
22
|
Li Y, Zhu S, Liu W, Ming J, Wang X, Hu X. Ruxolitinib-based combinations in the treatment of myelofibrosis: worth looking forward to. Ann Hematol 2020; 99:1161-1176. [PMID: 32333155 PMCID: PMC7237512 DOI: 10.1007/s00277-020-04028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Ruxolitinib is a targeted drug to treat myelofibrosis (MF). Ruxolitinib has significant advantages in spleen reduction and increasing 5-year overall survival (OS), and ruxolitinib-based combinations might provide more benefits than ruxolitinib monotherapy. In this review, we focus on the data of ruxolitinib-based combinations therapies and treatment-related adverse events (AEs) and safety. We analyzed and summarized the data of ruxolitinib-based combinations. Ruxolitinib combined with prednisone + thalidomide + danazol (TPD), panobinostat, pracinostat, azacytidine, or hydroxyurea has well reduced spleen. Ruxolitinib combined with danazol or TPD had well therapies in improvement of hemoglobin (Hgb) and platelets (PLT). Most ruxolitinib-based combinations therapies showed a superior benefit on reduced treatment-related AEs than ruxolitinib monotherapy. Treatment-related AEs and dose modification affect the safety and tolerability of ruxolitinib-based combinations. Genetic testing before treatment is recommended. To provide better clinical guidance, comparisons of these randomized controlled trials with the trials of ruxolitinib alone are necessary. This review suggests that the clinical application of ruxolitinib-based combinations is worth waiting for.
Collapse
Affiliation(s)
- Yujin Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shirong Zhu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Jing Ming
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Xueying Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 China
| |
Collapse
|
23
|
Harrison CN, Schaap N, Mesa RA. Management of myelofibrosis after ruxolitinib failure. Ann Hematol 2020; 99:1177-1191. [PMID: 32198525 PMCID: PMC7237516 DOI: 10.1007/s00277-020-04002-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Myelofibrosis is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, progressive splenomegaly, extramedullary hematopoiesis, bone marrow fibrosis, constitutional symptoms, leukemic progression, and shortened survival. Constitutive activation of the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway, and other cellular pathways downstream, leads to myeloproliferation, proinflammatory cytokine expression, and bone marrow remodeling. Transplant is the only curative option for myelofibrosis, but high rates of morbidity and mortality limit eligibility. Several prognostic models have been developed to facilitate treatment decisions. Until the recent approval of fedratinib, a JAK2 inhibitor, ruxolitinib was the only available JAK inhibitor for treatment of intermediate- or high-risk myelofibrosis. Ruxolitinib reduces splenomegaly to some degree in almost all treated patients; however, many patients cannot tolerate ruxolitinib due to dose-dependent drug-related cytopenias, and even patients with a good initial response often develop resistance to ruxolitinib after 2-3 years of therapy. Currently, there is no consensus definition of ruxolitinib failure. Until fedratinib approval, strategies to overcome ruxolitinib resistance or intolerance were mainly different approaches to continued ruxolitinib therapy, including dosing modifications and ruxolitinib rechallenge. Fedratinib and two other JAK2 inhibitors in later stages of clinical development, pacritinib and momelotinib, have been shown to induce clinical responses and improve symptoms in patients previously treated with ruxolitinib. Fedratinib induces robust spleen responses, and pacritinib and momelotinib may have preferential activity in patients with severe cytopenias. Reviewed here are strategies to ameliorate ruxolitinib resistance or intolerance, and outcomes of clinical trials in patients with myelofibrosis receiving second-line JAK inhibitors after ruxolitinib treatment.
Collapse
Affiliation(s)
- Claire N Harrison
- Guy's and St Thomas' Hospital Foundation Trust, Westminster Bridge Rd, London, SE1 7EH, UK.
| | | | - Ruben A Mesa
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Asher S, McLornan DP, Harrison CN. Current and future therapies for myelofibrosis. Blood Rev 2020; 42:100715. [PMID: 32536371 DOI: 10.1016/j.blre.2020.100715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/21/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Myelofibrosis is classified as a 'Philadelphia-chromosome negative' clonal myeloproliferative disorder. The heterogeneity of this condition and patient population and array of often challenging clinical manifestations can frequently make therapeutic decisions challenging. Despite many advances in therapy with targeted and combination approaches, following an enhanced understanding of underlying disease pathogenesis, cure only remains achievable with allogeneic stem cell transplant. This option is often limited to a small group of younger transplant-eligible patients with more advanced disease who have both a suitable donor and no or few co-morbidities. In this article, we will discuss up-to-date disease prognostication, common clinical challenges associated with myelofibrosis and both standard and novel therapeutic approaches. Increasingly complex prognostic modelling utilises patient-specific, haematological and genomic parameters to improve the accuracy of risk assessment and predict disease progression. We will also focus on difficult clinical scenarios such as disease-associated anaemia, thrombocytopenia and extremes of age. Future and evolving therapies within this field are highly anticipated and novel JAK inhibitor and non-JAK inhibitor-based therapy will also be discussed, including the new challenge of how to switch from one JAK inhibitor therapy to another.
Collapse
Affiliation(s)
- Samir Asher
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| |
Collapse
|
25
|
Malato A, Rossi E, Palumbo GA, Guglielmelli P, Pugliese N. Drug-Related Cutaneous Adverse Events in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: A Literature Review. Int J Mol Sci 2020; 21:ijms21113900. [PMID: 32486130 PMCID: PMC7312244 DOI: 10.3390/ijms21113900] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Since myeloproliferative neoplasms (MPN) pose a significant risk for vascular and thrombotic complications, cytoreductive therapies, such as hydroxyurea (HU), interferon (IFN) inhibitors, and Janus kinase (JAK) inhibitors are recommended for patients at high risk. However, these agents also place patients at increased risk for drug-related cutaneous adverse events. Herein, we review the literature on skin toxicity related to the use of drugs for the treatment of MPN. Overall, the cytoreductive agents used for MPN are generally well tolerated and considered to be safe, except IFN, for which dropout rates as high as 25% have been reported. While IFN is known to give rise to flu syndrome, it rarely leads to hematological alterations. The most common hematological side effects of HU are mild and include granulocytopenia, anemia, and thrombocytopenia. The JAK inhibitor ruxolitinib has been associated with cytopenia and a higher incidence of viral infections, as well as increased risk for basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Based on the present analysis, it can be concluded that cutaneous toxicity is not a negligible complication of commonly used treatments for MPN. While further research is needed, patients on these agents, and especially those with a history of cutaneous malignancies, should undergo thorough skin examination before and during therapy. In addition, detailed history is critical since many patients who develop non-melanoma skin cancer have multiple preexisting risk factors for cutaneous carcinogenesis.
Collapse
Affiliation(s)
- Alessandra Malato
- UOC di Ematologia I ad Indirizzo Oncologico, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy
| | - Elena Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Alberto Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Paola Guglielmelli
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Department of Experimental and Clinical Medicine, Azienda ospedaliera-Universitaria Careggi, University of Florence, 50139 Florence, Italy
| | - Novella Pugliese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
26
|
Ferreira Pimentel LC, Cunha AC, Boas Hoelz LV, Canzian HF, Leite Firmino Marinho DI, Boechat N, Bastos MM. Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications. Curr Top Med Chem 2020; 20:227-243. [DOI: 10.2174/1568026620666200124094949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/23/2022]
Abstract
The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.
Collapse
Affiliation(s)
- Luiz Claudio Ferreira Pimentel
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Departamento de Quimica Organica, Campus do Valonguinho, CEP 24020-150, Niteroi, RJ, Brazil
| | - Lucas Villas Boas Hoelz
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Henayle Fernandes Canzian
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Debora Inacio Leite Firmino Marinho
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Monica Macedo Bastos
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Benevolo G, Elli EM, Guglielmelli P, Ricco A, Maffioli M. Thrombocytopenia in patients with myelofibrosis: management options in the era of JAK inhibitor therapy. Leuk Lymphoma 2020; 61:1535-1547. [PMID: 32093511 DOI: 10.1080/10428194.2020.1728752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Myelofibrosis (MF), either appearing de novo (primary MF, PMF) or after a previous diagnosis of essential thrombocythemia or of polycythemia vera, is a progressive disease burdened by symptomatic splenomegaly, debilitating systemic symptoms, ineffective hematopoiesis, and overall reduced survival. Patients often present worsening cytopenias, including thrombocytopenia, secondary to progression of the disease as well as to cytoreductive treatment. Patients with MF and thrombocytopenia have few therapeutic options and there is limited information regarding the management of disease in these settings. This article reviews current evidence for the management of patients with MF and thrombocytopenia, in the era of JAK inhibitors.
Collapse
Affiliation(s)
- Giulia Benevolo
- Hematology, AOU Città della Salute e della Scienza, Turin, Italy
| | - Elena M Elli
- Hematology Division and Bone Marrow Unit, San Gerardo Hospital, Monza, Italy
| | - Paola Guglielmelli
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Department of Experimental and Clinical Medicine, Azienda ospedaliera-Universitaria Careggi, University of Florence, Florence, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Margherita Maffioli
- Hematology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
28
|
Bewersdorf JP, Jaszczur SM, Afifi S, Zhao JC, Zeidan AM. Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis. Cancer Manag Res 2019; 11:10777-10790. [PMID: 31920387 PMCID: PMC6935287 DOI: 10.2147/cmar.s212559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by clonal proliferation of differentiated myeloid cells leading to bone marrow fibrosis, cytopenias and extramedullary hematopoiesis. In late 2019, the FDA approved the highly selective JAK2 inhibitor, fedratinib, for intermediate-2 or high-risk primary or secondary MF, making it the second drug approved for MF after ruxolitinib, a JAK1/2 inhibitor, which was approved for MF in 2011. The approval of fedratinib was based on phase II trials and the phase III JAKARTA trial, in which the drug significantly reduced splenomegaly and symptom burden compared to placebo, including some patients previously treated with ruxolitinib. The main side effects of fedratinib include anemia, gastrointestinal symptoms, and elevations in liver transaminases. Fedratinib also has ablack box warning for encephalopathy, although this occurred only in about 1% of the treated patients, most of which were ultimately felt not to represent Wernicke’s encephalopathy. Nonetheless, monitoring of thiamine levels and supplementation are recommended especially in high-risk patients. This concern has led to a prolonged clinical hold and delayed the drug approval by several years during which the drug exchanged manufacturers, highlighting the need for meticulous investigation and adjudication of serious, but rare, adverse events in drug development that could end up preventing drugs with favorable risk/benefit ratio from being approved. In this review, we discuss the pharmacokinetic data and efficacy, as well as the toxicity results of clinical trials of fedratinib. We also review ongoing trials of JAK inhibitors in MF and explore future treatment options for MF patients who are refractory to ruxolitinib.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | | | - Salma Afifi
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Mazzacurati L, Collins RJ, Pandey G, Lambert-Showers QT, Amin NE, Zhang L, Stubbs MC, Epling-Burnette PK, Koblish HK, Reuther GW. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Blood Adv 2019; 3:3503-3514. [PMID: 31725895 PMCID: PMC6880903 DOI: 10.1182/bloodadvances.2019000260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant JAK2 tyrosine kinase signaling drives the development of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. However, JAK2 kinase inhibitors have failed to significantly reduce allele burden in MPN patients, underscoring the need for improved therapeutic strategies. Members of the PIM family of serine/threonine kinases promote cellular proliferation by regulating a variety of cellular processes, including protein synthesis and the balance of signaling that regulates apoptosis. Overexpression of PIM family members is oncogenic, exemplified by their ability to induce lymphomas in collaboration with c-Myc. Thus, PIM kinases are potential therapeutic targets for several malignancies such as solid tumors and blood cancers. We and others have shown that PIM inhibitors augment the efficacy of JAK2 inhibitors by using in vitro models of MPNs. Here we report that the recently developed pan-PIM inhibitor INCB053914 augments the efficacy of the US Food and Drug Administration-approved JAK1/2 inhibitor ruxolitinib in both in vitro and in vivo MPN models. INCB053914 synergizes with ruxolitinib to inhibit cell growth in JAK2-driven MPN models and induce apoptosis. Significantly, low nanomolar INCB053914 enhances the efficacy of ruxolitinib to inhibit the neoplastic growth of primary MPN patient cells, and INCB053914 antagonizes ruxolitinib persistent myeloproliferation in vivo. These findings support the notion that INCB053914, which is currently in clinical trials in patients with advanced hematologic malignancies, in combination with ruxolitinib may be effective in MPN patients, and they support the clinical testing of this combination in MPN patients.
Collapse
Affiliation(s)
- Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Que T Lambert-Showers
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Narmin E Amin
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
30
|
Ruxolitinib binding to human serum albumin: bioinformatics, biochemical and functional characterization in JAK2V617F + cell models. Sci Rep 2019; 9:16379. [PMID: 31704999 PMCID: PMC6841977 DOI: 10.1038/s41598-019-52852-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Ruxolitinib is a type I JAK inhibitor approved by FDA for targeted therapy of Philadelphia-negative myeloproliferative neoplasms (MPNs), all characterized by mutations activating the JAK2/STAT signaling pathway. Treatment with ruxolitinib improves constitutional symptoms and splenomegaly. However, patients can become resistant to treatment and chronic therapy has only a mild effect on molecular/pathologic remissions. Drugs interaction with plasma proteins, i.e. human serum albumin (HSA), is an important factor affecting the intensity and duration of their pharmacological actions. Here, the ruxolitinib recognition by the fatty acid binding sites (FAs) 1, 6, 7, and 9 of HSA has been investigated from the bioinformatics, biochemical and/or biological viewpoints. Docking simulations indicate that ruxolitinib binds to multiple sites of HSA. Ruxolitinib binds to the FA1 and FA7 sites of HSA with high affinity (Kr = 3.1 μM and 4.6 μM, respectively, at pH 7.3 and 37.0 °C). Moreover, HSA selectively blocks, in a dose dependent manner, the cytotoxic activity of ruxolitinib in JAK2V617F+ cellular models for MPN, in vitro. Furthermore this event is accompanied by changes in the cell cycle, p27Kip1 and cyclin D3 levels, and JAK/STAT signaling. Given the high plasma concentration of HSA, ruxolitinib trapping may be relevant in vivo.
Collapse
|
31
|
Ruxolitinib as monotherapy in a patient with anaplastic lymphoma kinase positive lung adenocarcinoma. Anticancer Drugs 2019; 30:1061-1063. [DOI: 10.1097/cad.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Barraco D, Maffioli M, Passamonti F. Standard care and investigational drugs in the treatment of myelofibrosis. Drugs Context 2019; 8:212603. [PMID: 31645880 PMCID: PMC6788389 DOI: 10.7573/dic.212603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Myelofibrosis (MF) is a heterogeneous disorder characterized by splenomegaly, constitutional symptoms, ineffective hematopoiesis, and an increased risk of leukemic transformation. The ongoing research in understanding the pathophysiology of the disease has allowed for the development of targeted drugs optimizing patient management. Furthermore, disease prognostication has significantly improved. Current therapeutic interventions are only partially effective with only allogeneic stem cell transplant potentially curative. Ruxolitinib is the only approved therapy for MF by the US Food and Drug Administration. However, despite efficacy in reducing splenomegaly and controlling symptomatology, it is not associated with consistent molecular or pathologic responses. Drug discontinuation is associated with a dismal outcome. The therapeutic landscape in MF has significantly improved, and emerging drugs with different target pathways, alone or in combination with ruxolitinib, seem promising.
Collapse
Affiliation(s)
- Daniela Barraco
- Hematology, Department of Specialistic Medicine, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Margherita Maffioli
- Hematology, Department of Specialistic Medicine, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Francesco Passamonti
- Hematology, Department of Specialistic Medicine, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy.,Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Francis S, Thomas S, Luben R, Sousos N, Mead A, Snowden JA, Zeidler MP. Low‐dose methotrexate: potential clinical impact on haematological and constitutional symptoms in myeloproliferative neoplasms. Br J Haematol 2019; 187:e69-e72. [DOI: 10.1111/bjh.16193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian Francis
- Department of Haematology Sheffield Teaching Hospitals NHS Foundation Trust Royal Hallamshire Hospital Sheffield UK
| | - Sally Thomas
- Department of Haematology Sheffield Teaching Hospitals NHS Foundation Trust Royal Hallamshire Hospital Sheffield UK
- Department of Oncology & Human Metabolism The University of Sheffield Sheffield UK
| | - Robert Luben
- Department of Public Health and Primary Care University of Cambridge Cambridge UK
| | - Nikolaos Sousos
- MRC Molecular Haematology Unit MRC Weatherall Institute of Molecular Medicine University of Oxford and The Cancer and Haematology Centre Churchill Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - Adam Mead
- MRC Molecular Haematology Unit MRC Weatherall Institute of Molecular Medicine University of Oxford and The Cancer and Haematology Centre Churchill Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - John A. Snowden
- Department of Haematology Sheffield Teaching Hospitals NHS Foundation Trust Royal Hallamshire Hospital Sheffield UK
| | - Martin P. Zeidler
- The Bateson Centre Department of Biomedical Science The University of Sheffield Sheffield UK
| |
Collapse
|
34
|
|
35
|
Design, synthesis and structure-activity relationship study of aminopyridine derivatives as novel inhibitors of Janus kinase 2. Bioorg Med Chem Lett 2019; 29:1507-1513. [DOI: 10.1016/j.bmcl.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022]
|
36
|
|
37
|
Gangat N, Marinaccio C, Swords R, Watts JM, Gurbuxani S, Rademaker A, Fought AJ, Frankfurt O, Altman JK, Wen QJ, Farnoud N, Famulare CA, Patel A, Tapia R, Vallapureddy RR, Barath S, Graf A, Handlogten A, Zblewski D, Patnaik MM, Al-Kali A, Dinh YT, Englund Prahl K, Patel S, Nobrega JC, Tejera D, Thomassen A, Gao J, Ji P, Rampal RK, Giles FJ, Tefferi A, Stein B, Crispino JD. Aurora Kinase A Inhibition Provides Clinical Benefit, Normalizes Megakaryocytes, and Reduces Bone Marrow Fibrosis in Patients with Myelofibrosis: A Phase I Trial. Clin Cancer Res 2019; 25:4898-4906. [PMID: 31061068 DOI: 10.1158/1078-0432.ccr-19-1005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Myelofibrosis is characterized by bone marrow fibrosis, atypical megakaryocytes, splenomegaly, constitutional symptoms, thrombotic and hemorrhagic complications, and a risk of evolution to acute leukemia. The JAK kinase inhibitor ruxolitinib provides therapeutic benefit, but the effects are limited. The purpose of this study was to determine whether targeting AURKA, which has been shown to increase maturation of atypical megakaryocytes, has potential benefit for patients with myelofibrosis. PATIENTS AND METHODS Twenty-four patients with myelofibrosis were enrolled in a phase I study at three centers. The objective of the study was to evaluate the safety and preliminary efficacy of alisertib. Correlative studies involved assessment of the effect of alisertib on the megakaryocyte lineage, allele burden, and fibrosis. RESULTS In addition to being well tolerated, alisertib reduced splenomegaly and symptom burden in 29% and 32% of patients, respectively, despite not consistently reducing the degree of inflammatory cytokines. Moreover, alisertib normalized megakaryocytes and reduced fibrosis in 5 of 7 patients for whom sequential marrows were available. Alisertib also decreased the mutant allele burden in a subset of patients. CONCLUSIONS Given the limitations of ruxolitinib, novel therapies are needed for myelofibrosis. In this study, alisertib provided clinical benefit and exhibited the expected on-target effect on the megakaryocyte lineage, resulting in normalization of these cells and reduced fibrosis in the majority of patients for which sequential marrows were available. Thus, AURKA inhibition should be further developed as a therapeutic option in myelofibrosis.See related commentary by Piszczatowski and Steidl, p. 4868.
Collapse
Affiliation(s)
| | | | | | - Justin M Watts
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | - Sandeep Gurbuxani
- Section of Hematopathology, University of Chicago, Chicago, Illinois
| | - Alfred Rademaker
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Angela J Fought
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Olga Frankfurt
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Jessica K Altman
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Qiang Jeremy Wen
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering, New York, New York
| | | | - Akshar Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering, New York, New York
| | - Roberto Tapia
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | | | - Stephanie Barath
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Amy Graf
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | | - Shradha Patel
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | | | - Dalissa Tejera
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | - Amber Thomassen
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | - Juehua Gao
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Raajit K Rampal
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering, New York, New York
| | | | | | - Brady Stein
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
38
|
Vitamin D receptor-mediated skewed differentiation of macrophages initiates myelofibrosis and subsequent osteosclerosis. Blood 2019; 133:1619-1629. [PMID: 30718230 DOI: 10.1182/blood-2018-09-876615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/27/2019] [Indexed: 12/17/2022] Open
Abstract
Myelofibrosis in myeloproliferative neoplasms (MPNs) with mutations such as JAK2V617F is an unfavorable sign for uncontrollable disease progression in the clinic and is complicated with osteosclerosis whose pathogenesis is largely unknown. Because several studies have revealed that macrophages are an indispensable supporter for bone-forming osteoblasts, we speculated that macrophages might play a significant role in the proliferation of collagen-producing myofibroblasts in marrow fibrotic tissues. Here, we show that myelofibrosis critically depends on macrophages whose differentiation is skewed by vitamin D receptor (VDR) signaling. In our novel myelofibrosis model established by transplantation of VDR+/+ hematopoietic stem/progenitor cells into VDR-/- mice, donor-derived F4/80+ macrophages proliferated together with recipient-derived α-smooth muscle actin-positive myofibroblasts, both of which comprised fibrotic tissues with an indistinguishable spindle-shaped morphology. Interfering VDR signals, such as low vitamin D diet and VDR deficiency in donor cells as well as macrophage depletion prevented myelofibrosis in this model. These interventions also ameliorated myelofibrosis in JAK2V617F-driven murine MPNs likely in a transforming growth factor-β1- or megakaryocyte-independent manner. These results suggest that VDR and macrophages may be novel therapeutic targets for MPNs with myelofibrosis.
Collapse
|
39
|
|
40
|
Greenfield G, McPherson S, Mills K, McMullin MF. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms. J Transl Med 2018; 16:360. [PMID: 30558676 PMCID: PMC6296062 DOI: 10.1186/s12967-018-1729-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
The myeloproliferative neoplasms (MPN), polycythaemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are linked by a propensity to thrombosis formation and a risk of leukaemic transformation. Activation of cytokine independent signalling through the JAK/STAT cascade is a feature of these disorders. A point mutation in exon 14 of the JAK2 gene resulting in the formation of the JAK2 V617F transcript occurs in 95% of PV patients and around 50% of ET and PMF patients driving constitutive activation of the JAK/STAT pathway. Mutations in CALR or MPL are present as driving mutations in the majority of remaining ET and PMF patients. Ruxolitinib is a tyrosine kinase inhibitor which inhibits JAK1 and JAK2. It is approved for use in intermediate and high risk PMF, and in PV patients who are resistant or intolerant to hydroxycarbamide. In randomised controlled trials it has demonstrated efficacy in spleen volume reduction and symptom burden reduction with a moderate improvement in overall survival in PMF. In PV, there is demonstrated benefit in haematocrit control and spleen volume. Despite these benefits, there is limited impact to induce complete haematological remission with normalisation of blood counts, reduce the mutant allele burden or reverse bone marrow fibrosis. Clonal evolution has been observed on ruxolitinib therapy and transformation to acute leukaemia can still occur. This review will concentrate on understanding the clinical and molecular effects of ruxolitinib in MPN. We will focus on understanding the limitations of JAK inhibition and the challenges to improving therapeutic efficacy in these disorders. We will explore the demonstrated benefits and disadvantages of ruxolitinib in the clinic, the role of genomic and clonal variability in pathogenesis and response to JAK inhibition, epigenetic changes which impact on response to therapy, the role of DNA damage and the role of inflammation in these disorders. Finally, we will summarise the future prospects for improving therapy in MPN in the JAK inhibition era.
Collapse
Affiliation(s)
- Graeme Greenfield
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Suzanne McPherson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Ken Mills
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | | |
Collapse
|
41
|
Pacilli A, Rotunno G, Mannarelli C, Fanelli T, Pancrazzi A, Contini E, Mannelli F, Gesullo F, Bartalucci N, Fattori GC, Paoli C, Vannucchi AM, Guglielmelli P. Mutation landscape in patients with myelofibrosis receiving ruxolitinib or hydroxyurea. Blood Cancer J 2018; 8:122. [PMID: 30467377 PMCID: PMC6250726 DOI: 10.1038/s41408-018-0152-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Refractoriness to ruxolitinib in patients with myelofibrosis (MF) was associated with clonal evolution; however, whether genetic instability is promoted by ruxolitinib remains unsettled. We evaluated the mutation landscape in 71 MF patients receiving ruxolitinib (n = 46) and hydroxyurea (n = 25) and correlated with response. A spleen volume response (SVR) was obtained in 57% and 12%, respectively. Highly heterogenous patterns of mutation acquisition/loss and/or changes of variant allele frequency (VAF) were observed in the 2 patient groups without remarkable differences. In patients receiving ruxolitinib, driver mutation type and high-molecular risk profile (HMR) at baseline did not impact on response rate, while HMR and sole ASXL1 mutations predicted for SVR loss at 3 years. In patients with SVR, a decrease of ≥ 20% of JAK2V617F VAF predicted for SVR duration. VAF increase of non-driver mutations and clonal progression at follow-up correlated with SVR loss and treatment discontinuation, and clonal progression also predicted for shorter survival. These data indicate that (i) ruxolitinib does not appreciably promote clonal evolution compared with hydroxyurea, (ii) VAF increase of pre-existing and/or (ii) acquisition of new mutations while on treatment correlated with higher rate of discontinuation and/or death, and (iv) reduction of JAK2V617F VAF associated with SVR duration.
Collapse
Affiliation(s)
- Annalisa Pacilli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Giada Rotunno
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Carmela Mannarelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | | | - Alessandro Pancrazzi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Elisa Contini
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Francesco Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Francesca Gesullo
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Niccolò Bartalucci
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | | | - Chiara Paoli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy.
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| |
Collapse
|
42
|
Chronic Myeloproliferative Neoplasms: Some Remaining Challenges. Hemasphere 2018; 2:e147. [PMID: 30887010 PMCID: PMC6407801 DOI: 10.1097/hs9.0000000000000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Helbig G. Classical Philadelphia-negative myeloproliferative neoplasms: focus on mutations and JAK2 inhibitors. Med Oncol 2018; 35:119. [PMID: 30074114 PMCID: PMC6096973 DOI: 10.1007/s12032-018-1187-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Classical Philadelphia- negative myeloproliferative neoplasms (MPNs) encompass three main myeloid malignancies: polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). Phenotype-driver mutations in Janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL) genes are mutually exclusive and occur with a variable frequency. Driver mutations influence disease phenotype and prognosis. PV patients with JAK2 exon 14 mutation do not differ in number of thrombotic events, risk of leukemic and fibrotic transformation, and overall survival to those with JAK2 exon 12 mutation. Type 2-like CALR-mutated ET patients have lower risk of thrombosis if compared with those carrying JAK2 or type 1-like CALR mutation. For ET, overall survival is comparable between patients with JAK2 and either type 1-like and type 2-like CALR mutations. For MF, better OS is demonstrated for patients harboring a type 1-like CALR mutation than those with type 2-like CALR or JAK2. The discovery of driver mutations in MPNs has prompted the development of molecularly targeted therapy. Among JAK2 inhibitors, ruxolitinib (RUX) has been approved for (1) treatment of intermediate-2 and high-risk MF and (2) PV patients who are resistant to or intolerant to hydroxyurea. RUX reduces spleen size and alleviates disease symptoms in a proportion of MF patients. RUX in MF leads to prolonged survival and reduces risk of death. RUX controls hematocrit, reduces spleen size and alleviates symptoms in PV. Adverse events of RUX are moderate, however, its long-term use may be associated with opportunistic infections. Trials with other JAK2 inhibitors are ongoing.
Collapse
Affiliation(s)
- Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, Dąbrowski street 25, 40-032, Katowice, Poland.
| |
Collapse
|
44
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|