1
|
Akin C, Arock M, Carter MC, George TI, Valent P. Mastocytosis. Nat Rev Dis Primers 2025; 11:30. [PMID: 40274818 DOI: 10.1038/s41572-025-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Mastocytosis is a spectrum of clonal myeloid disorders defined by abnormal growth and accumulation of mast cells in various organ systems. The disease is divided into cutaneous mastocytosis, systemic mastocytosis (SM) and mast cell sarcoma. SM is further categorized into several non-advanced and advanced forms. The prognosis of cutaneous mastocytosis and non-advanced SM is mostly favourable, whereas prognosis and survival in advanced SM and mast cell sarcoma are poor. During the past 15 years, major advances have been made in the diagnosis, prognosis and management of patients with mast cell neoplasms. Management of mastocytosis consists of symptomatic therapy, including anti-mast cell mediator drugs, and cytoreductive agents for patients with advanced disease and selected individuals with non-advanced disease, as well as recognition and prevention of comorbidities such as osteoporosis and anaphylaxis. The preclinical and clinical development of KIT-D816V-targeting drugs, such as midostaurin or avapritinib, mark a milestone in improving management, the quality of life and survival in patients with SM. These agents induce major responses or even remission in people with advanced SM and lead to rapid improvement of mediator-related symptoms and quality of life in symptomatic patients.
Collapse
Affiliation(s)
- Cem Akin
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Michel Arock
- CEREMAST, Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Melody C Carter
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Borghini N, Lazzaretti M, Lunghi P, Malpeli G, Barbi S, Perris R. A translational perspective of the malignant hematopoietic proteoglycome. Cell Biosci 2025; 15:25. [PMID: 39980017 PMCID: PMC11844096 DOI: 10.1186/s13578-025-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Proteoglycans are an ample family of complex extracellular matrix/cell surface components known to impact on virtually all biological processes that take place during life of a human being, in its healthy and diseased conditions. They are consolidated multivalent regulators of the behaviour of normal and malignant hematopoietic cells because of being critical components of their membranes, because of their pivotal role as multifaceted factors of the hematopoietic niches and because of acting as pillars of the tumour microenvironment. Likewise, they act as promoters of the growth, spreading and therapeutic resistance of diseased hematopoietic cells, also by modulating intracellular processes through a dual utilization of core protein domains and their glycosaminoglycan side chains. The intricate pattern of expression of the myriads of proteoglycan isoforms generated by differential glycanations of the core proteins is differentiation- and cell activation-dependent and often associates with genomic aberrations and gene amplifications. Selected proteoglycans stand out as widely recognized, disease type-specific markers and as alluring but still unappreciated therapeutic targets. We therefore pose here a clinical-translational view on the hematopoietic proteoglycome to highlight its underestimated biological and pathological significance during normal and neoplastic hematopoiesis. We underscore the potential of several proteoglycans to be exploited as key markers for prognostication and therapeutic targeting of hematopoietic cancers.
Collapse
Affiliation(s)
- Naomi Borghini
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Mirca Lazzaretti
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Paolo Lunghi
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Giorgio Malpeli
- Department of Life Science, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 44, Roma, 00165, Italy
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Piazzale L.A. Scuro, 10, Verona, 37134, Italy
| | - Roberto Perris
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy.
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy.
| |
Collapse
|
3
|
Makeeva A, Stivala S, Ratti E, Clauss L, Sheremeti E, Arock M, Konantz M, Hartmann K. Fedratinib and gandotinib induce apoptosis and enhance the efficacy of tyrosine kinase inhibitors in human mast cells. Am J Cancer Res 2025; 15:84-98. [PMID: 39949942 PMCID: PMC11815366 DOI: 10.62347/tytu4465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/22/2024] [Indexed: 02/16/2025] Open
Abstract
Mastocytosis is characterized by an abnormal accumulation of mast cells (MC) in various organs. In most patients, the disease is driven by the KIT D816V mutation, leading to activation of the KIT receptor and subsequent downstream signaling, including the JAK/STAT pathway. In recent years, KIT-targeting tyrosine kinase inhibitors (TKI) have emerged for the treatment of systemic mastocytosis; however, the overall response rate is often not sufficient. In this study, we investigated whether targeting the JAK/STAT pathway might be a novel treatment approach in mastocytosis. Using human MC lines carrying the KIT D816V mutation and human primary cord blood-derived MC, we examined the effects of different JAK inhibitors. Our findings revealed that the JAK inhibitors fedratinib and gandotinib decreased viability, reduced proliferation, and induced apoptosis in KIT D816V-positive MC lines (HMC-1.2 and ROSA KIT D816V). In contrast, ruxolitinib, baricitinib, upadacitinib and abrocitinib failed to affect MC functions. Combinatorial treatment with fedratinib, gandotinib and the two TKI avapritinib and midostaurin was more effective than treatment with TKI alone. Fedratinib also induced apoptosis and enhanced the efficacy of TKI in primary cord blood-derived MC. These results indicate that fedratinib and gandotinib, but not the other JAK inhibitors used in this study, can suppress viability and induce apoptosis in KIT D816V-mutant and KIT WT MC and increase effects of TKI. These findings suggest to explore fedratinib and gandotinib as novel treatment option in mastocytosis.
Collapse
Affiliation(s)
- Alina Makeeva
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
| | - Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
| | - Elena Ratti
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
| | - Laetitia Clauss
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
| | - Etnik Sheremeti
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
| | - Michel Arock
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, Paris Sorbonne UniversityParis, France
| | - Martina Konantz
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
| | - Karin Hartmann
- Department of Biomedicine, University Hospital Basel and University of BaselBasel, Switzerland
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of BaselBasel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of BaselBasel, Switzerland
| |
Collapse
|
4
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
5
|
Valent P, Akin C, Arock M, Gleixner KV, Greinix H, Hermine O, Horny HP, Ivanov D, Orfao A, Rabitsch W, Reiter A, Schulenburg A, Sotlar K, Sperr WR, Ustun C. Antibody-Based and Cell Therapies for Advanced Mastocytosis: Established and Novel Concepts. Int J Mol Sci 2023; 24:15125. [PMID: 37894806 PMCID: PMC10607143 DOI: 10.3390/ijms242015125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced systemic mastocytosis (SM) is a heterogeneous group of myeloid neoplasms characterized by an uncontrolled expansion of mast cells (MC) in one or more internal organs, SM-induced tissue damage, and poor prognosis. Advanced SM can be categorized into aggressive SM (ASM), MC leukemia (MCL), and SM with an associated hematologic neoplasm (SM-AHN). In a vast majority of all patients, neoplastic cells display a KIT mutation, mostly D816V and rarely other KIT variants. Additional mutations in other target genes, such as SRSF2, ASXL1, or RUNX1, may also be identified, especially when an AHN is present. During the past 10 years, improved treatment approaches have led to a better quality of life and survival in patients with advanced SM. However, despite the availability of novel potent inhibitors of KIT D816V, not all patients enter remission and others relapse, often with a multi-mutated and sometimes KIT D816V-negative disease exhibiting multi-drug resistance. For these patients, (poly)chemotherapy, antibody-based therapies, and allogeneic hematopoietic stem cell transplantation may be viable treatment alternatives. In this article, we discuss treatment options for patients with drug-resistant advanced SM, including novel KIT-targeting drugs, antibody-based drugs, and stem cell-eradicating therapies.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI 48106, USA
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
| | - Karoline V. Gleixner
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hildegard Greinix
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria
| | - Olivier Hermine
- Service d’Hématologie, Imagine Institute Université de Paris, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC; CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL), CIBERONC and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Werner Rabitsch
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, 68135 Mannheim, Germany
| | - Axel Schulenburg
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Valent P, Sadovnik I, Peter B, Ivanov D, Schulenburg A, Hadzijusufovic E, Willmann M, Rülicke T, Herrmann H, Rabitsch W, Karlic H, Gleixner KV, Sperr WR, Hoermann G, Dahlhoff M, Pfeilstöcker M, Keil F, Lion T, Grunt TW. Vienna Cancer Stem Cell Club (VCSCC): 20 year jubilee and future perspectives. Expert Rev Hematol 2023; 16:659-670. [PMID: 37493441 DOI: 10.1080/17474086.2023.2232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION The Vienna Cancer Stem Cell Club (VCSCC) was launched by a group of scientists in Vienna in 2002. AREAS COVERED Major aims of the VCSCC are to support research on cancer stem cells (CSC) in hematopoietic malignancies and to translate CSC-related markers and targets into clinical application. A primary focus of research in the VCSCC is the leukemic stem cell (LSC). Between 2013 and 2021, members of the VCSCC established a special research program on myeloproliferative neoplasms and since 2008, members of the VCSCC run the Ludwig Boltzmann Institute for Hematology and Oncology. In all these years, the VCSCC provided a robust intellectual platform for translational hematology and LSC research in Vienna. Furthermore, the VCSCC interacts with several national and international study groups and societies in the field. Representatives of the VCSCC also organized a number of international meetings and conferences on neoplastic stem cells, including LSC, in the past 15 years, and contributed to the definition and classification of CSC/LSC and related pre-malignant and malignant conditions. EXPERT OPINION The VCSCC will continue to advance the field and to develop LSC-detecting and LSC-eradicating concepts through which diagnosis, prognostication, and therapy of blood cancer patients should improve.
Collapse
Affiliation(s)
- Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Barbara Peter
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Willmann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Institute of in vivo and in vitro Models, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Vienna, Austria
| | - Heidrun Karlic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Karoline V Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - Maik Dahlhoff
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Institute of in vivo and in vitro Models, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Third Medical Department for Hematology and Oncology, Hanusch Hospital, Vienna, Austria
| | - Felix Keil
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Third Medical Department for Hematology and Oncology, Hanusch Hospital, Vienna, Austria
| | - Thomas Lion
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- St.Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas W Grunt
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Clinical Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Wang S, Fan R, Gao H, Ma X, Wu Y, Xing Y, Wang Y, Jia Y. STAT5A modulates gastric cancer progression via upregulation of CD44. Genomics 2023; 115:110638. [PMID: 37196931 DOI: 10.1016/j.ygeno.2023.110638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Signal transduction and transcriptional activator 5A (STAT5A), which has been reported to be frequently phosphorylated in tumors, plays pivotal roles in tumor progression. However, the role of STAT5A in gastric cancer (GC) progression and the downstream targets of STAT5A remain largely unknown. METHODS The expression of STAT5A and CD44 were assessed. GC cells were treated with altered STAT5A and CD44 to evaluate their biological functions. Nude mice were given injections of genetically manipulated GC cells and growth of xenograft tumors and metastases was measured. RESULTS The increased level of p-STAT5A is associated with tumor invasion and poor prognosis in GC. STAT5A promoted GC cell proliferation by upregulating CD44 expression. STAT5A directly binds to the CD44 promoter and promotes its transcription. CONCLUSIONS The STAT5A/CD44 pathway plays a critical role in GC progression, promising potential clinical applications for improving treatment of GC.
Collapse
Affiliation(s)
- Shanglin Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766# Jingshi Road, Jinan, Shandong 250014, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Rong Fan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Huayu Gao
- Department of pediatric surgery, The first affiliated hospital of Shandong First Medical University, 16766# Jingshi Road, Jinan, Shandong 250014, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Yufei Wu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China.
| |
Collapse
|
8
|
Shah K, Al Ashiri L, Nasimian A, Ahmed M, Kazi JU. Venetoclax-Resistant T-ALL Cells Display Distinct Cancer Stem Cell Signatures and Enrichment of Cytokine Signaling. Int J Mol Sci 2023; 24:ijms24055004. [PMID: 36902436 PMCID: PMC10003524 DOI: 10.3390/ijms24055004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy resistance remains one of the major challenges for cancer treatment that largely limits treatment benefits and patient survival. The underlying mechanisms that lead to therapy resistance are highly complicated because of the specificity to the cancer subtype and therapy. The expression of the anti-apoptotic protein BCL2 has been shown to be deregulated in T-cell acute lymphoblastic leukemia (T-ALL), where different T-ALL cells display a differential response to the BCL2-specific inhibitor venetoclax. In this study, we observed that the expression of anti-apoptotic BCL2 family genes, such as BCL2, BCL2L1, and MCL1, is highly varied in T-ALL patients, and inhibitors targeting proteins coded by these genes display differential responses in T-ALL cell lines. Three T-ALL cell lines (ALL-SIL, MOLT-16, and LOUCY) were highly sensitive to BCL2 inhibition within a panel of cell lines tested. These cell lines displayed differential BCL2 and BCL2L1 expression. Prolonged exposure to venetoclax led to the development of resistance to it in all three sensitive cell lines. To understand how cells developed venetoclax resistance, we monitored the expression of BCL2, BCL2L1, and MCL1 over the treatment period and compared gene expression between resistant cells and parental sensitive cells. We observed a different trend of regulation in terms of BCL2 family gene expression and global gene expression profile including genes reported to be expressed in cancer stem cells. Gene set enrichment analysis (GSEA) showed enrichment of cytokine signaling in all three cell lines which was supported by the phospho-kinase array where STAT5 phosphorylation was found to be elevated in resistant cells. Collectively, our data suggest that venetoclax resistance can be mediated through the enrichment of distinct gene signatures and cytokine signaling pathways.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence:
| |
Collapse
|
9
|
Bandara G, Falduto GH, Luker A, Bai Y, Pfeiffer A, Lack J, Metcalfe DD, Olivera A. CRISPR/Cas9-engineering of HMC-1.2 cells renders a human mast cell line with a single D816V-KIT mutation: An improved preclinical model for research on mastocytosis. Front Immunol 2023; 14:1078958. [PMID: 37025992 PMCID: PMC10071028 DOI: 10.3389/fimmu.2023.1078958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
The HMC-1.2 human mast cell (huMC) line is often employed in the study of attributes of neoplastic huMCs as found in patients with mastocytosis and their sensitivity to interventional drugs in vitro and in vivo. HMC-1.2 cells express constitutively active KIT, an essential growth factor receptor for huMC survival and function, due to the presence of two oncogenic mutations (D816V and V560G). However, systemic mastocytosis is commonly associated with a single D816V-KIT mutation. The functional consequences of the coexisting KIT mutations in HMC-1.2 cells are unknown. We used CRISPR/Cas9-engineering to reverse the V560G mutation in HMC-1.2 cells, resulting in a subline (HMC-1.3) with a single mono-allelic D816V-KIT variant. Transcriptome analyses predicted reduced activity in pathways involved in survival, cell-to-cell adhesion, and neoplasia in HMC-1.3 compared to HMC-1.2 cells, with differences in expression of molecular components and cell surface markers. Consistently, subcutaneous inoculation of HMC-1.3 into mice produced significantly smaller tumors than HMC-1.2 cells, and in colony assays, HMC-1.3 formed less numerous and smaller colonies than HMC-1.2 cells. However, in liquid culture conditions, the growth of HMC-1.2 and HMC-1.3 cells was comparable. Phosphorylation levels of ERK1/2, AKT and STAT5, representing pathways associated with constitutive oncogenic KIT signaling, were also similar between HMC-1.2 and HMC-1.3 cells. Despite these similarities in liquid culture, survival of HMC-1.3 cells was diminished in response to various pharmacological inhibitors, including tyrosine kinase inhibitors used clinically for treatment of advanced systemic mastocytosis, and JAK2 and BCL2 inhibitors, making HMC-1.3 more susceptible to these drugs than HMC-1.2 cells. Our study thus reveals that the additional V560G-KIT oncogenic variant in HMC-1.2 cells modifies transcriptional programs induced by D816V-KIT, confers a survival advantage, alters sensitivity to interventional drugs, and increases the tumorigenicity, suggesting that engineered huMCs with a single D816V-KIT variant may represent an improved preclinical model for mastocytosis.
Collapse
Affiliation(s)
- Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guido H. Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Justin Lack
- National Institute of Allergy and Infectious Diseases (NIAID), Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Ana Olivera,
| |
Collapse
|
10
|
Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 2022; 77:83-99. [PMID: 33955017 DOI: 10.1111/all.14881] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.
Collapse
Affiliation(s)
- Joakim S. Dahlin
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Marcus Maurer
- Department of Dermatology and Allergy Dermatological Allergology Allergie‐Centrum‐Charité Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of Health Berlin Germany
| | - Dean D. Metcalfe
- Mast Cell Biology Section Laboratory of Allergic Diseases NIAID, NIH Bethesda MD USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ronit Sagi‐Eisenberg
- Department of Cell and Developmental Biology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Gunnar Nilsson
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
11
|
Chen W, Jiang J, Wang Y, Feng G, Fei Y, Cheng S, Lin S. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs)-Derived miR-200c Regulates Wingless-Related Integration Site (Wnt)/ β-Catenin Signaling in Prostate Cancer by Targeting Cortactin (CTTN). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are an integral part of cancer microenvironment. We intend to clarify BMSC-derived exosomes’ role in prostate cancer. The exosomes miR-200c secreted by BMSCs were identified by electron microscopy. The mice tumor model was used
to explore the role of miR-200c’s in tumor mice. Cell invasion was assessed by transwell assay and Wnt/β-catenin expression was measured by western blot. Exosomes miR-200c derived from BMSCs promoted tumor cell invasion and activated Wnt/β-catenin signaling. miR-200c
targets CTTN-mediated cell signal transduction, and blocking CTTN expression can suppression miR-200c-mediated Wnt/β-catenin signal transduction and inhibit cell invasion. In conclusion, miR-200c regulates CTTN, thereby inducing Wnt/β-catenin signaling to enhance tumor
growth.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430033, China
| | - Juan Jiang
- Department of Urology, The No. 1 Hospital of Wuhan, Wuhan, Hubei, 430000, China
| | - Yu Wang
- Department of Urology, The No. 1 Hospital of Wuhan, Wuhan, Hubei, 430000, China
| | - Gang Feng
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430033, China
| | - Yan Fei
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430033, China
| | - Shigang Cheng
- Department of Surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Song Lin
- Department of Surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| |
Collapse
|
12
|
Berger D, Bauer K, Kornauth C, Gamperl S, Stefanzl G, Smiljkovic D, Sillaber C, Bettelheim P, Knöbl P, Schiefer AI, Greiner G, Thalhammer R, Hoermann G, Schwarzinger I, Staber PB, Sperr WR, Valent P. Secondary basophilic leukemia in Ph-negative myeloid neoplasms: A distinct subset with poor prognosis. Neoplasia 2021; 23:1183-1191. [PMID: 34731787 PMCID: PMC8572856 DOI: 10.1016/j.neo.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
During progression of myeloid neoplasms, the basophil compartment may expand substantially and in some of these patients, a basophilic leukemia is diagnosed. In patients with Ph-chromosome+ chronic myeloid leukemia, acceleration of disease is typically accompanied by marked basophilia. In other myeloid neoplasms, secondary leukemic expansion of basophils is rarely seen. We report on 5 patients who suffered from a myelodysplastic syndrome, myeloproliferative neoplasm, or acute leukemia and developed a massive expansion of basophils during disease progression. In 4 of 5 patients, peripheral blood basophil counts reached 40%, and the diagnosis “secondary basophilic leukemia” was established. As assessed by flow cytometry, neoplastic basophils expressed CD9, CD18, CD25, CD33, CD63, PD-L1, CD123, and CLL-1. In addition, basophils were found to display BB1 (basogranulin), 2D7, tryptase and KIT. In 4 of 5 patients the disease progressed quickly and treatment with azacitidine was started. However, azacitidine did not induce major clinical responses, and all patients died from progressive disease within 3 Y. In in vitro experiments, the patients´ cells and the basophilic leukemia cell line KU812 showed variable responses to targeted drugs, including azacitidine, venetoclax, hydroxyurea, and cytarabine. A combination of venetoclax and azacitidine induced cooperative antineoplastic effects in these cells. Together, secondary basophilic leukemia has a poor prognosis and monotherapy with azacitidine is not sufficient to keep the disease under control for longer time-periods. Whether drug combination, such as venetoclax+azacitidine, can induce better outcomes in these patients remains to be determined in future clinical studies.
Collapse
Affiliation(s)
- Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Bettelheim
- Division of Hematology and Oncology, Elisabethinen Hospital Linz and Europa-Platz Labor Linz, Linz, Austria
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Agopian J, Da Costa Q, Nguyen QV, Scorrano G, Kousteridou P, Yuan M, Chelbi R, Goubard A, Castellano R, Maurizio J, Teodosio C, De Sepulveda P, Asara JM, Orfao A, Hermine O, Dubreuil P, Brenet F. GlcNAc is a mast-cell chromatin-remodeling oncometabolite that promotes systemic mastocytosis aggressiveness. Blood 2021; 138:1590-1602. [PMID: 33974006 DOI: 10.1182/blood.2020008948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic mastocytosis (SM) is a KIT-driven hematopoietic neoplasm characterized by the excessive accumulation of neoplastic mast cells (MCs) in various organs and, mainly, the bone marrow (BM). Multiple genetic and epigenetic mechanisms contribute to the onset and severity of SM. However, little is known to date about the metabolic underpinnings underlying SM aggressiveness, which has thus far impeded the development of strategies to leverage metabolic dependencies when existing KIT-targeted treatments fail. Here, we show that plasma metabolomic profiles were able to discriminate indolent from advanced forms of the disease. We identified N-acetyl-d-glucosamine (GlcNAc) as the most predictive metabolite of SM severity. High plasma levels of GlcNAc in patients with advanced SM correlated with the activation of the GlcNAc-fed hexosamine biosynthesis pathway in patients BM aspirates and purified BM MCs. At the functional level, GlcNAc enhanced human neoplastic MCs proliferation and promoted rapid health deterioration in a humanized mouse model of SM. In addition, in the presence of GlcNAc, immunoglobulin E-stimulated MCs triggered enhanced release of proinflammatory cytokines and a stronger acute response in a mouse model of passive cutaneous anaphylaxis. Mechanistically, elevated GlcNAc levels promoted the transcriptional accessibility of chromatin regions that contain genes encoding mediators of receptor tyrosine kinases cascades and inflammatory responses, thus leading to a more aggressive phenotype. Therefore, GlcNAc is an oncometabolite driver of SM aggressiveness. This study suggests the therapeutic potential for targeting metabolic pathways in MC-related diseases to manipulate MCs effector functions.
Collapse
Affiliation(s)
- Julie Agopian
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
| | - Quentin Da Costa
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Quang Vo Nguyen
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Giulia Scorrano
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Paraskevi Kousteridou
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Min Yuan
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Rabie Chelbi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- Inovarion, Paris, France
| | - Armelle Goubard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Remy Castellano
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Julien Maurizio
- Centre d'Immunologie de Marseille-Luminy (CIML), INSERM U631, CNRS UMR 6102, Aix-Marseille Université, Marseille, France
| | - Cristina Teodosio
- Department of Immunohematology, Leiden University Medical Center, ZC Leiden, The Netherlands
| | - Paulo De Sepulveda
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Centro de Investigación Biomédica en Red Cáncer (CIBERONC), University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Spain; and
| | - Olivier Hermine
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
- Institut Imagine, INSERM U1163, CNRS Equipe de Recherche Labelisée (ERL) 8654, Paris Université, Service d'Hématologie Clinique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
| | - Fabienne Brenet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
| |
Collapse
|
14
|
Evolution of clonal dynamics and differential response to targeted therapy in a case of systemic mastocytosis with associated myelodysplastic syndrome. Leuk Res 2020; 95:106404. [PMID: 32569927 DOI: 10.1016/j.leukres.2020.106404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
|
15
|
Guan G, Niu X, Qiao X, Wang X, Liu J, Zhong M. Upregulation of Neural Cell Adhesion Molecule 1 (NCAM1) by hsa-miR-141-3p Suppresses Ameloblastoma Cell Migration. Med Sci Monit 2020; 26:e923491. [PMID: 32269209 PMCID: PMC7169440 DOI: 10.12659/msm.923491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Neural cell adhesion molecule 1 (NCAM1; CD56) and E-cadherin are both involved in cell-cell adhesion and cell development processes, and their dysregulation is associated with various tumors. We hypothesized that dysregulated NCAM1 could suppress the invasive behavior of ameloblastoma (AB), and its expression was regulated by miR-141-3p. Material/Methods Real-time qPCR was performed to examine differences in miR-141-3p expression between AB tissues and normal oral tissues (NOMs). The potential target NCAM1 of miR-141-3p was predicted by bioinformatics analysis, which was validated through dual-luciferase assay. The mRNA and protein levels of NCAM1 were detected by real-time qPCR and Western blot, respectively. Furthermore, the expression and distribution of NCAM1 in AB were investigated through immunohistochemical staining, and immunohistochemical staining of E-cadherin was also performed. After overexpression of NCAM1, the migration of AM-1 cells was examined using wound-healing assay. Results Real-time qPCR results confirmed that miR-141-3p was significantly downregulated in AB tissues. According to bioinformatics analysis, NCAM1 was a target of miR-141-3p, which was confirmed by dual luciferase assay. We found that NCAM1 was significantly upregulated in AB tissues at the mRNA and protein levels. Furthermore, NCAM1 and E-cadherin were mainly expressed on the cell membrane of AB. Downregulation of E-cadherin was found in AB tissues. As shown in wound-healing assay results, NCAM1 overexpression significantly inhibited the invasiveness of AM-1 cells. Conclusions In this study, highly expressed NCAM1 was found in AB, and it suppressed the migration of AB cells and was regulated by miR-141-3p, suggesting its potential value as a therapeutic target for AB.
Collapse
Affiliation(s)
- Gengyao Guan
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China (mainland)
| | - Xing Niu
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China (mainland)
| | - Xue Qiao
- Central Laboratory Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China (mainland)
| | - Xiaobin Wang
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China (mainland)
| | - Jinwen Liu
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China (mainland)
| | - Ming Zhong
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China (mainland).,Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| |
Collapse
|
16
|
Arock M, Sotlar K, Gotlib J, Sperr WR, Hartmann K, Schwartz LB, Akin C, Horny HP, Valent P. New developments in the field of mastocytosis and mast cell activation syndromes: a summary of the Annual Meeting of the European Competence Network on Mastocytosis (ECNM) 2019. Leuk Lymphoma 2019; 61:1075-1083. [PMID: 31876203 DOI: 10.1080/10428194.2019.1703974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mastocytosis are a group of hematologic neoplasms characterized by an accumulation of atypical mast cells in one or several organs/tissues, often accompanied by mast cell activation. Whereas in children the disease manifestations are mostly limited to the skin, in adults the disease is usually systemic (systemic mastocytosis; SM) and involves the bone marrow and/or other internal organs. Several variants of SM have been defined. Whereas most patients have indolent SM, some patients have advanced SM, which underlines the complexity of SM. In 2002, a European consortium of clinicians and scientists initiated a multidisciplinary, multi-national cooperative network, termed the 'European Competence Network on Mastocytosis' (ECNM), with the aim to improve diagnosis and therapy of patients with mastocytosis and other mast cell activation disorders. Since then, members of the ECNM have organized Annual Meetings in several European countries. The present article provides a summary of advances in the field presented during the 17th Annual ECNM meeting held in Salzburg in October 2019.
Collapse
Affiliation(s)
- Michel Arock
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Karl Sotlar
- Institute of Pathology, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Vienna, Austria
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination. Leukemia 2019; 34:589-603. [PMID: 31595039 DOI: 10.1038/s41375-019-0588-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
Abstract
The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r ≥ 0.94, P = 10-16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial-mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs. The cancer stem cell marker CD44 was overexpressed in CTCs, and its knockdown significantly reduced migration of MM cells towards SDF1-α and their adhesion to fibronectin. Approximately half (29/55) of genes differentially expressed in CTCs were prognostic in patients with newly-diagnosed myeloma (n = 553; CoMMpass). In a multivariate analysis including the R-ISS, overexpression of CENPF and LGALS1 was significantly associated with inferior survival. Altogether, these results help understanding the presence of CTCs in PB and suggest that hypoxic BM niches together with a pro-inflammatory microenvironment induce an arrest in proliferation, forcing tumor cells to circulate in PB and seek other BM niches to continue growing.
Collapse
|
18
|
Valent P, Sadovnik I, Eisenwort G, Herrmann H, Bauer K, Mueller N, Sperr WR, Wicklein D, Schumacher U. Redistribution, homing and organ-invasion of neoplastic stem cells in myeloid neoplasms. Semin Cancer Biol 2019; 60:191-201. [PMID: 31408723 DOI: 10.1016/j.semcancer.2019.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The development of a myeloid neoplasm is a step-wise process that originates from leukemic stem cells (LSC) and includes pre-leukemic stages, overt leukemia and a drug-resistant terminal phase. Organ-invasion may occur in any stage, but is usually associated with advanced disease and a poor prognosis. Sometimes, extra-medullary organ invasion shows a metastasis-like or even sarcoma-like destructive growth of neoplastic cells in local tissue sites. Examples are myeloid sarcoma, mast cell sarcoma and localized blast phase of chronic myeloid leukemia. So far, little is known about mechanisms underlying re-distribution and extramedullary dissemination of LSC in myeloid neoplasms. In this article, we discuss mechanisms through which LSC can mobilize out of the bone marrow niche, can transmigrate from the blood stream into extramedullary organs, can invade local tissue sites and can potentially create or support the formation of local stem cell niches. In addition, we discuss strategies to interfere with LSC expansion and organ invasion by targeted drug therapies.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Department of Medicine III, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Niklas Mueller
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Department of Internal Medicine III, Division of Hematology and Oncology, Hospital of the Ludwig-Maximilians-University Munich, Germany
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Demin DE, Afanasyeva MA, Uvarova AN, Prokofjeva MM, Gorbachova AM, Ustiugova AS, Klepikova AV, Putlyaeva LV, Tatosyan KA, Belousov PV, Schwartz AM. Constitutive Expression of NRAS with Q61R Driver Mutation Activates Processes of Epithelial-Mesenchymal Transition and Leads to Substantial Transcriptome Change of Nthy-ori 3-1 Thyroid Epithelial Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:416-425. [PMID: 31228933 DOI: 10.1134/s0006297919040096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Q61R mutation of the NRAS gene is one of the most frequent driver mutations of thyroid cancer. Tumors with this mutation are characterized by invasion into blood vessels and formation of distant metastases. To study the role of this mutation in the growth of thyroid cancer, we developed a model system on the basis of thyroid epithelial cell line Nthy-ori 3-1 transduced by a lentiviral vector containing the NRAS gene with the Q61R mutation. It was found that the expression of NRAS(Q61R) in thyroid epithelial cells has a profound influence on groups of genes involved in the formation of intercellular contacts, as well as in processes of epithelial-mesenchymal transition and cell invasion. The alteration in the expression of these genes affects the phenotype of the model cells, which acquire traits of mesenchymal cells and demonstrate increased ability for survival and growth without attachment to the substrate. The key regulators of these processes are transcription factors belonging to families SNAIL, ZEB, and TWIST, and in different types of tumors the contribution of each individual factor can vary greatly. In our model system, phenotype change correlates with an increase in the expression of SNAIL2 and TWIST2 factors, which indicates their possible role in regulating invasive growth of thyroid cancer with the mutation of NRAS(Q61R).
Collapse
Affiliation(s)
- D E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Moscow, 141701, Russia
| | - M A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - M M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A M Gorbachova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A V Klepikova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - L V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - K A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - P V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Moscow Institute of Physics and Technology, Moscow, 141701, Russia
| |
Collapse
|
20
|
Zhang J, Shen L, Deng Y, Sun X, Wang Y, Yao Y, Zhang H, Zou W, Zhang Z, Wan J, Yang L, Zhu J, Zhang Z. A novel LARCassigner3 classification predicts outcomes in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a retrospective training and validation analysis. Cancer Manag Res 2019; 11:4153-4170. [PMID: 31123421 PMCID: PMC6511254 DOI: 10.2147/cmar.s196662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: To build and validate a predictive model of outcome for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy. Materials and methods: We developed a LARCassigner3 classifier based on tumor and paired normal tissues of patients treated with neoadjuvant chemoradiation and surgery from January 2007 to December 2012 in Fudan University Shanghai Cancer Center. Excluding 23 pairs of tissues failed in the RNA quality test, rested 197 patients were divided into discovery (n=98) and validation (n=99) cohorts randomly. Median follow-up time was 58 months. We used the Kaplan-Meier method to estimate disease-free survival (DFS), overall survival (OS), local recurrent, and distant metastatic rate We constructed a multivariate Cox model to identify the variables independently associated with progression-free and OS. Results: We identified three classifier genes related to relevant colorectal cancer features (CXCL9, SFRP2, and CD44) that formed the LARCassigner3 classifier assay. In the discovery set, the median DFS was 48.1 months (95% confidence interval (CI) 47.3-49.5) in the low-risk group and 23.4 months (95% CI 22.1-24.8) in the high-risk group (p=0.0134); the median OS was 39.2 months (95% CI 38.4-40.3) in the high-risk group and 19.1 months (95% CI 18.3-20.7) in the low-risk group (p=0.0134); 5-year distant metastasis was 13.9% (95% CI 9.0-21.3) in the low-risk group and 49.8% (95% CI 38.7-60.9) in the high-risk group (p=0.0072). Additionally, the different responses to neoadjuvant chemoradiotherapy and the LARCassigner3 low-risk and high-risk groups was statistically significant (p=0.004) in the discovery cohort. Similar results were obtained in the internal evaluation cohort. Conclusions: Patients with LARCassigner3 low-risk tumors were associated with a good prognosis. The clinical utility of using LARCassigner3 subtyping for the identification of patients for neoadjuvant chemoradiotherapy requires validation in dependent clinical trial cohorts.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaoyang Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Ye Yao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Wei Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhiyuan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Lifeng Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
21
|
Wei CY, Zhu MX, Yang YW, Zhang PF, Yang X, Peng R, Gao C, Lu JC, Wang L, Deng XY, Lu NH, Qi FZ, Gu JY. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol 2019; 12:21. [PMID: 30832692 PMCID: PMC6399928 DOI: 10.1186/s13045-019-0711-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ring finger proteins (RNFs) were involved in carcinogenesis. Here, we aimed to explore the detailed mechanism of RNF128 in the progression of melanoma. METHODS We reanalyzed several gene expression profiles from the Gene Expression Omnibus (GEO) database and obtained the overlapped differential expressed RNF genes. Among them, RNF128 was selected to further explore its expression, the biological significance, and the underlying molecular mechanism, as well as the clinical relevance in melanoma patients. RESULTS RNF128 was found to be significantly downregulated in the selected datasets, which was further verified in our melanoma tissues. Moreover, RNF128 downregulation was shown to correlate with the malignant phenotype of melanoma, and further functional assays demonstrated that low levels of RNF128 promoted melanoma progression via inducing cell epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Mechanistically, RNF128 interference activated the Wnt pathway via simultaneously ubiquitinating CD44/cortactin (CTTN), resulting in CD44 and c-Myc transcription, thus revealed that RNF128 participated in a positive feedback of the Wnt pathway-CD44 loop. Clinically, we found that patients expressing low RNF128 and high CD44/CTTN levels had a poor prognosis. CONCLUSION Downregulated RNF128 activates Wnt signaling to induce cellular EMT and stemness by ubiquitinating and degrading CD44/CTTN, and RNF128 is a reliable diagnostic and prognostic biomarker, and a deeper understanding of RNF128 may contribute to the treatment of melanoma.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Meng-Xuan Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yan-Wen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Rui Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xin-Yi Deng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Nan-Hang Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|