1
|
Miguel Berenguel L, Gianelli C, Matas Pérez E, del Rosal T, Méndez Echevarría A, Robles Marhuenda Á, Feito Rodríguez M, Caballero Molina MT, Magallares García L, Sánchez Garrido B, Hita Díaz S, Allende Martínez L, Nozal Aranda P, Cámara Hijón C, López Granados E, Rodríguez Pena R, Bravo García-Morato M. Molecular assessment of splicing variants in a cohort of patients with inborn errors of immunity: methodological approach and interpretation remarks. Front Immunol 2025; 15:1499415. [PMID: 39944559 PMCID: PMC11814461 DOI: 10.3389/fimmu.2024.1499415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 05/09/2025] Open
Abstract
Background Splicing is the molecular mechanism to produce mature messenger RNA (mRNA) before its translation into protein. It is estimated that 50% of disease-causing mutations disrupt splicing, mostly of them affecting canonical positions. However, variants occurring in coding regions or deep-intronic variants can also affect splicing. In these cases, interpretation of the results may be challenging and molecular validation is required. Methods The study includes 23 patients with splicing variants out of a cohort of 187 patients diagnosed with inborn errors of immunity (IEI). Clinical features and immunophenotypes are shown. Reverse transcription-polymerase chain reaction (RT-PCR) is the molecular assay employed for pathogenicity validation. Results We detected 23 patients of 20 pedigrees with splicing variants in IEI genes, which constitutes the 12.3% of our cohort. In total, 21 splicing variants were analyzed, 10 of which had previously been reported in the literature and 11 novel ones. Among the 23 patients, 16 showed variants at canonical splice sites. Molecular validation was required only in the cases of genes of uncertain significance (GUS), high homology pseudogenes or incompatible clinical phenotype. Seven patients showed variants outside canonical positions. All of them needed molecular validation, with the exception of two patients, whose variants had previously been well characterized in the medical literature. Conclusion This study shows the proportion of splicing variants in a cohort of IEI patients, providing their clinical phenotypic characteristics and the methodology used to validate the splicing defects. Based on the results, an algorithm is proposed to clarify when a splicing variant should be validated by complementary methodology and when, by contrast, it can be directly considered disease causing.
Collapse
Affiliation(s)
| | - Carla Gianelli
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | | | - Teresa del Rosal
- Department of Pediatric Infectious Diseases, La Paz University Hospital, Madrid, Spain
| | - Ana Méndez Echevarría
- Department of Pediatric Infectious Diseases, La Paz University Hospital, Madrid, Spain
| | | | | | - Maria Teresa Caballero Molina
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | | | | | | | - Luis Allende Martínez
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain
| | - Pilar Nozal Aranda
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
- Complement Alterations in Human Pathology Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - Carmen Cámara Hijón
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - Eduardo López Granados
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - Rebeca Rodríguez Pena
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - María Bravo García-Morato
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| |
Collapse
|
2
|
Vinci L, Strahm B, Speckmann C, Erlacher M. The different faces of GATA2 deficiency: implications for therapy and surveillance. Front Oncol 2024; 14:1423856. [PMID: 38993648 PMCID: PMC11236594 DOI: 10.3389/fonc.2024.1423856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
GATA2 deficiency is one of the most common genetic predispositions to pediatric myelodysplastic syndrome (MDS) in children and adolescents. The wide spectrum of disease comprises, among others, hematological, immunological and pulmonary manifestations, as well as occasionally distinct organ anomalies. Due to the elevated risk of progression, nearly all individuals with GATA2-related MDS eventually undergo a hematopoietic stem cell transplantation (HSCT) at some point in their lives. Nevertheless, the optimal timing, method, and even the indication for HSCT in certain cases are still matter of debate and warrant further research. In this article, we report five patients with different hematological and immunological manifestations of GATA2 deficiency ranging from immunodeficiency and refractory cytopenia of childhood without chromosomal aberrations to relapsed MDS-related acute myeloid leukemia. We discuss the adopted strategies, including intensity of surveillance, indication and timing of HSCT, based on morphological, clinical and molecular markers, as well as individual patient needs. We conclude that a better characterization of the natural disease course, a better understanding of the prognostic significance of somatic aberrations and a thorough evaluation of patients´ perspectives and preferences are required to achieve a personalized approach aimed at improving the care of these patients.
Collapse
Affiliation(s)
- Luca Vinci
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
3
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
4
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
5
|
Rajput RV, Arnold DE. GATA2 Deficiency: Predisposition to Myeloid Malignancy and Hematopoietic Cell Transplantation. Curr Hematol Malig Rep 2023:10.1007/s11899-023-00695-7. [PMID: 37247092 DOI: 10.1007/s11899-023-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE OF REVIEW GATA2 deficiency is a haploinsufficiency syndrome associated with a wide spectrum of disease, including severe monocytopenia and B and NK lymphopenia, predisposition to myeloid malignancies, human papillomavirus infections, and infections with opportunistic organisms, particularly nontuberculous mycobacteria, herpes virus, and certain fungi. GATA2 mutations have variable penetrance and expressivity with imperfect genotype-phenotype correlations. However, approximately 75% of patients will develop a myeloid neoplasm at some point. Allogeneic hematopoietic cell transplantation (HCT) is the only currently available curative therapy. Here, we review the clinical manifestations of GATA2 deficiency, characterization of the hematologic abnormalities and progression to myeloid malignancy, and current HCT practices and outcomes. RECENT FINDINGS Cytogenetic abnormalities are common with high rates of trisomy 8, monosomy 7, and unbalanced translocation der(1;7) and may suggest an underlying GATA2 deficiency in patients presenting with myelodysplastic syndrome (MDS). Mutations in ASXL1 and STAG2 are the most frequently encountered somatic mutations and are associated with lower survival probability. A recent report of 59 patients with GATA2 deficiency who underwent allogenic HCT with myeloablative, busulfan-based conditioning and post-transplant cyclophosphamide reported excellent overall and event-free survival of 85% and 82% with reversal of disease phenotype and low rates of graft versus host disease. Allogeneic HCT with myeloablative conditioning results in disease correction and should be considered for patients with a history of recurrent, disfiguring and/or severe infections, organ dysfunction, MDS with cytogenetic abnormalities, high-risk somatic mutations or transfusion dependence, or myeloid progression. Improved genotype/phenotype correlations are needed to allow for greater predictive capabilities.
Collapse
Affiliation(s)
- Roma V Rajput
- Hematology Branch, National Hematology, Lung, and Blood Institute, National Institute of Health, Bethesda, USA
| | - Danielle E Arnold
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Building 10-CRC, Room 1-5130, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Santiago M, Liquori A, Such E, Zúñiga Á, Cervera J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers (Basel) 2023; 15:cancers15051590. [PMID: 36900380 PMCID: PMC10000430 DOI: 10.3390/cancers15051590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary myeloid malignancy syndromes (HMMSs) are rare but are becoming increasingly significant in clinical practice. One of the most well-known syndromes within this group is GATA2 deficiency. The GATA2 gene encodes a zinc finger transcription factor essential for normal hematopoiesis. Insufficient expression and function of this gene as a result of germinal mutations underlie distinct clinical presentations, including childhood myelodysplastic syndrome and acute myeloid leukemia, in which the acquisition of additional molecular somatic abnormalities can lead to variable outcomes. The only curative treatment for this syndrome is allogeneic hematopoietic stem cell transplantation, which should be performed before irreversible organ damage happens. In this review, we will examine the structural characteristics of the GATA2 gene, its physiological and pathological functions, how GATA2 genetic mutations contribute to myeloid neoplasms, and other potential clinical manifestations. Finally, we will provide an overview of current therapeutic options, including recent transplantation strategies.
Collapse
Affiliation(s)
- Marta Santiago
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| | - Esperanza Such
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| | - José Cervera
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| |
Collapse
|
7
|
Wang L, Zhang T, Yu L, Zheng CH, Yin W, Xia J, Zhang T. Deleterious synonymous mutation identification based on selective ensemble strategy. Brief Bioinform 2023; 24:6972297. [PMID: 36611253 DOI: 10.1093/bib/bbac598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Although previous studies have revealed that synonymous mutations contribute to various human diseases, distinguishing deleterious synonymous mutations from benign ones is still a challenge in medical genomics. Recently, computational tools have been introduced to predict the harmfulness of synonymous mutations. However, most of these computational tools rely on balanced training sets without considering abundant negative samples that could result in deficient performance. In this study, we propose a computational model that uses a selective ensemble to predict deleterious synonymous mutations (seDSM). We construct several candidate base classifiers for the ensemble using balanced training subsets randomly sampled from the imbalanced benchmark training sets. The diversity measures of the base classifiers are calculated by the pairwise diversity metrics, and the classifiers with the highest diversities are selected for integration using soft voting for synonymous mutation prediction. We also design two strategies for filling in missing values in the imbalanced dataset and constructing models using different pairwise diversity metrics. The experimental results show that a selective ensemble based on double fault with the ensemble strategy EKNNI for filling in missing values is the most effective scheme. Finally, using 40-dimensional biology features, we propose a novel model based on a selective ensemble for predicting deleterious synonymous mutations (seDSM). seDSM outperformed other state-of-the-art methods on the independent test sets according to multiple evaluation indicators, indicating that it has an outstanding predictive performance for deleterious synonymous mutations. We hope that seDSM will be useful for studying deleterious synonymous mutations and advancing our understanding of synonymous mutations. The source code of seDSM is freely accessible at https://github.com/xialab-ahu/seDSM.git.
Collapse
Affiliation(s)
- Lihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.,Institutes of Physical Science and Information Technology and School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Tao Zhang
- Institutes of Physical Science and Information Technology and School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Chun-Hou Zheng
- Institutes of Physical Science and Information Technology and School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Junfeng Xia
- Institutes of Physical Science and Information Technology and School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
8
|
Vihinen M. Systematic errors in annotations of truncations, loss-of-function and synonymous variants. Front Genet 2023; 14:1015017. [PMID: 36713076 PMCID: PMC9880313 DOI: 10.3389/fgene.2023.1015017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Description of genetic phenomena and variations requires exact language and concepts. Vast amounts of variation data are produced with next-generation sequencing pipelines. The obtained variations are automatically annotated, e.g., for their functional consequences. These tools and pipelines, along with systematic nomenclature, mainly work well, but there are still some problems in nomenclature, organization of some databases, misuse of concepts and certain practices. Therefore, systematic errors prevent correct annotation and often preclude further analysis of certain variation types. Problems and solutions are described for presumed protein truncations, variants that are claimed to be of loss-of-function based on the type of variation, and synonymous variants that are not synonymous and lead to sequence changes or to missing protein.
Collapse
|
9
|
Kotmayer L, Romero‐Moya D, Marin‐Bejar O, Kozyra E, Català A, Bigas A, Wlodarski MW, Bödör C, Giorgetti A. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol 2022; 199:482-495. [PMID: 35753998 PMCID: PMC9796058 DOI: 10.1111/bjh.18330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.
Collapse
Affiliation(s)
- Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Damia Romero‐Moya
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Oskar Marin‐Bejar
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Emilia Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Albert Català
- Department of Hematology and OncologyInstitut de Recerca Sant Joan de DéuHospital Sant Joan de DeuBarcelonaSpain,Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
| | - Anna Bigas
- Cancer Research ProgramInstitut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del MarBarcelonaSpain,Josep Carreras Research Institute (IJC), BadalonaBarcelonaSpain
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain,Fondazione Pisana Per la Scienza ONLUS (FPS)San Giuliano TermeItaly,Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health SciencesBarcelona UniversityBarcelonaSpain
| |
Collapse
|
10
|
When a Synonymous Variant Is Nonsynonymous. Genes (Basel) 2022; 13:genes13081485. [PMID: 36011397 PMCID: PMC9408308 DOI: 10.3390/genes13081485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
Term synonymous variation is widely used, but frequently in a wrong or misleading meaning and context. Twenty three point eight % of possible nucleotide substitution types in the universal genetic code are for synonymous amino acid changes, but when these variants have a phenotype and functional effect, they are very seldom synonymous. Such variants may manifest changes at DNA, RNA and/or protein levels. Large numbers of variations are erroneously annotated as synonymous, which causes problems e.g., in clinical genetics and diagnosis of diseases. To facilitate precise communication, novel systematics and nomenclature are introduced for variants that when looking only at the genetic code seem like synonymous, but which have phenotypes. A new term, unsense variant is defined as a substitution in the mRNA coding region that affects gene expression and protein production without introducing a stop codon in the variation site. Such variants are common and need to be correctly annotated. Proper naming and annotation are important also to increase awareness of these variants and their consequences.
Collapse
|
11
|
Kozyra EJ, Göhring G, Hickstein DD, Calvo KR, DiNardo CD, Dworzak M, de Haas V, Starý J, Hasle H, Shimamura A, Fleming MD, Inaba H, Lewis S, Hsu AP, Holland SM, Arnold DE, Mecucci C, Keel SB, Bertuch AA, Tawana K, Barzilai S, Hirabayashi S, Onozawa M, Lei S, Alaiz H, Andrikovics H, Betts D, Beverloo BH, Buechner J, Čermák M, Cervera J, Haus O, Jahnukainen K, Manola KN, Nebral K, Pasquali F, Tchinda J, Turkiewicz D, Van Roy N, Zemanova Z, Pastor VB, Strahm B, Noellke P, Niemeyer CM, Schlegelberger B, Yoshimi A, Wlodarski MW. Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood 2021; 138:2441-2445. [PMID: 34469508 PMCID: PMC8662074 DOI: 10.1182/blood.2021012781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Emilia J Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dennis D Hickstein
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Dworzak
- St. Anna Childreńs Hospital and Cancer Research Institute, Pediatric Clinic, Medical University of Vienna, Vienna, Austria
| | - Valerie de Haas
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Akiko Shimamura
- Dana-Farber and Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA
| | | | - Sara Lewis
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Danielle E Arnold
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Cristina Mecucci
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Siobán B Keel
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA
| | - Alison A Bertuch
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Shlomit Barzilai
- Pediatric Hematology and Oncology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Shaohua Lei
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN
| | - Helena Alaiz
- Hematology Department, Oncology Institute Francisco Gentil, Lisbon, Portugal
| | - Hajnalka Andrikovics
- Laboratory of Molecular Diagnostics, Central Hospital of Southern Pest, Budapest, Hungary
| | - David Betts
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Berna H Beverloo
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Martin Čermák
- Department of Genetics, The National Institute of Oncology, Bratislava, Slovakia
| | - José Cervera
- Department of Hematology, Genetics Unit, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Kirsi Jahnukainen
- New Children's Hospital, Pediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Kalliopi N Manola
- Department of Biodiagnostic Sciences and Technologies, The Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Research 'Demokritos', Athens, Greece
| | - Karin Nebral
- Labdia Labordiagnostik GmbH, Clinical Genetics, Vienna, Austria
| | - Francesco Pasquali
- Medical Genetics, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Joelle Tchinda
- Laboratory for Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Dominik Turkiewicz
- Department of Pediatrics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic; and
| | - Victor B Pastor
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
| | - Peter Noellke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
| | - Marcin W Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, and
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
12
|
Fabozzi F, Strocchio L, Mastronuzzi A, Merli P. GATA2 and marrow failure. Best Pract Res Clin Haematol 2021; 34:101278. [PMID: 34404529 DOI: 10.1016/j.beha.2021.101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
GATA2 gene encodes a zinc finger transcription factor crucial for normal hematopoiesis. Its haploinsufficiency, caused by a great variety of heterozygous loss-of-function mutations, underlies one of the most common causes of inherited bone marrow failure, recognized as GATA2 deficiency. Its phenotype is characterized by a broad spectrum of clinical presentations, including: haematological malignancies; immunodeficiency leading to invasive viral, mycobacterial and fungal infections; recurrent warts; lymphedema; pulmonary alveolar proteinosis; deafness; and miscarriage. The onset of symptoms ranges from early childhood to late adulthood, more frequently between adolescence and early adulthood. The only curative treatment is allogenic hematopoietic stem cell transplantation (HSCT), that can restore the function of both hematopoietic and immune system and prevent lung deterioration. Currently, there are no consensus guidelines about the management of patients affected by GATA2 deficiency, especially with regard to the optimal time to proceed to HSCT.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| |
Collapse
|
13
|
Homan CC, Venugopal P, Arts P, Shahrin NH, Feurstein S, Rawlings L, Lawrence DM, Andrews J, King-Smith SL, Harvey NL, Brown AL, Scott HS, Hahn CN. GATA2 deficiency syndrome: A decade of discovery. Hum Mutat 2021; 42:1399-1421. [PMID: 34387894 PMCID: PMC9291163 DOI: 10.1002/humu.24271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
GATA2 deficiency syndrome (G2DS) is a rare autosomal dominant genetic disease predisposing to a range of symptoms, of which myeloid malignancy and immunodeficiency including recurrent infections are most common. In the last decade since it was first reported, there have been over 480 individuals identified carrying a pathogenic or likely pathogenic germline GATA2 variant with symptoms of G2DS, with 240 of these confirmed to be familial and 24 de novo. For those that develop myeloid malignancy (75% of all carriers with G2DS disease symptoms), the median age of onset is 17 years (range 0-78 years) and myelodysplastic syndrome is the first diagnosis in 75% of these cases with acute myeloid leukemia in a further 9%. All variant types appear to predispose to myeloid malignancy and immunodeficiency. Apart from lymphedema in which haploinsufficiency seems necessary, the mutational requirements of the other less common G2DS phenotypes is still unclear. These predominantly loss-of-function variants impact GATA2 expression and function in numerous ways including perturbations to DNA binding, protein structure, protein:protein interactions, and gene transcription, splicing, and expression. In this review, we provide the first expert-curated ACMG/AMP classification with codes of published variants compatible for use in clinical or diagnostic settings.
Collapse
Affiliation(s)
- Claire C Homan
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - David M Lawrence
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - James Andrews
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Sarah L King-Smith
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Natasha L Harvey
- Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
14
|
Feurstein S, Drazer M, Godley LA. Germline predisposition to haematopoietic malignancies. Hum Mol Genet 2021; 30:R225-R235. [PMID: 34100074 DOI: 10.1093/hmg/ddab141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Once thought to be exceedingly rare, the advent of next-generation sequencing has revealed a plethora of germline predisposition disorders that confer risk for haematopoietic malignancies (HMs). These syndromes are now recognized to be much more common than previously thought. The recognition of a germline susceptibility risk allele in an individual impacts the clinical management and health surveillance strategies in the index patient and relatives who share the causative DNA variant. Challenges to accurate clinical testing include a lack of familiarity in many health care providers, the requirement for DNA samples that reasonably approximate the germline state, and a lack of standardization among diagnostic platforms as to which genes are sequenced and their capabilities in detecting the full range of variant types that confer risk. Current knowledge gaps include a comprehensive understanding of all predisposition genes; whether scenarios exist in which an allogeneic stem cell transplant using donor haematopoietic stem cells with deleterious variants is permissive; and effective means of delivering genetic counseling and results disclosure for these conditions. We are hopeful that comprehensive germline genetic testing, universal germline testing for all patients with an HM, universal germline testing for allogeneic haematopoietic stem cell donors, and the development of preventive strategies to delay or even prevent malignancies will be available in the near future. These factors will likely contribute to improved health outcomes for at-risk individuals and their family members.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
15
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Blombery P, Fox LC, Ryland GL, Thompson ER, Lickiss J, McBean M, Yerneni S, Hughes D, Greenway A, Mechinaud F, Wood EM, Lieschke GJ, Szer J, Barbaro P, Roy J, Wight J, Lynch E, Martyn M, Gaff C, Ritchie D. Utility of clinical comprehensive genomic characterization for diagnostic categorization in patients presenting with hypocellular bone marrow failure syndromes. Haematologica 2021; 106:64-73. [PMID: 32054657 PMCID: PMC7776333 DOI: 10.3324/haematol.2019.237693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
Bone marrow failure (BMF) related to hypoplasia of hematopoietic elements in the bone marrow is a heterogeneous clinical entity with a broad differential diagnosis including both inherited and acquired causes. Accurate diagnostic categorization is critical to optimal patient care and detection of genomic variants in these patients may provide this important diagnostic and prognostic information. We performed real-time, accredited (ISO15189) comprehensive genomic characterization including targeted sequencing and whole exome sequencing in 115 patients with BMF syndrome (median age 24 years, range 3 months - 81 years). In patients with clinical diagnoses of inherited BMF syndromes, acquired BMF syndromes or clinically unclassifiable BMF we detected variants in 52% (12/23), 53% (25/47) and 56% (25/45) respectively. Genomic characterization resulted in a change of diagnosis in 30/115 (26%) including the identification of germline causes for 3/47 and 16/45 cases with pre-test diagnoses of acquired and clinically unclassifiable BMF respectively. The observed clinical impact of accurate diagnostic categorization included choice to perform allogeneic stem cell transplantation, disease-specific targeted treatments, identification of at-risk family members and influence of sibling allogeneic stem cell donor choice. Multiple novel pathogenic variants and copy number changes were identified in our cohort including in TERT, FANCA, RPS7 and SAMD9. Whole exome sequence analysis facilitated the identification of variants in two genes not typically associated with a primary clinical manifestation of BMF but also demonstrated reduced sensitivity for detecting low level acquired variants. In conclusion, genomic characterization can improve diagnostic categorization of patients presenting with hypoplastic BMF syndromes and should be routinely performed in this group of patients.
Collapse
Affiliation(s)
- Piers Blombery
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria
- University of Melbourne, Melbourne, Victoria
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
| | - Lucy C. Fox
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
- Epworth Healthcare, Melbourne, Victoria
- Transfusion Research Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria
| | - Georgina L. Ryland
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
| | - Ella R. Thompson
- University of Melbourne, Melbourne, Victoria
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
| | - Jennifer Lickiss
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
| | - Michelle McBean
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
| | - Satwica Yerneni
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria
| | | | | | | | - Erica M. Wood
- Transfusion Research Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria
| | - Graham J. Lieschke
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria
| | - Jeff Szer
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria
| | - Pasquale Barbaro
- Children’s Health Queensland and University of Queensland, South Brisbane, Queensland
| | - John Roy
- Children’s Health Queensland and University of Queensland, South Brisbane, Queensland
| | - Joel Wight
- Department of Hematology, Austin Health, Melbourne, Victoria
| | - Elly Lynch
- Melbourne Genomics Health Alliance, Melbourne, Victoria
- Victorian Clinical Genetics Service, Melbourne, Victoria
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Melissa Martyn
- Melbourne Genomics Health Alliance, Melbourne, Victoria
- Victorian Clinical Genetics Service, Melbourne, Victoria
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Clara Gaff
- University of Melbourne, Melbourne, Victoria
- Melbourne Genomics Health Alliance, Melbourne, Victoria
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - David Ritchie
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria
| |
Collapse
|
17
|
Bruzzese A, Leardini D, Masetti R, Strocchio L, Girardi K, Algeri M, Del Baldo G, Locatelli F, Mastronuzzi A. GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes. Cancers (Basel) 2020; 12:2962. [PMID: 33066218 PMCID: PMC7602110 DOI: 10.3390/cancers12102962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic disorders rare in childhood, often occurring in patients with inherited bone marrow failure syndromes or germinal predisposition syndromes. Among the latter, one of the most frequent involves the gene GATA binding protein 2 (GATA2), coding for a transcriptional regulator of hematopoiesis. The genetic lesion as well as the clinical phenotype are extremely variable; many patients present hematological malignancies, especially MDS with the possibility to evolve into acute myeloid leukemia. Variable immune dysfunction, especially resulting in B- and NK-cell lymphopenia, lead to severe infections, including generalized warts and mycobacterial infection. Defects of alveolar macrophages lead to pulmonary alveolar proteinosis through inadequate clearance of surfactant proteins. Currently, there are no clear guidelines for the monitoring and treatment of patients with GATA2 mutations. In patients with MDS, the only curative treatment is allogeneic hematopoietic stem cell transplantation (HSCT) that restores normal hematopoiesis preventing the progression to acute myeloid leukemia and clears long-standing infections. However, to date, the donor type, conditioning regimen, and the optimal time to proceed to HSCT, as well as the level of chimerism needed to reverse the phenotype, remain unclear highlighting the need for consensus guidelines.
Collapse
Affiliation(s)
- Antonella Bruzzese
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Davide Leardini
- Pediatric Hematology/Oncology, Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (D.L.); (R.M.)
| | - Riccardo Masetti
- Pediatric Hematology/Oncology, Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (D.L.); (R.M.)
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Katia Girardi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| |
Collapse
|
18
|
Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol 2020; 33:101197. [PMID: 33038986 PMCID: PMC7388796 DOI: 10.1016/j.beha.2020.101197] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.
Collapse
|
19
|
van Lier YF, de Bree GJ, Jonkers RE, Roelofs JJTH, Ten Berge IJM, Rutten CE, Nur E, Kuijpers TW, Hazenberg MD, Zeerleder SS. Allogeneic hematopoietic cell transplantation in the management of GATA2 deficiency and pulmonary alveolar proteinosis. Clin Immunol 2020; 218:108522. [PMID: 32682923 DOI: 10.1016/j.clim.2020.108522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Human hematopoiesis is critically dependent on the transcription factor GATA2. Patients with GATA2 deficiency typically present with myelodysplastic syndrome, reduced numbers of monocytes, NK cells and B cells, and/or opportunistic infections. Here, we present two families that harbor distinct GATA2 mutations with highly variable onset and course of disease. We discuss the use of allogeneic hematopoietic cell transplantation in these patients, especially as treatment for pulmonary alveolar proteinosis.
Collapse
Affiliation(s)
- Yannouck F van Lier
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AII), Cancer Center Amsterdam (CCA), Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Amsterdam UMC Location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - René E Jonkers
- Department of Respiratory Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Ineke J M Ten Berge
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AII), Cancer Center Amsterdam (CCA), Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Caroline E Rutten
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Blood Cell Research, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Switzerland and Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
20
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
21
|
Kozyra EJ, Pastor VB, Lefkopoulos S, Sahoo SS, Busch H, Voss RK, Erlacher M, Lebrecht D, Szvetnik EA, Hirabayashi S, Pasaulienė R, Pedace L, Tartaglia M, Klemann C, Metzger P, Boerries M, Catala A, Hasle H, de Haas V, Kállay K, Masetti R, De Moerloose B, Dworzak M, Schmugge M, Smith O, Starý J, Mejstrikova E, Ussowicz M, Morris E, Singh P, Collin M, Derecka M, Göhring G, Flotho C, Strahm B, Locatelli F, Niemeyer CM, Trompouki E, Wlodarski MW. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia 2020; 34:2673-2687. [PMID: 32555368 PMCID: PMC7515837 DOI: 10.1038/s41375-020-0899-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2. In total, we identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N = 4); c.649C>T, p.L217L; c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N = 2). They accounted for 8.2% (9/110) of cases with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation (c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or stability. In summary, synonymous GATA2 substitutions are a new common cause of GATA2 deficiency. These findings have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders.
Collapse
Affiliation(s)
- Emilia J Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Victor B Pastor
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stylianos Lefkopoulos
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.,Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sushree S Sahoo
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, St. Jude Children´s Research Hospital, Memphis, USA
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca K Voss
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Lebrecht
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enikoe A Szvetnik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shinsuke Hirabayashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ramunė Pasaulienė
- Vilnius University Hospital Santaros Klinikos, Center for Pediatric Oncology and Hematology, Bone Marrow Transplantations Unit, Vilnius, Lithuania
| | - Lucia Pedace
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Patrick Metzger
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Valerie de Haas
- Dutch Childhood Oncology Group (DCOG), Princess Máxima Centre, Utrecht, The Netherlands
| | - Krisztián Kállay
- Central Hospital of Southern Pest-National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Bologna, Italy
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Michael Dworzak
- St. Anna Children´s Hospital and Cancer Research Institute, Pediatric Clinic, Medical University of Vienna, Vienna, Austria
| | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Owen Smith
- Paediatric Oncology and Haematology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Ussowicz
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Medical University of Wroclaw, Wroclaw, Poland
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London (UCL), London, UK.,Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, UK.,Department of Immunology, Royal Free London NHS FT, London, UK
| | - Preeti Singh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta Derecka
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signaling Studies, Freiburg, Germany
| | - Marcin W Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology, St. Jude Children´s Research Hospital, Memphis, USA.
| | | |
Collapse
|
22
|
Fox LC, Tan M, Brown AL, Arts P, Thompson E, Ryland GL, Lickiss J, Scott HS, Poplawski NK, Phillips K, Came NA, James P, Ting SB, Ritchie DS, Szer J, Hahn CN, Schwarer A, Blombery P. A synonymous GATA2 variant underlying familial myeloid malignancy with striking intrafamilial phenotypic variability. Br J Haematol 2020; 190:e297-e301. [PMID: 32488879 DOI: 10.1111/bjh.16819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Lucy C Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | | | - Anna L Brown
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ella Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jennifer Lickiss
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Genomics Facility, Australian Cancer Research Foundation, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Nicola K Poplawski
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Kerry Phillips
- Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Neil A Came
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Paul James
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia.,Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - David S Ritchie
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Jeff Szer
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia.,Molecular Pathology Research, Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Cavalcante de Andrade Silva M, Katsumura KR, Mehta C, Velloso EDRP, Bresnick EH, Godley LA. Breaking the spatial constraint between neighboring zinc fingers: a new germline mutation in GATA2 deficiency syndrome. Leukemia 2020; 35:264-268. [PMID: 32286542 DOI: 10.1038/s41375-020-0820-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Marcela Cavalcante de Andrade Silva
- Serviço de Hematologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, BR Av. Dr. Eneas de Carvalho 155, Cerqueira César, 01246-000, São Paulo, SP, Brazil.,Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Elvira D R P Velloso
- Serviço de Hematologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, BR Av. Dr. Eneas de Carvalho 155, Cerqueira César, 01246-000, São Paulo, SP, Brazil
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Lucy A Godley
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Wu D, Luo X, Feurstein S, Kesserwan C, Mohan S, Pineda-Alvarez DE, Godley LA. How I curate: applying American Society of Hematology-Clinical Genome Resource Myeloid Malignancy Variant Curation Expert Panel rules for RUNX1 variant curation for germline predisposition to myeloid malignancies. Haematologica 2020; 105:870-887. [PMID: 32165484 PMCID: PMC7109758 DOI: 10.3324/haematol.2018.214221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 01/30/2023] Open
Abstract
The broad use of next-generation sequencing and microarray platforms in research and clinical laboratories has led to an increasing appreciation of the role of germline mutations in genes involved in hematopoiesis and lineage differentiation that contribute to myeloid neoplasms. Despite implementation of the American College of Medical Genetics and Genomics and Association for Molecular Pathology 2015 guidelines for sequence variant interpretation, the number of variants deposited in ClinVar, a genomic repository of genotype and phenotype data, and classified as having uncertain significance or being discordantly classified among clinical laboratories remains elevated and contributes to indeterminate or inconsistent patient care. In 2018, the American Society of Hematology and the Clinical Genome Resource co-sponsored the Myeloid Malignancy Variant Curation Expert Panel to develop rules for classifying gene variants associated with germline predisposition to myeloid neoplasia. Herein, we demonstrate application of our rules developed for the RUNX1 gene to variants in six examples to show how we would classify them within the proposed framework.
Collapse
Affiliation(s)
- David Wu
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Xi Luo
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Chimene Kesserwan
- Albert Einstein College of Medicine, Department of Pathology, New York, NY
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and The University of Chicago Comprehensive Cancer Center, Chicago, IL .,Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
25
|
Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, Ellison A, Pontikos N, Wang J, Tummala H, Al Seraihi AFH, Alnajar J, Bewicke-Copley F, Armes H, Barnett M, Bloor A, Bödör C, Bowen D, Fenaux P, Green A, Hallahan A, Hjorth-Hansen H, Hossain U, Killick S, Lawson S, Layton M, Male AM, Marsh J, Mehta P, Mous R, Nomdedéu JF, Owen C, Pavlu J, Payne EM, Protheroe RE, Preudhomme C, Pujol-Moix N, Renneville A, Russell N, Saggar A, Sciuccati G, Taussig D, Toze CL, Uyttebroeck A, Vandenberghe P, Schlegelberger B, Ripperger T, Steinemann D, Wu J, Mason J, Page P, Akiki S, Reay K, Cavenagh JD, Plagnol V, Caceres JF, Fitzgibbon J, Dokal I. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun 2020; 11:1044. [PMID: 32098966 PMCID: PMC7042299 DOI: 10.1038/s41467-020-14829-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
The inclusion of familial myeloid malignancies as a separate disease entity in the revised WHO classification has renewed efforts to improve the recognition and management of this group of at risk individuals. Here we report a cohort of 86 acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) families with 49 harboring germline variants in 16 previously defined loci (57%). Whole exome sequencing in a further 37 uncharacterized families (43%) allowed us to rationalize 65 new candidate loci, including genes mutated in rare hematological syndromes (ADA, GP6, IL17RA, PRF1 and SEC23B), reported in prior MDS/AML or inherited bone marrow failure series (DNAH9, NAPRT1 and SH2B3) or variants at novel loci (DHX34) that appear specific to inherited forms of myeloid malignancies. Altogether, our series of MDS/AML families offer novel insights into the etiology of myeloid malignancies and provide a framework to prioritize variants for inclusion into routine diagnostics and patient management.
Collapse
Affiliation(s)
- Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK.
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Amanda Walne
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Shirleny Cardoso
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Alicia Ellison
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Nikolas Pontikos
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Ahad Fahad H Al Seraihi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hannah Armes
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Barnett
- The Leukemia/BMT Program of British Columbia, Division of Hematology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adrian Bloor
- Department of Haematology, Christie Hospital, Manchester, UK
| | - Csaba Bödör
- MTA-SE Lendulet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - David Bowen
- Department of Haematology, St James's University Hospital, Leeds, UK
| | - Pierre Fenaux
- Service d'hématologie Séniors, Hôpital St Louis/Université Paris, Paris, France
| | - Andrew Green
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Andrew Hallahan
- Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital and Institute of Cancer Research and Molecular Medicine (IKM) Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Upal Hossain
- Department of Haematology, Whipps Cross Hospital, Barts NHS Trust, London, UK
| | - Sally Killick
- Department of Haematology, The Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, UK
| | - Sarah Lawson
- Department of Haematology, Birmingham Children's Hospital, Birmingham, UK
| | - Mark Layton
- Centre for Haematology, Imperial College London, Hammersmith Hospital, London, UK
| | - Alison M Male
- Clinic Genetics Unit, Great Ormond Street Hospital, London, UK
| | - Judith Marsh
- Department of Haematological Medicine, Haematology Institute, King's College Hospital, London, UK
| | - Priyanka Mehta
- Bristol Haematology Unit, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Rogier Mous
- UMC Utrecht Cancer Center, Universitair Medisch Centrum Utrecht, Huispostnummer, Utrecht, Netherlands
| | - Josep F Nomdedéu
- Laboratori d´Hematologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolyn Owen
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB, Canada
| | - Jiri Pavlu
- Centre for Haematology, Imperial College London, Hammersmith Hospital, London, UK
| | - Elspeth M Payne
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Rachel E Protheroe
- Bristol Haematology Unit, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Nuria Pujol-Moix
- Laboratori d´Hematologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Nigel Russell
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Anand Saggar
- Clinical Genetics, St George's Hospital Medical School, London, UK
| | - Gabriela Sciuccati
- Servicio de Hematologia y Oncologia, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Ciudad Autonoma de Buenos Aires, Argentina
| | - David Taussig
- Haemato-oncology Department, Royal Marsden Hospital, Sutton, UK
| | - Cynthia L Toze
- The Leukemia/BMT Program of British Columbia, Division of Hematology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Uyttebroeck
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Tim Ripperger
- Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Doris Steinemann
- Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | - John Wu
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Joanne Mason
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Paula Page
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Susanna Akiki
- Department of Laboratory Medicine & Pathology, Qatar Rehabilitation Institute, Hamad Bin Khalifa Medical City (HBKM), Doha, Qatar
| | - Kim Reay
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Jamie D Cavenagh
- Department of Haematology, St Bartholomew's Hospital, Barts NHS Trust, London, UK
| | | | - Javier F Caceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK.
- Barts Health NHS Trust, London, UK.
| |
Collapse
|
26
|
Shimizu R, Yamamoto M. Quantitative and qualitative impairments in GATA2 and myeloid neoplasms. IUBMB Life 2019; 72:142-150. [PMID: 31675473 DOI: 10.1002/iub.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
GATA2 is a key transcription factor critical for hematopoietic cell development. During the past decade, it became clear that heterozygous germline mutations in the GATA2 gene cause bone marrow failure and primary immunodeficiency syndrome, conditions that lead to a predisposition toward myeloid neoplasms, such as myelodysplastic syndrome, acute myeloid leukemia, and chronic myelomonocytic leukemia. Somatic mutations of the GATA2 gene are also involved in the pathogenesis of myeloid malignancies. Cases with GATA2 gene mutations are divided into two groups, resulting in either a quantitative deficiency or a qualitative defect in the GATA2 protein depending on the mutation position and type. In the former case, GATA2 mRNA expression from the mutant allele is markedly reduced or completely abrogated, and reduced GATA2 protein expression is involved in the pathogenesis. In the latter case, almost equal amounts of structurally abnormal and wildtype GATA2 proteins are predicted to be present and contribute to the pathogenesis. The development of mouse models of these human GATA2-related diseases has been undertaken, which naturally develop myeloid neoplasms.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|