1
|
Gupta DG, Monika, Varma N. Bridging the Gap: Cost-Effective Strategies for Detecting Ph-Like B-Lineage ALL in Resource-Limited Settings. Mol Diagn Ther 2025:10.1007/s40291-025-00775-9. [PMID: 40155589 DOI: 10.1007/s40291-025-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
Acute lymphoblastic leukemia (ALL) is a complex hematologic disorder primarily affecting children, characterized by genetic mutations that disrupt normal lymphoid cell differentiation and promote abnormal proliferation. A particularly high-risk subtype, Philadelphia chromosome-like ALL (Ph-like ALL), mirrors the genetic profile of Philadelphia chromosome-positive (Ph-positive) ALL but lacks the BCR::ABL1 fusion gene. While Ph-like ALL has been extensively studied in high-income countries (HICs), it remains under-researched in low- and middle-income countries (LMICs), where resource limitations hinder accurate diagnosis and targeted therapy. This review addresses this gap by providing a comprehensive overview of the incidence, genetic landscape, and detection strategies for Ph-like ALL, with a special focus on LMICs. It underscores the prevalence of Ph-like ALL and its association with poor clinical outcomes, emphasizing the critical need for cost-effective diagnostic methodologies tailored to resource-constrained settings. Despite advancements in diagnostic technologies, such as whole gene expression profiling and next-generation sequencing, their high cost and extended turnaround times limit their feasibility in LMICs. Innovative methods, such as the PGIMER In-House Rapid and Cost-Effective (PHi-RACE) classifier, which employs real-time quantitative polymerase chain reaction (PCR), offer promising solutions by delivering high sensitivity and specificity at a significantly reduced cost. This approach is further complemented using fluorescence in situ hybridization (FISH) to characterize kinase alterations, enabling the identification of targeted therapies. This method addresses the urgent need for accessible diagnostic tools in LMICs, enabling early detection and personalized treatment planning. As the landscape of Ph-like ALL detection evolves, integrating low-cost, rapid-turnaround approaches holds significant promise for improving patient outcomes globally. This review aims to highlight the challenges and opportunities in diagnosing and treating Ph-like ALL in LMICs, fostering efforts towards more accessible and effective diagnostic strategies to enhance patient care and prognosis.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology and Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Monika
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Sucre O, Pamulapati S, Muzammil Z, Bitran J. Advances in Therapy of Adult Patients with Acute Lymphoblastic Leukemia. Cells 2025; 14:371. [PMID: 40072099 PMCID: PMC11898990 DOI: 10.3390/cells14050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
The landscape of adult acute lymphoblastic leukemia (ALL) is dramatically changing. With very promising results seen with novel immunotherapeutics in the setting of relapsed and refractory disease, the prospect of using these agents in first-line therapy has prompted the development of multiple clinical trials addressing this question. This review seeks to outline and expand the current standard of care, as well as new advances, in the treatment of adult patients with ALL and address future areas of research. We expect the frontline integration of immuno-oncology agents such as bispecific T-cell engagers, antibody-drug conjugates, and chimeric antigen receptor (CAR) T cells may maintain or improve outcomes in adults while also minimizing toxicity. Treatment of ALL will continue to evolve as we focus on personalized, patient-centered approaches.
Collapse
Affiliation(s)
- Oscar Sucre
- Department of Hematology and Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA; (O.S.); (S.P.)
| | - Saagar Pamulapati
- Department of Hematology and Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA; (O.S.); (S.P.)
| | - Zeeshan Muzammil
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Jacob Bitran
- Department of Hematology and Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA; (O.S.); (S.P.)
| |
Collapse
|
3
|
Thangrua N, Siriboonpiputtana T, Rerkamnuaychoke B, Chareonsirisuthigul T, Korkiatsakul V, Pongphitcha P, Mukda E, Chutipongtanate S, Pakakasama S. Application of Gene Expression Microarray for the Classification of Ph-Like B-Cell Acute Lymphoblastic Leukemia. Int J Lab Hematol 2025; 47:130-139. [PMID: 39357526 DOI: 10.1111/ijlh.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Ph-like ALL has gene expression profile similar to Ph-positive ALL but without the BCR::ABL1 fusion. The disease presents higher rates of severe clinical features and is associated with unfavorable outcomes. There is still no standard pipeline for molecular characterization of the disease, and no valid predictor gene panel is available worldwide. METHODS We performed expression microarray on 25 B-cell ALL and 6 Ph-positive B-cell ALL to cluster and identify the transcriptional signature of Ph-like ALL. qRT-PCR was used to confirm the expression of candidate genes. RESULTS Four out of 25 samples (16%) shared gene expression signatures related to and clustered with control Ph-positive samples. Analysis of genes differentially expressed in Ph-like B-cell ALL and evidentially functional in normal blood cell development and leukemogenesis, we selected genes as potential biomarkers for Ph-like B-cell ALL in our dataset: ADGRE2, CD9, EPHA7, FAM129C, TCL1A, and VPREB1. Those genes were filtered by Ph-like gene signatures obtained from distinct reliable data, resulting in five genes, CA6, CHN2, JAK1, JCHAIN, and PON2, selected for validation by qRT-PCR. The Ct values of genes, including CA6 (p = 0.0017), PON2 (p = 0.0210), TCL1A (p = 0.0064), and VPREB1 (p = 0.0338), were significant in Ph-like ALL. GSEA analysis identified VPREB1 as enrichment in the KRAS signaling pathway, and several genes that interact with VPREB1 were reported as critical molecules involved in the leukemogenesis of B-cell ALL. CONCLUSION In summary, we demonstrate using a gene expression microarray for classifying Ph-like B-cell ALL and highlight VPREB1 as a potential biomarker for this disease.
Collapse
Affiliation(s)
- Nonthaya Thangrua
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Veerawat Korkiatsakul
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pongpak Pongphitcha
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekchol Mukda
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | | | - Samart Pakakasama
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Tran TH, Tasian SK. How I treat Philadelphia chromosome-like acute lymphoblastic leukemia in children, adolescents, and young adults. Blood 2025; 145:20-34. [PMID: 38657263 DOI: 10.1182/blood.2023023153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) represents a high-risk B-lineage ALL subtype characterized by adverse clinical features and poor relapse-free survival despite risk-adapted multiagent chemotherapy regimens. The advent of next-generation sequencing has unraveled the diversity of kinase-activating genetic drivers in Ph-like ALL that are potentially amenable to personalized molecularly-targeted therapies. Based upon robust preclinical data and promising case series of clinical activity of tyrosine kinase inhibitor (TKI)-based treatment in adults and children with relevant genetic Ph-like ALL subtypes, several clinical trials have investigated the efficacy of JAK- or ABL-directed TKIs in cytokine receptor-like factor 2 (CRLF2)/JAK pathway-mutant or ABL-class Ph-like ALL, respectively. The final results of these trials are pending, and standard-of-care therapeutic approaches for patients with Ph-like ALL have yet to be defined. In this How I Treat perspective, we review recent literature to guide current evidence-based treatment recommendations via illustrative clinical vignettes of children, adolescents, and young adults with newly diagnosed or relapsed/refractory Ph-like ALL, and we further highlight open and soon-to-open trials investigating immunotherapy and TKIs specifically for this high-risk patient population.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
5
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:13-22. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
6
|
Kebede AM, Garfinkle EAR, Mathew MT, Varga E, Colace SI, Wheeler G, Kelly BJ, Schieffer KM, Miller KE, Mardis ER, Cottrell CE, Potter SL. Comprehensive genomic characterization of hematologic malignancies at a pediatric tertiary care center. Front Oncol 2024; 14:1498409. [PMID: 39687881 PMCID: PMC11647012 DOI: 10.3389/fonc.2024.1498409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
Despite the increasing availability of comprehensive next generation sequencing (NGS), its role in characterizing pediatric hematologic malignancies remains undefined. We describe findings from comprehensive genomic profiling of hematologic malignancies at a pediatric tertiary care center. Patients enrolled on a translational research protocol to aid in cancer diagnosis, prognostication, treatment, and detection of cancer predisposition. Disease-involved samples underwent exome and RNA sequencing and analysis for single nucleotide variation, insertion/deletions, copy number alteration, structural variation, fusions, and gene expression. Twenty-eight patients with hematologic malignancies were nominated between 2018-2021. Eighteen individuals received both germline and somatic sequencing; two received germline sequencing only. Germline testing identified patients with cancer predisposition syndromes and non-cancer carrier states. Fifteen patients (15/18, 83%) had cancer-relevant somatic findings. Potential therapeutic targets were identified in seven patients (7/18, 38.9%); three (3/7, 42.9%) received targeted therapies and remain in remission an average of 47 months later.
Collapse
Affiliation(s)
- Ann M. Kebede
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elizabeth A. R. Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Susan I. Colace
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Samara L. Potter
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Thompson J, Thompson G, White D, Yeung D. Judicious use of precise fluorescence in situ hybridisation panels guided by population prevalence may assist pragmatic detection of clinically targetable Philadelphia chromosome-like acute lymphoblastic leukaemia fusions: a systematic review. Pathology 2024; 56:931-941. [PMID: 39304495 DOI: 10.1016/j.pathol.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024]
Abstract
Diagnosis of Philadelphia chromosome-like acute lymphoblastic leukaemia (Ph-like ALL) in the real-world remains challenging because of definitional complexities, the diverse diagnostic techniques available and the cost, expertise and time involved. We summarise evidence for diagnosis of clinically important Ph-like ALL related genomic lesions using fluorescence in situ hybridisation (FISH) targeting only clinically important and actionable lesions, an accessible and cost-effective diagnostic technique. Electronic databases were interrogated using broad MeSH terms for articles reporting a detailed FISH strategy for diagnosis of Ph-like ALL published since 2014, yielding 653 full text articles and abstracts. We searched the National Library of Medicine Databases including PubMed, Medline, Embase, Cochrane and relevant abstracts. We included studies with a primary aim of determining the utility of FISH for Ph-like ALL diagnosis and studies with broader aims demonstrating Ph-like ALL diagnostic algorithms which partially involved FISH. Nineteen studies met inclusion criteria. Evidence for FISH to detect CRLF2 rearrangements in Ph-like ALL is strongly established and evidence for FISH to detect non-CRLF2 lesions is evolving rapidly. We documented 1620 cases of non-CRLF2 Ph-like lesions diagnosed by FISH. Confirmatory side-by-side methods were applied in six studies (246 samples), four of which demonstrated 100% concordance of FISH results with alternative methods, while two studies demonstrated over 70% sensitivity and specificity. Additional studies demonstrated wide utilisation of FISH in Ph-like ALL classification across diverse geographies and ethnicities, with contrasting prevalence, implicating a need for targeted FISH strategies. In real-world cohorts, it may be clinically useful to prioritise limited early FISH in B-cell ALL (B-ALL) diagnostic algorithms to identify Ph-like abnormalities that respond to locally available kinase inhibitors to promote and prioritise broad access to effective targeted treatment. Additional studies are required to provide adequately powered validations and verifications of targeted Ph-like FISH panels to confirm sensitivity and specificity against side-by-side gold standard methods, and to define optimal local approaches.
Collapse
Affiliation(s)
- Jane Thompson
- South Australian Medical Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| | | | - Deborah White
- South Australian Medical Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - David Yeung
- South Australian Medical Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Rahman ZA, Othman T, Saliba RM, Vanegas YAM, Mohty R, Ledesma C, Rondon G, Jain N, Jabbour E, Pullarkat V, Alkhateeb HB, Kantarjian HM, Greipp PT, Nakamura R, Kharfan-Dabaja MA, Champlin RE, Forman SJ, Shpall EJ, Litzow MR, Foran JM, Aldoss I, Koller PB, Kebriaei P. A Multicenter Analysis of Allogeneic Transplant Outcomes in Adults with Philadelphia-Like B-Cell Acute Lymphoblastic Leukemia in First Complete Remission. Transplant Cell Ther 2024; 30:1197-1205. [PMID: 39332807 DOI: 10.1016/j.jtct.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subset of B-cell ALL with a poor prognosis with conventional therapies. Diagnostic challenges and lack of standardized treatment protocols contribute to suboptimal outcomes. Additionally, while allogeneic hematopoietic cell transplantation (HCT) is frequently recommended in adults with Ph-like ALL given its high-risk nature, data supporting its role remains limited. We conducted a multicenter retrospective study evaluating outcomes of adult patients undergoing HCT in first complete remission (CR1) for Ph-like ALL compared to Philadelphia chromosome positive ALL (Ph-pos) and other B-cell Philadelphia negative (Ph-neg) ALL. Data was collected from five academic centers across the US, focusing on HCT outcomes for patients with ALL. Patients undergoing HCT in CR1 between 2006 and 2021 were included. Among 673 patients, 83 (12.3%) had Ph-like ALL, while 271 (40.3%) had Ph-pos and 319 (47.4%) had Ph-neg ALL. Outcomes following HCT in CR1 for Ph-like ALL were comparable to Ph-neg ALL, with no significant differences in 3-year overall survival (66% vs. 59%, P = .1), progression-free survival (59% and 54%, P = .1), or relapse rates (22% vs. 20%, P = .7). In contrast, Ph-pos ALL had superior outcomes; 3-year OS (75%, P < .001), PFS (70%, P = .001) and relapse (12%, P = .003), this is likely attributed to tyrosine kinase inhibitor therapy. Our study suggests that HCT, coupled with effective 2nd line therapies can possibly mitigate the poor prognosis associated with Ph-like ALL and offers promising outcomes for patients with Ph-like ALL.
Collapse
Affiliation(s)
- Zaid Abdel Rahman
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Tamer Othman
- City of Hope National Medical Center, Duarte, California
| | - Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Razan Mohty
- The University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama
| | - Celina Ledesma
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - James M Foran
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, Florida
| | - Ibrahim Aldoss
- City of Hope National Medical Center, Duarte, California
| | - Paul B Koller
- City of Hope National Medical Center, Duarte, California
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
9
|
Moreno-Lorenzana D, Juárez-Velázquez R, Reyes-León A, Martínez-Anaya D, Juárez-Villegas L, Zapata Tarrés M, López Santiago N, Pérez-Vera P. CRLF2 and IKZF1 abnormalities in childhood hematological malignancies other than B-cell Acute Lymphoblastic Leukemia. Leuk Lymphoma 2024; 65:1853-1863. [PMID: 39034479 DOI: 10.1080/10428194.2024.2378817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Rearrangements and overexpression of CRLF2 are hallmarks of poor outcomes in BCR::ABL1-like B-ALL, and CRLF2 overexpression is a high-risk marker in T-ALL. However, CRLF2 alterations in pediatric hematologic malignancies other than B-ALL have not been reported. In this study, we analyzed the CRLF2 overexpression, rearrangements (P2RY8::CRLF2 and IGH::CRLF2), activation (pSTAT5 and pERK), and the expression of dominant-negative IKZF1 isoforms (Ik6 and Ik8), implied in CRLF2 dysregulation, in 16 pediatric patients (AML, n = 9; T-ALL, n = 3; LBL, n = 2; HL, n = 1; cytopenia, n = 1). A high frequency of CRLF2 rearrangements and overexpression was found in the 16 patients: 28.6% (4/14) showed CRLF2 overexpression, 93.8% (15/16) were positive for CRLF2 total protein (cell-surface and/or cytoplasmic), while 62.5% (10/16) were positive for P2RY8::CRLF2 and 12.6% (2/16) for IGH::CRLF2. In addition, 43.8% (7/16) expressed Ik6 and Ik8 isoforms. However, only a few patients were positive for the surrogate markers pSTAT5 (14.3%; 2/14) and pERK (21.4%; 3/14).
Collapse
Affiliation(s)
- Dafné Moreno-Lorenzana
- CONAHCYT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Rocío Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Adriana Reyes-León
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Daniel Martínez-Anaya
- CONAHCYT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Luis Juárez-Villegas
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Martha Zapata Tarrés
- Coordinación de Investigación, Fundación IMSS, A.C., Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| |
Collapse
|
10
|
Burkart M, Dinner S. Advances in the treatment of Philadelphia chromosome negative acute lymphoblastic leukemia. Blood Rev 2024; 66:101208. [PMID: 38734488 DOI: 10.1016/j.blre.2024.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
There have been major paradigm shifts in the treatment of Philadelphia chromosome negative (Ph-) acute lymphoblastic leukemia (ALL) in the last decade with the introduction of new immunotherapies and targeted agents, adoption of pediatric-type chemotherapy protocols in younger adults as well as chemotherapy light approaches in older adults and the incorporation of measurable residual disease (MRD) testing to inform clinical decision making. With this, treatment outcomes in adult Ph- ALL have improved across all age groups. However, a subset of patients will still develop relapsed disease, which can be challenging to treat and associated with poor outcomes. Here we review the treatment of Ph- ALL in both younger and older adults, including the latest advancements and future directions.
Collapse
Affiliation(s)
- Madelyn Burkart
- Wake Forest Baptist Health, Winston Salem, NC, United States of America
| | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States of America.
| |
Collapse
|
11
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
12
|
Cheng J, Svoronos N, Pan M, Smith S, Vatsayan A, Jacobsohn D, Wistinghausen B. Philadelphia chromosome-like B-acute lymphoblastic leukemia and disseminated juvenile xanthogranulomatosis with shared KRAS mutation. Pediatr Blood Cancer 2024; 71:e30963. [PMID: 38523244 DOI: 10.1002/pbc.30963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Affiliation(s)
- Jinjun Cheng
- Department of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Nikolaos Svoronos
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, District of Columbia, USA
| | - Miao Pan
- Department of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Shelby Smith
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, District of Columbia, USA
| | - Anant Vatsayan
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, District of Columbia, USA
| | - David Jacobsohn
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, District of Columbia, USA
| | - Birte Wistinghausen
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorder, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Baghdadi H, Soleimani M, Zavvar M, Bahoush G, Poopak B. Combination of minimal residual disease on day 15 and copy number alterations results in BCR-ABL1-negative pediatric B-ALL: A powerful tool for prediction of induction failure. Cancer Genet 2024; 282-283:27-34. [PMID: 38183785 DOI: 10.1016/j.cancergen.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
The current genomic abnormalities provide prognostic value in pediatric Acute Lymphoblastic Leukemia (ALL). Furthermore, Copy Number Alteration (CNA) has recently been used to improve the genetic risk stratification of patients. This study aimed to evaluate CNA profiles in BCR-ABL1-negative pediatric B-ALL patients and correlate the data with Minimal Residual Disease (MRD) results after induction therapy. We examined 82 bone marrow samples from pediatric BCR-ABL1-negative B-ALL using the MLPA method for the most common CNAs, including IKZF1, CDKN2A/B, PAX5, RB1, BTG1, ETV6, EBF1, JAK2, and PAR1 region. Subsequently, patients were followed-up by multiparameter Flow Cytometry for MRD (MFC-MRD) assessment on days 15 and 33 after induction. Data showed that 58.5 % of patients carried at least one gene deletion, whereas 41.7 % of them carried more than one gene deletion simultaneously. The most frequent gene deletions were CDKN2A/B, ETV6, and IKZF1 (30.5 %, 14.6 %, and 14.6 %, respectively), while the PAR1 region showed predominantly duplication (30.5 %). CDKN2A/B and IKZF1 were related to positive MRD results on day 15 (p = 0.003 and p = 0.007, respectively). The simultaneous presence of more than one deletion was significantly associated with high induction failure (p = 0.001). Also, according to the CNA profile criteria, the CNA with poor risk (CNA-PR) profile was statistically associated with older age and positive MRD results on day 15 (p = 0.014 and p = 0.013, respectively). According to our results, the combined use of CNAs with MRD results on day 15 can predict induction failure and be helpful in ameliorating B-ALL risk stratification and treatment approaches.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran
| | - Gholamreza Bahoush
- Department of Pediatrics, Ali-Asghar Children Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14665354, Iran
| | - Behzad Poopak
- Islamic Azad University, Tehran Medical Sciences Branch, Tehran 193951495, Iran.
| |
Collapse
|
14
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
15
|
Gil JV, Miralles A, de las Heras S, Such E, Avetisyan G, Díaz-González Á, Santiago M, Fuentes C, Fernández JM, Lloret P, Navarro I, Montesinos P, Llop M, Barragán E. Comprehensive detection of CRLF2 alterations in acute lymphoblastic leukemia: a rapid and accurate novel approach. Front Mol Biosci 2024; 11:1362081. [PMID: 38370004 PMCID: PMC10869515 DOI: 10.3389/fmolb.2024.1362081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction: Acute lymphoblastic leukemia (ALL) is a prevalent childhood cancer with high cure rate, but poses a significant medical challenge in adults and relapsed patients. Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype, with approximately half of cases characterized by CRLF2 overexpression and frequent concomitant IKZF1 deletions. Methods: To address the need for efficient, rapid, and cost-effective detection of CRLF2 alterations, we developed a novel RT-qPCR technique combining SYBR Green and highresolution melting analysis on a single plate. Results: The method successfully identified CRLF2 expression, P2RY8::CRLF2 fusions, and CRLF2 and JAK2 variants, achieving a 100% sensitivity and specificity. Application of this method across 61 samples revealed that 24.59% exhibited CRLF2 overexpression, predominantly driven by IGH::CRLF2 (73.33%). High Resolution Melting analysis unveiled concurrent CRLF2 or JAK2 variants in 8.19% of samples, as well as a dynamic nature of CRLF2 alterations during disease progression. Discussion: Overall, this approach provides an accurate identification of CRLF2 alterations, enabling improved diagnostic and facilitating therapeutic decision-making.
Collapse
Affiliation(s)
- José Vicente Gil
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Alberto Miralles
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Sandra de las Heras
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Esperanza Such
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Hematology Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, Madrid, Spain
| | - Gayane Avetisyan
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Álvaro Díaz-González
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Marta Santiago
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Carolina Fuentes
- Accredited Research Group on Clinical and Translational Cancer Research, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Onco-Hematology Unit, Pediatrics Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - José María Fernández
- Accredited Research Group on Clinical and Translational Cancer Research, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Onco-Hematology Unit, Pediatrics Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Pilar Lloret
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Hematology Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Irene Navarro
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Hematology Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Pau Montesinos
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Hematology Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Marta Llop
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, Madrid, Spain
- Molecular Biology Unit, Clinical Analysis Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Eva Barragán
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, Madrid, Spain
- Molecular Biology Unit, Clinical Analysis Service, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| |
Collapse
|
16
|
Xu G, Zeng Z, Zhang Z, Zhang X, Wang M, Xiao Q, Li J, Xie X, He S, Fu H, Liu Y, Yang Z, Chen Y, Shi J, Wang B, Qiu H, Zhou Q, Liu Y, Chen S. The novel TERF2::PDGFRB fusion gene enhances tumorigenesis via PDGFRB/STAT5 signalling pathways and sensitivity to TKI in ph-like ALL. J Cell Mol Med 2024; 28:e18114. [PMID: 38323741 PMCID: PMC10844707 DOI: 10.1111/jcmm.18114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Patients with Philadelphia chromosome-like acute lymphoblastic leukaemia (Ph-like ALL) often face a grim prognosis, with PDGFRB gene fusions being commonly detected in this subgroup. Our study has unveiled a newfound fusion gene, TERF2::PDGFRB, and we have found that patients carrying this fusion gene exhibit sensitivity to dasatinib. Ba/F3 cells harbouring the TERF2::PDGFRB fusion display IL-3-independent cell proliferation through activation of the p-PDGFRB and p-STAT5 signalling pathways. These cells exhibit reduced apoptosis and demonstrate sensitivity to imatinib in vitro. When transfused into mice, Ba/F3 cells with the TERF2::PDGFRB fusion gene induce tumorigenesis and a shortened lifespan in cell-derived graft models, but this outcome can be improved with imatinib treatment. In summary, we have identified the novel TERF2::PDGFRB fusion gene, which exhibits oncogenic potential both in vitro and in vivo, making it a potential therapeutic target for tyrosine kinase inhibitors (TKIs).
Collapse
Affiliation(s)
- Guo‐fa Xu
- Department of HematologyChongqing University FuLing Hospital, Chongqing, Central Laboratory, Chongqing University FuLing HospitalChongqingChina
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Zhao Zeng
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
| | - Zhi‐bo Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
| | - Xiao‐mei Zhang
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Man Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
| | - Qing Xiao
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Jun Li
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiao‐qing Xie
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Sanxiu He
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Hui‐hui Fu
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yi Liu
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Zai‐liang Yang
- Department of HematologyChongqing University FuLing Hospital, Chongqing, Central Laboratory, Chongqing University FuLing HospitalChongqingChina
| | - Yu Chen
- Department of HematologyThe Second Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Jie Shi
- Department of HematologyAffiliated Zhongshan Hospital of Dalian UniversityDalianChina
| | - Biao Wang
- Department of HematologyThe Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou)ChangzhouChina
| | - Hui‐ying Qiu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
| | - Qi Zhou
- Department of HematologyChongqing University FuLing Hospital, Chongqing, Central Laboratory, Chongqing University FuLing HospitalChongqingChina
| | - Yao Liu
- Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Su‐ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
| |
Collapse
|
17
|
Rabin KR, Devidas M, Chen Z, Ji L, Kairalla J, Hitzler JK, Yang JJ, Carroll AJ, Heerema NA, Borowitz MJ, Wood BL, Roberts KG, Mullighan CG, Harvey RC, Chen IM, Willman CL, Reshmi SC, Gastier-Foster JM, Bhojwani D, Rheingold SR, Maloney KW, Mattano LA, Larsen EC, Schore RJ, Burke MJ, Salzer WL, Winick NJ, Carroll WL, Raetz EA, Loh ML, Hunger SP, Angiolillo AL. Outcomes in Children, Adolescents, and Young Adults With Down Syndrome and ALL: A Report From the Children's Oncology Group. J Clin Oncol 2024; 42:218-227. [PMID: 37890117 PMCID: PMC10824380 DOI: 10.1200/jco.23.00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Patients with Down syndrome (DS) and B-ALL experience increased rates of relapse, toxicity, and death. We report results for patients with DS B-ALL enrolled on Children's Oncology Group trials between 2003 and 2019. METHODS We analyzed data for DS (n = 743) and non-DS (n = 20,067) patients age 1-30 years on four B-ALL standard-risk (SR) and high-risk trials. RESULTS Patients with DS exhibited more frequent minimal residual disease (MRD) ≥0.01% at end induction (30.8% v 21.5%; P < .001). This difference persisted at end consolidation only in National Cancer Institute (NCI) high-risk patients (34.0% v 11.7%; P < .0001). Five-year event-free survival (EFS) and overall survival (OS) were significantly poorer for DS versus non-DS patients overall (EFS, 79.2% ± 1.6% v 87.5% ± 0.3%; P < .0001; OS, 86.8% ± 1.4% v 93.6% ± 0.2%; P < .0001), and within NCI SR and high-risk subgroups. Multivariable Cox regression analysis of the DS cohort for risk factors associated with inferior EFS identified age >10 years, white blood count >50 × 103/μL, and end-induction MRD ≥0.01%, but not cytogenetics or CRLF2 overexpression. Patients with DS demonstrated higher 5-year cumulative incidence of relapse (11.5% ± 1.2% v 9.1% ± 0.2%; P = .0008), death in remission (4.9% ± 0.8% v 1.7% ± 0.1%; P < .0001), and induction death (3.4% v 0.8%; P < .0001). Mucositis, infections, and hyperglycemia were significantly more frequent in all patients with DS, while seizures were more frequent in patients with DS on high-risk trials (4.1% v 1.8%; P = .005). CONCLUSION Patients with DS-ALL exhibit an increased rate of relapse and particularly of treatment-related mortality. Novel, less-toxic therapeutic strategies are needed to improve outcomes.
Collapse
Affiliation(s)
| | | | | | - Lingyun Ji
- University of Southern California, Los Angeles, CA
| | | | | | - Jun J. Yang
- St Jude Children's Research Hospital, Memphis, TN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wanda L. Salzer
- US Army Medical Research and Materiel Command, Fort Detrick, MD
| | | | | | | | | | | | | |
Collapse
|
18
|
Jerez J, Goldschmidt V, Guerra MC, Briones JL, Torres C, Hidalgo S, Gazitúa R. Epidemiological and clinical characteristics of adult acute lymphoblastic leukemia patients in Chile: A single-center analysis. Leuk Res Rep 2023; 21:100405. [PMID: 38179336 PMCID: PMC10764242 DOI: 10.1016/j.lrr.2023.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024] Open
Abstract
Background Acute lymphoblastic leukemia represents 20% of acute leukemias in adults. Currently, there is limited data in Chile regarding the clinical, cytogenetic, and prognostic characteristics of this condition. Methods This is a retrospective, observational, and descriptive study of 67 patients treated for acute lymphoblastic leukemia at the Arturo Lopez Perez Foundation between 2018 and 2021. The main objective is to evaluate epidemiological and clinical characteristics, as well as identifying factors associated with improved overall survival and/or progression-free survival. Results 88% of the cases were B-lineage, mainly the common B phenotype. Cytogenetic analysis was performed in less than 50% of the patients, with lower yield than expected according to the literature. Molecular testing was performed in 86.5% of the patients, with the most frequent alteration being BCR-ABL. No study was performed to search for Ph-like abnormalities. The rate of complete response after induction was 83.3%, the majority of patients having negative minimal residual disease. Only 12% of the patients received consolidation with allogenic bone marrow transplant. At 2 years, the overall survival was 69% and the progression-free survival was 59%. Conclusion The results in terms of overall survival and progression-free survival are similar to those reported in the literature. Important diagnostic gaps prevent adequate prognostic characterization. Allogeneic consolidation transplantation was performed in a lower percentage than expected, highlighting the national deficit in access to this treatment.
Collapse
Affiliation(s)
- Joaquín Jerez
- Department of Hematology Fundación Arturo López Pérez, Chile
- Resident of Hematology, Universidad de los Andes, Chile
| | | | | | | | - Carlos Torres
- Department of Hematology Fundación Arturo López Pérez, Chile
| | | | | |
Collapse
|
19
|
Molina JC. Acute lymphoblastic leukemia in young adults: which up-front treatment? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:573-580. [PMID: 38066875 PMCID: PMC10727055 DOI: 10.1182/hematology.2023000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Significant improvements have occurred for adolescent and young adult (AYA) B-cell acute lymphoblastic leukemia (B-ALL) patients following the widespread adoption of "pediatric-inspired" treatment regimens for AYA patients cared for in adult oncology settings. However, for AYA patients, aged 15 to 39, an outcomes gap remains in B-ALL, necessitating the incorporation of novel therapies into up-front treatment regimens. As a result, clinical trial enrollment remains the current standard of care for AYA B-ALL across disease subtypes when available and accessible. Currently, several up-front trials are looking to incorporate the use of inotuzumab, blinatumomab, and chimeric antigen receptor T-cell therapy into existing chemotherapy backbones for AYA patients, as well as tyrosine kinase inhibitors for both Philadelphia-positive (Ph+) and Ph-like B-ALL. In addition to ongoing attempts to improve up-front treatments by incorporating immunotherapy and targeted approaches, the increased use of next generation sequencing for measurable residual disease evaluation has led to superior risk-stratification and a decreased need to pursue consolidative hematopoietic stem cell transplantation during the first complete remission for many patients.
Collapse
Affiliation(s)
- John C. Molina
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
20
|
Gupta DG, Varma N, Abdulkadir SA, Singh P, Sachdeva MUS, Naseem S, Siddiqui MR, Bose P, Binota J, Malhotra P, Khadwal A, Varma S. Identification and validation of the optimal reference genes for standardizing the gene expression profiling diagnostic panel of Ph-like B-lineage acute lymphoblastic leukemia. Clin Exp Med 2023; 23:4539-4551. [PMID: 37470909 DOI: 10.1007/s10238-023-01131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Gene expression profiling is the criterion standard for recognizing Ph-like ALL signatures among B-ALLs. The prerequisite of GEP is the accurate normalization of target genes with stable expression of housekeeping genes in a quantitative PCR. HKGs exhibit differential expression in the different experimental conditions and affect the target genes' expression, leading to imprecise qPCR results. The selection of stable HKGs is crucial in GEP experiments, especially in identifying high-risk Ph-like ALL cases. We have evaluated the expression stability of nine HKGs (GAPDH, ACTB, GUSB, RNA18S, EEF2, PGK1, B2M, TBP and ABL1) in identified Ph-like ALLs and Ph-negative (n = 23 each) using six algorithms, 4 traditional softwares; geNorm, BestKeeper, NormFinder, Delta Cq value method, and two algorithms, RefFinderTM and ComprFinder. Further, we have validated the expression of 8 overexpressed normalized genes in Ph-like ALL cases (JCHAIN, CA6, MUC4, SPATS2L, BMPR1B, CRLF2, ADGRF1 and NRXN3). GeNorm, BestKeeper, NormFinder, Delta Cq value method, RefFinderTM and ComprFinder algorithm analysis revealed that EEF2, GAPDH, and PGK1 form the best representative HKGs in Ph-like ALL cases, while RNA18s, ß-actin, and ABL1 in Ph-negative ALLs. Lastly, we performed a correlation analysis and found that the combination of EEF2, GAPDH, and PGK1 represents the best combination with a very high correlation in Ph-like ALL cases. This is the first report that shows EEF2, GAPDH, and PGK1 are the best HKG genes and can be used in the diagnostic panel of Ph-like ALL cases using qPCR at baseline diagnosis.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sarki Abba Abdulkadir
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Parmod Singh
- Department of Anatomy, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Mohammad Rizwan Siddiqui
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Khadwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Subhash Varma
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
21
|
Antić Ž, Lentes J, Bergmann AK. Cytogenetics and genomics in pediatric acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2023; 36:101511. [PMID: 38092485 DOI: 10.1016/j.beha.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023]
Abstract
The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).
Collapse
Affiliation(s)
- Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
22
|
Zhang Z, Zhu Y, Wang Z, Zeng Z, Wen L, Zhang L, Chen S. Case Report: A novel FGFR1 fusion in acute B-lymphoblastic leukemia identified by RNA sequencing. Front Oncol 2023; 13:1276695. [PMID: 38023217 PMCID: PMC10646441 DOI: 10.3389/fonc.2023.1276695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
8p11 myeloproliferative syndrome is a rare hematological malignancy with aggressive course caused by the various translocation of FGFR1. In this study, a novel FGFR1 fusion was identified by RNA sequencing in a 28-year-old male patient with acute B-lymphoblastic leukemia. The patient harbors an in-frame fusion between KIF5B exon 15 and FGFR1 exon 10. The FGFR1 fusion and its protein expression was validated by Sanger sequencing and Western blot. Meanwhile, cytogenetic analysis reported a normal karyotype and targeted DNA sequencing identified no driver mutations, respectively. Despite he achieved complete remission after induction regimen, a relapse occurred and he became refractory to chemotherapy, and salvage haploidentical hematopoietic stem cell transplantation failed to control the progressive disease. In conclusion, we present the first case of KIF5B-FGFR1 fusion in hematological malignancy. These findings extend the spectrum of translocation in 8p11 myeloproliferative syndrome, and demonstrate the great prospect of RNA sequencing in clinical practice again.
Collapse
Affiliation(s)
- Zhibo Zhang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yiyan Zhu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Wang
- Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Zhao Zeng
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Wen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ling Zhang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Pourhassan H, Agrawal V, Pullarkat V, Aldoss I. Positioning blinatumomab in the frontline of adult B-cell acute lymphoblastic leukemia treatment. Front Oncol 2023; 13:1237031. [PMID: 37664035 PMCID: PMC10470626 DOI: 10.3389/fonc.2023.1237031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Blinatumomab is a bispecific T cell engager that has shown efficacy in relapsed/refractory Philadelphia chromosome (Ph)-positive and Ph-negative acute lymphoblastic leukemia (ALL). Considering its favorable safety and activity in advanced ALL, blinatumomab as a targeted immunotherapy is fast gaining a frontline position in the ALL treatment paradigm. There have been multiple completed and ongoing studies showing significant promise with improved response rates and survival outcomes and decreased treatment toxicity and need for multi-agent chemotherapy regimens. The early use of blinatumomab has established success in Ph-negative and Ph-positive B-ALL, and this has extended to older adults with ALL who have historically had substantially inferior outcomes compared to their pediatric and young adult counterparts. Herein we will review the current data describing the early use of blinatumomab in newly diagnosed adults with B-cell ALL and future directions.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
24
|
González-Arreola RM, García-Romero A, Magaña-Torres MT, González-García JR. A novel approach for direct detection of the IGH::CRLF2 gene fusion by fluorescent in situ hybridization. Mol Cytogenet 2023; 16:19. [PMID: 37574565 PMCID: PMC10423412 DOI: 10.1186/s13039-023-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND High expression of the Cytokine Receptor-Like Factor 2 (CRLF2) gene has been observed in patients with acute lymphoblastic leukemia BCR-ABL1-like subtype. Currently, there is no commercial system available for the direct detection of the IGH::CRLF2 fusion by fluorescent in situ hybridization (FISH), as there are for many other leukemia-related gene fusions. In an effort to verify the IGH::CRLF2 fusion, some researchers prepare home-grown FISH probes from bacterial artificial chromosome clones flanking the IGH and CRLF2 genes, which is the best alternative to confirm the fusion, however difficult to reproduce in most cytogenetic laboratories. RESULTS For the direct observation of the IGH::CRLF2 gene fusion we designed a methodological approach requiring the two commercially available IGH and CRLF2 break-apart probes. CONCLUSIONS Our methodological approach allows direct visualization of the IGH::CRLF2 gene fusion and has the potential to be used for identification of other gene fusions.
Collapse
Affiliation(s)
- Rosa María González-Arreola
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco Mexico
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Sierra Mojada #800, Colonia Independencia, CP 44340 Guadalajara, Jalisco Mexico
| | - Adriana García-Romero
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco Mexico
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Sierra Mojada #800, Colonia Independencia, CP 44340 Guadalajara, Jalisco Mexico
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Sierra Mojada #800, Colonia Independencia, CP 44340 Guadalajara, Jalisco Mexico
| | - Juan Ramón González-García
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Sierra Mojada #800, Colonia Independencia, CP 44340 Guadalajara, Jalisco Mexico
| |
Collapse
|
25
|
Rubinstein JD, O’Brien MM. Inotuzumab ozogamicin in B-cell precursor acute lymphoblastic leukemia: efficacy, toxicity, and practical considerations. Front Immunol 2023; 14:1237738. [PMID: 37600823 PMCID: PMC10435844 DOI: 10.3389/fimmu.2023.1237738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Inotuzumab ozogamicin (InO) is an antibody drug conjugate composed of a humanized monoclonal antibody targeting the cell surface receptor CD22 coupled to a cytotoxic calicheamicin payload via an acid labile linker. InO has shown significant activity in relapsed and refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in both single agent and combination chemotherapy regimens in adult and pediatric trials. Its use in newly diagnosed elderly patients has also been established while clinical trials investigating its use in newly diagnosed pediatric patients and fit adults are ongoing. Notable toxicities include sinusoidal obstruction syndrome (SOS), particularly in patients who undergo hematopoietic stem cell transplantation (HSCT) after InO as well as myelosuppression and B-cell aplasia which confer increased infection risk, particularly in combination with cytotoxic chemotherapy. In the relapsed/refractory (R/R) setting, the planned subsequent curative therapy modality must be considered when using InO to mitigate SOS risk if proceeding to HSCT and account for potential B-cell aplasia if proceeding to chimeric antigen receptor CAR-T therapy. Studies exploring mechanisms of resistance or failure of InO are ongoing but modulation or loss CD22 expression, alternative CD22 splicing, and high Bcl-2 expression have been implicated. In this review, we will summarize the currently available data on InO, with an emphasis on pediatric trials, and explore future directions including combinatorial therapy.
Collapse
Affiliation(s)
- Jeremy D. Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maureen M. O’Brien
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
26
|
Płotka A, Przybyłowicz-Chalecka A, Korolczuk M, Kanduła Z, Ratajczak B, Kiernicka-Parulska J, Mierzwa A, Godziewska K, Jarmuż-Szymczak M, Gil L, Lewandowski K. BCR::ABL1-like acute lymphoblastic leukaemia: a single institution experience on identification of potentially therapeutic targetable cases. Mol Cytogenet 2023; 16:14. [PMID: 37400842 DOI: 10.1186/s13039-023-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND BCR::ABL1-like acute lymphoblastic leukaemia (BCR::ABL1-like ALL) is characterized by inferior outcomes. Current efforts concentrate on the identification of molecular targets to improve the therapy results. The accessibility to next generation sequencing, a recommended diagnostic method, is limited. We present our experience in the BCR::ABL1-like ALL diagnostics, using a simplified algorithm. RESULTS Out of 102 B-ALL adult patients admitted to our Department in the years 2008-2022, 71 patients with available genetic material were included. The diagnostic algorithm comprised flow cytometry, fluorescent in-situ hybridization, karyotype analysis and molecular testing with high resolution melt analysis and Sanger Sequencing. We recognized recurring cytogenetic abnormalities in 32 patients. The remaining 39 patients were screened for BCR::ABL1-like features. Among them, we identified 6 patients with BCR::ABL1-like features (15.4%). Notably, we documented CRLF2-rearranged (CRLF2-r) BCR::ABL1-like ALL occurrence in a patient with long-term remission of previously CRLF2-r negative ALL. CONCLUSIONS An algorithm implementing widely available techniques enables the identification of BCR::ABL1-like ALL cases in settings with limited resources.
Collapse
Affiliation(s)
- Anna Płotka
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland.
| | - Anna Przybyłowicz-Chalecka
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Maria Korolczuk
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Zuzanna Kanduła
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Błażej Ratajczak
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Jolanta Kiernicka-Parulska
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Mierzwa
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Godziewska
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Małgorzata Jarmuż-Szymczak
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Lewandowski
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
27
|
Gupta DG, Varma N, Sreedharanunni S, Abdulkadir SA, Naseem S, Sachdeva MUS, Binota J, Bose P, Malhotra P, Khadwal A, Varma S. 'Evaluation of adverse prognostic gene alterations & MRD positivity in BCR::ABL1-like B-lineage acute lymphoblastic leukaemia patients, in a resource-constrained setting. Br J Cancer 2023; 129:143-152. [PMID: 37156894 PMCID: PMC10307811 DOI: 10.1038/s41416-023-02294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Early detection of BCR::ABL1-like ALL could impact treatment management and improve the overall survival/outcome. BCR::ABL1-like ALL cases are characterised by diverse genetic alterations activating cytokine receptors and kinase signalling. Its detection is still an unmet need in low-middle-income countries due to the unavailability of a patented TLDA assay. METHODS This study's rationale is to identify BCR::ABL1-like ALLs using the PHi-RACE classifier, followed by the characterisation of underlying adverse genetic alterations in recurrent gene abnormalities negative (RGAneg) B-ALLs (n = 108). RESULTS We identified 34.25% (37/108) BCR::ABL1-like ALLs using PHi-RACE classifier, characterised by TSLPR/CRLF2 expression (11.58%), IKZF1 (Δ4-7) deletion (18.9%) and chimeric gene fusions (34.61%). In overexpressed TSLPR/CRLF2 BCR::ABL1-like ALLs, we identified 33.33% (1/3) CRLF2::IGH and 33.33% (1/3) EPOR::IGH rearrangements with concomitant JAK2 mutation R683S (50%). We identified 18.91% CD13 (P = 0.02) and 27.02% CD33 (P = 0.05) aberrant myeloid markers positivity, which was significantly higher in BCR::ABL1-like ALLs compared to non-BCR::ABL1-like ALLs. MRD positivity was considerably higher (40% in BCR::ABL1-like vs. 19.29% in non-BCR::ABL1-like ALLs). CONCLUSIONS With this practical approach, we reported a high incidence of BCR::ABL1-like ALLs, and a lower frequency of CRLF2 alteration & associated CGFs. Recognising this entity, early at diagnosis is crucial to optimise personalised treatment strategies.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India.
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Sarki Abba Abdulkadir
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Alka Khadwal
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| |
Collapse
|
28
|
Palmi C, Bresolin S, Junk S, Fazio G, Silvestri D, Zaliova M, Oikonomou A, Scharov K, Stanulla M, Moericke A, Zimmermann M, Schrappe M, Buldini B, Bhatia S, Borkhardt A, Saitta C, Galbiati M, Bardini M, Lo Nigro L, Conter V, Valsecchi MG, Biondi A, te Kronnie G, Cario G, Cazzaniga G. Definition and Prognostic Value of Ph-like and IKZF1plus Status in Children With Down Syndrome and B-cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e892. [PMID: 37304931 PMCID: PMC10256328 DOI: 10.1097/hs9.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Children with Down syndrome have an augmented risk for B-cell acute lymphoblastic leukemia (DS-ALL), which is associated with lower survival than in non-DS-ALL. It is known that cytogenetic abnormalities common in childhood ALL are less frequent in DS-ALL, while other genetic aberrancies (ie, CRLF2 overexpression and IKZF1 deletions) are increased. A possible cause for the lower survival of DS-ALL that we herewith evaluated for the first time was the incidence and prognostic value of the Philadelphia-like (Ph-like) profile and the IKZF1plus pattern. These features have been associated with poor outcome in non-DS ALL and therefore introduced in current therapeutic protocols. Forty-six out of 70 DS-ALL patients treated in Italy from 2000 to 2014 displayed Ph-like signature, mostly characterized by CRLF2 (n = 33) and IKZF1 (n = 16) alterations; only 2 cases were positive for ABL-class or PAX5-fusion genes. Moreover, in an Italian and German joint cohort of 134 DS-ALL patients, we observed 18% patients positive for IKZF1plus feature. Ph-like signature and IKZF1 deletion were associated with poor outcome (cumulative incidence of relapse: 27.7 ± 6.8% versus 13 ± 7%; P = 0.04 and 35.2 ± 8.6% versus 17 ± 3.9%; P = 0.007, respectively), which further worsens when IKZF1 deletion was co-occurring with P2RY8::CRLF2, qualifying for the IKZF1plus definition (13/15 patients had an event of relapse or treatment-related death). Notably, ex vivo drug screening revealed sensitivity of IKZF1plus blasts for drugs active against Ph-like ALL such as Birinapant and histone deacetylase inhibitors. We provided data in a large setting of a rare condition (DS-ALL) supporting that these patients, not associated with other high-risk features, need tailored therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy
| | - Stefanie Junk
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marketa Zaliova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anja Moericke
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara Buldini
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Claudia Saitta
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Galbiati
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology and Oncology, Azienda Policlinico-San Marco, Catania, Italy
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- Statistics, University of Milan Bicocca, Monza, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Italy
| | - Geertruy te Kronnie
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
| | - Gunnar Cario
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| |
Collapse
|
29
|
Davis K, Sheikh T, Aggarwal N. Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol 2023; 40:202-215. [PMID: 37120350 DOI: 10.1053/j.semdp.2023.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
Tremendous strides have been made in the molecular and cytogenetic classification of acute lymphoblastic leukemia based on gene expression profiling data, leading to an expansion of entities in the recent International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias and 2022 WHO Classification of Tumours: Haematolymphoid Tumors, 5th edition. This increased diagnostic and therapeutic complexity can be overwhelming, and this review compares nomenclature differences between the ICC and WHO 5th edition publications, compiles key features of each entity, and provides a diagnostic algorithmic approach. In covering B-lymphoblastic leukemia (B-ALL), we divided the entities into established (those present in the revised 4th edition WHO) and novel (those added to either the ICC or WHO 5th edition) groups. The established B-ALL entities include B-ALL with BCR::ABL1 fusion, BCR::ABL1-like features, KMT2A rearrangement, ETV6::RUNX1 rearrangement, high hyperdiploidy, hypodiploidy (focusing on near haploid and low hypodiploid), IGH::IL3 rearrangement, TCF3::PBX1 rearrangement, and iAMP21. The novel B-ALL entities include B-ALL with MYC rearrangement; DUX4 rearrangement; MEF2D rearrangement; ZNF384 or ZNF362 rearrangement, NUTM1 rearrangement; HLF rearrangement; UBTF::ATXN7L3/PAN3,CDX2; mutated IKZF1 N159Y; mutated PAX5 P80R; ETV6::RUNX1-like features; PAX5 alteration; mutated ZEB2 (p.H1038R)/IGH::CEBPE; ZNF384 rearranged-like; KMT2A-rearranged-like; and CRLF2 rearrangement (non-Ph-like). Classification of T-ALL is complex with some variability in how the subtypes are defined in recent literature. It was classified as early T-precursor lymphoblastic leukemia/lymphoma and T-ALL, NOS in the WHO revised 4th edition and WHO 5th edition. The ICC added an entity into early T-cell precursor ALL, BCL11B-activated, and also added provisional entities subclassified based on transcription factor families that are aberrantly activated.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA
| | | | - Nidhi Aggarwal
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA.
| |
Collapse
|
30
|
Kovach AE, Raca G. Modern Classification and Management of Pediatric B-cell Leukemia and Lymphoma. Surg Pathol Clin 2023; 16:249-266. [PMID: 37149359 DOI: 10.1016/j.path.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Although pediatric hematopathology overlaps with that of adults, certain forms of leukemia and lymphoma, and many types of reactive conditions affecting the bone marrow and lymph nodes, are unique to children. As part of this series focused on lymphomas, this article (1) details the novel subtypes of lymphoblastic leukemia seen primarily in children and described since the 2017 World Health Organization classification and (2) discusses unique concepts in pediatric hematopathology, including nomenclature changes and evaluation of surgical margins in selected lymphomas.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| | - Gordana Raca
- Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Division of Genomic Medicine, Department of Pathology and Laboratory Medicine, Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
Tzankov A, Reichard KK, Hasserjian RP, Arber DA, Orazi A, Wang SA. Updates on eosinophilic disorders. Virchows Arch 2023; 482:85-97. [PMID: 36068374 DOI: 10.1007/s00428-022-03402-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
This review addresses changes and updates in eosinophilic disorders under the International Consensus Classification (ICC). The previous category of myeloid/lymphoid neoplasm with eosinophilia (M/LN-eo) and a specific gene rearrangement is changed to M/LN-eo with tyrosine kinase gene fusions to reflect the underlying genetic lesions. Two new members, M/LN-eo with ETV6::ABL1 fusion and M/LN-eo with various FLT3 fusions, have been added to the category; and M/LN-eo with PCM1::JAK2 and its genetic variants ETV6::JAK2 and BCR::JAK2 are recognized as a formal entity from their former provisional status. The updated understanding of the clinical and molecular genetic features of PDGFRA, PDGFRB and FGFR1 neoplasms is summarized. Clear guidance as to how to distinguish these fusion gene-associated disorders from the overlapping entities of Ph-like B-acute lymphoblastic leukemia (ALL), de novo T-ALL, and systemic mastocytosis is provided. Bone marrow morphology now constitutes one of the diagnostic criteria of chronic eosinophilic leukemia, NOS (CEL, NOS), and idiopathic hypereosinophilia/hypereosinophilic syndrome (HE/HES), facilitating the separation of a true myeloid neoplasm with characteristic eosinophilic proliferation from those of unknown etiology and not attributable to a myeloid neoplasm.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kaaren K Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, NY, Rochester, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, IL, Chicago, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sa A Wang
- Department of Hematopathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
32
|
Tran TH, Tasian SK. Clinical screening for Ph-like ALL and the developing role of TKIs. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:594-602. [PMID: 36485164 PMCID: PMC9821133 DOI: 10.1182/hematology.2022000357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a common subtype of B-lineage acute lymphoblastic leukemia (B-ALL) with increasing frequency across the age spectrum. Characterized by a kinase-activated gene expression profile and driven by a variety of genetic alterations involving cytokine receptors and kinases, Ph-like ALL is associated with high rates of residual disease and relapse in patients treated with conventional chemotherapy. In this case-based review, we describe the biology of the 2 major ABL-class and JAK pathway genetic subtypes of Ph-like ALL, discuss current diagnostic testing methodologies, and highlight targeted inhibitor and chemo/immunotherapy approaches under clinical investigation in children, adolescents, and adults with these high-risk leukemias.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
33
|
Yu CH, Wu G, Chang CC, Jou ST, Lu MY, Lin KH, Chen SH, Wu KH, Huang FL, Cheng CN, Chang HH, Hedges D, Wang JL, Yen HJ, Li MJ, Chou SW, Hung CT, Lin ZS, Lin CY, Chen HY, Ni YL, Hsu YC, Lin DT, Lin SW, Yang JJ, Pui CH, Yu SL, Yang YL. Sequential Approach to Improve the Molecular Classification of Childhood Acute Lymphoblastic Leukemia. J Mol Diagn 2022; 24:1195-1206. [PMID: 35963521 PMCID: PMC9667711 DOI: 10.1016/j.jmoldx.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
Identification of specific leukemia subtypes is a key to successful risk-directed therapy in childhood acute lymphoblastic leukemia (ALL). Although RNA sequencing (RNA-seq) is the best approach to identify virtually all specific leukemia subtypes, the routine use of this method is too costly for patients in resource-limited countries. This study enrolled 295 patients with pediatric ALL from 2010 to 2020. Routine screening could identify major cytogenetic alterations in approximately 69% of B-cell ALL (B-ALL) cases by RT-PCR, DNA index, and multiplex ligation-dependent probe amplification. STIL-TAL1 was present in 33% of T-cell ALL (T-ALL) cases. The remaining samples were submitted for RNA-seq. More than 96% of B-ALL cases and 74% of T-ALL cases could be identified based on the current molecular classification using this sequential approach. Patients with Philadelphia chromosome-like ALL constituted only 2.4% of the entire cohort, a rate even lower than those with ZNF384-rearranged (4.8%), DUX4-rearranged (6%), and Philadelphia chromosome-positive (4.4%) ALL. Patients with ETV6-RUNX1, high hyperdiploidy, PAX5 alteration, and DUX4 rearrangement had favorable prognosis, whereas those with hypodiploid and KMT2A and MEF2D rearrangement ALL had unfavorable outcomes. With the use of multiplex ligation-dependent probe amplification, DNA index, and RT-PCR in B-ALL and RT-PCR in T-ALL followed by RNA-seq, childhood ALL can be better classified to improve clinical assessments.
Collapse
Affiliation(s)
- Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chia-Ching Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital and School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fang-Liang Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Neng Cheng
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dale Hedges
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinn-Li Wang
- Division of Hematology Oncology, Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University School of Medicine, Taipei, Taiwan
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Yu-Ling Ni
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun J Yang
- Department of Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Characterization of Philadelphia-like Pre-B Acute Lymphoblastic Leukemia: Experiences in Mexican Pediatric Patients. Int J Mol Sci 2022; 23:ijms23179587. [PMID: 36076986 PMCID: PMC9455471 DOI: 10.3390/ijms23179587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Ph-like subtypes with CRLF2 abnormalities are frequent among Hispano–Latino children with pre-B ALL. Therefore, there is solid ground to suggest that this subtype is frequent in Mexican patients. The genomic complexity of Ph-like subtype constitutes a challenge for diagnosis, as it requires diverse genomic methodologies that are not widely available in diagnostic centers in Mexico. Here, we propose a diagnostic strategy for Ph-like ALL in accordance with our local capacity. Pre-B ALL patients without recurrent gene fusions (104) were classified using a gene-expression profile based on Ph-like signature genes analyzed by qRT-PCR. The expressions of the CRLF2 transcript and protein were determined by qRT-PCR and flow cytometry. The P2RY8::CRLF2, IGH::CRLF2, ABL1/2 rearrangements, and Ik6 isoform were screened using RT-PCR and FISH. Surrogate markers of Jak2-Stat5/Abl/Ras pathways were analyzed by phosphoflow. Mutations in relevant kinases/transcription factors genes in Ph-like were assessed by target-specific NGS. A total of 40 patients (38.5%) were classified as Ph-like; of these, 36 had abnormalities associated with Jak2-Stat5 and 4 had Abl. The rearrangements IGH::CRLF2,P2RY8::CRLF2, and iAMP21 were particularly frequent. We propose a strategy for the detection of Ph-like patients, by analyzing the overexpression/genetic lesions of CRLF2, the Abl phosphorylation of surrogate markers confirmed by gene rearrangements, and Sanger sequencing.
Collapse
|
35
|
Kołodrubiec J, Kozłowska M, Irga-Jaworska N, Sędek Ł, Pastorczak A, Trelińska J, Młynarski W. Efficacy of ruxolitinib in acute lymphoblastic leukemia: A systematic review. Leuk Res 2022; 121:106925. [PMID: 35939887 DOI: 10.1016/j.leukres.2022.106925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk molecular subtype with a gene expression profile similar to Philadelphia-positive ALL, but not harboring the BCR-ABL1 gene fusion. We aimed to investigate the efficacy of target therapy with the Janus kinase inhibitor, ruxolitinib, in patients with Ph-like ALL and molecular signature of JAK-STAT signaling pathway. A systematic search of the literature was performed to identify reports concerning administration of ruxolitinib in Ph-like ALL patients. Additionally, Polish Pediatric ALL registries were searched for patients with Ph-like ALL treated with ruxolitinib. Extracted information included epidemiological background, somatic aberrations, treatment response, and patient outcome. After PubMed database search, twelve patients were identified, and one was identified in the Polish Pediatric ALL registry. In nine patients gene fusions affecting JAK2 (n = 7) and EPOR (n = 2) were detected. Surface overexpression of CRLF2 and IKZF1 deletions were observed in two and three patients, respectively. Induction failure occurred in all the patients. Therapy with ruxolitinib led to complete (n = 7) and partial (n = 2) remission, in three individuals no information was found. Based on the limited number of studies describing the efficacy of ruxolitinib as an additional compound administrated with standard ALL therapy, we conclude that this approach can be considered in patients with aberrations activating JAK-STAT pathway.
Collapse
Affiliation(s)
- Julia Kołodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Marta Kozłowska
- Department of Pediatric Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatric Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Trelińska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Peyam S, Bhatia P, Singh M, Sharma P, Sreedharanunni S, Sachdeva MS, Naseem S, Bansal D, Varma N, Thakur R, Trehan A. Clinico-hematological and Outcome Profile of Pediatric B-other-ALL and BCR::ABL1-like pre-B-ALL: An Integrated Genomic Study From North India. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e667-e679. [PMID: 35484080 DOI: 10.1016/j.clml.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE BCR::ABL1-like pre-B-ALL comprises a myriad of genetic lesions making molecular diagnosis challenging and expensive. Its frequency and outcome are less studied in resource-constraint settings. METHODS 154 pre-B-ALL cases (0-12 years) were enrolled as group 1 (37 cases of B-other-ALL) and group 2 (117 patients with recurrent translocations/ hyperdiploidy). Group 1 was evaluated for BCR::ABL1-like genetic lesions and copy-number abnormalities (CNAs) as per our published PACE approach supplemented with targeted RNA sequencing. RESULTS BCR::ABL1-like frequency was 5.2% (8 of 154) and 22% (8 of 37) with the PACE approach alone in the whole and B-other-ALL cohort, respectively. The addition of targeted RNA-sequencing had led to the frequency increasing to 9% (14 of 154) and 38% (14 of 37) in the whole and B-other-ALL cohort, respectively. P2RY8::CRLF2, IGH::CRLF2, and RCSD1::ABL1 were noted in 8 (57.1%), 4 (28.6%), and 2 (14.3%) patients, respectively. CNAs were noted in 56.7% (21 of 37) of patients. The BCR::ABL1-like group had a significantly higher initial WBC count of ≥ 50,000/mm3 (71.4%; P < .001) than group 2. The 4-year OS, EFS, RFS of group 1 was not statistically different from group 2, though RFS was borderline poor (84.2%, 51.7%, 56.9% Vs. 82.6%, 62.9%, 78% [P - .42, P - .53, P - .059]). The 4-year EFS and RFS for BCR::ABL1-like cases was 70.7% and 76.6%, respectively. CONCLUSIONS The sensitivity of detecting BCR::ABL1-like lesions had increased significantly from 22% using the PACE approach alone to 38% in B-other-ALLs with the integrated approach. Although outcomes were not statistically different, a higher percentage of relapses were noted in the B-other-ALL group.
Collapse
Affiliation(s)
- Srinivasan Peyam
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manupdesh S Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shano Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rozy Thakur
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
37
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
38
|
High occurrence of CRLF2 abnormalities in Mexican children with B-cell acute lymphoblastic leukemia. Cytokine 2022; 155:155896. [DOI: 10.1016/j.cyto.2022.155896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
|
39
|
Xu GF, Liu LM, Wang M, Zhang ZB, Xie JD, Qiu HY, Chen SN. Treatments of Ph-like acute lymphoblastic leukemia: a real-world retrospective analysis from a single large center in China. Leuk Lymphoma 2022; 63:2652-2662. [DOI: 10.1080/10428194.2022.2090550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Guo-fa Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
- Department of Hematology, Chongqing University FuLing Hospital, Chongqing, P.R. China
| | - Li-min Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Man Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Zhi-bo Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Jun-dan Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Hui-ying Qiu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Su-ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| |
Collapse
|
40
|
Curran E, Muffly L, Luskin MR. Innovative Approaches to the Management of Acute Lymphoblastic Leukemia Across the Age Spectrum. Am Soc Clin Oncol Educ Book 2022; 42:1-11. [PMID: 35503981 DOI: 10.1200/edbk_349647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adults compose nearly half of all patients diagnosed with acute lymphoblastic leukemia (ALL) and historically have had poor survival compared with pediatric patients. Recently approved therapies, such as monoclonal antibodies, CAR T-cell constructs, and next-generation tyrosine kinase inhibitors, have improved survival in relapsed and refractory ALL, and studies are now examining incorporating these treatments and others into the upfront setting. In adolescent and young adult patients, use of pediatric-based regimens has already improved survival compared with historical controls, and the addition of monoclonal antibodies, such as inotuzumab ozogamicin and blinatumomab, may further enhance this survival benefit. In older adults, approaches have centered on minimizing conventional chemotherapy to decrease toxicity by incorporating monoclonal antibodies and other novel therapies to increase efficacy. With the addition of tyrosine kinase inhibitors to chemotherapy for patients with Philadelphia chromosome-positive ALL, survival of this once poor-prognosis ALL subtype now approaches or exceeds outcomes of other subtypes of adult ALL. Further refinements in the backbone treatment regimen and optimal consolidation approaches will likely improve survival further. Although allogeneic hematopoietic stem cell transplant was previously routinely used as consolidation for adults with ALL, incorporation of measurable residual disease and other risk stratification strategies has enabled better identification of patients who will benefit from allogeneic hematopoietic stem cell transplant. Ongoing clinical trials investigating these approaches will continue the evolution of treatment approaches for adults with ALL, with further improvement in outcomes anticipated.
Collapse
Affiliation(s)
- Emily Curran
- University of Cincinnati, Division of Hematology and Oncology, Department of Internal Medicine and Department of Pediatrics, Cincinnati, OH
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Internal Medicine, Stanford University, Stanford, CA
| | - Marlise R Luskin
- Dana-Farber Cancer Institute, Division of Leukemia, Department of Medical Oncology, Boston, MA
| |
Collapse
|
41
|
Modvig S, Wernersson R, Øbro NF, Olsen LR, Christensen C, Rosthøj S, Degn M, Jürgensen GW, Madsen HO, Albertsen BK, Wehner PS, Rosthøj S, Lilljebjörn H, Fioretos T, Schmiegelow K, Marquart HV. High CD34 surface expression in BCP-ALL predicts poor induction therapy response and is associated with altered expression of genes related to cell migration and adhesion. Mol Oncol 2022; 16:2015-2030. [PMID: 35271751 PMCID: PMC9120905 DOI: 10.1002/1878-0261.13207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Minimal residual disease (MRD) constitutes the most important prognostic factor in B‐cell precursor acute lymphoblastic leukemia (BCP‐ALL). Flow cytometry is widely used in MRD assessment, yet little is known regarding the effect of different immunophenotypic subsets on outcome. In this study of 200 BCP‐ALL patients, we found that a CD34‐positive, CD38 dim‐positive, nTdT dim‐positive immunophenotype on the leukemic blasts was associated with poor induction therapy response and predicted an MRD level at the end of induction therapy (EOI) of ≥ 0.001. CD34 expression was strongly and positively associated with EOI MRD, whereas CD34‐negative patients had a low relapse risk. Further, CD34 expression increased from diagnosis to relapse. CD34 is a stemness‐associated cell‐surface molecule, possibly involved in cell adhesion/migration or survival. Accordingly, genes associated with stemness were overrepresented among the most upregulated genes in CD34‐positive leukemias, and protein–protein interaction networks showed an overrepresentation of genes associated with cell migration, cell adhesion, and negative regulation of apoptosis. The present work is the first to demonstrate a CD34‐negative immunophenotype as a good prognostic factor in ALL, whereas high CD34 expression is associated with poor therapy response and an altered gene expression profile reminiscent of migrating cancer stem‐like cells.
Collapse
Affiliation(s)
- Signe Modvig
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Wernersson
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Intomics A/S, Lyngby, Denmark
| | - Nina Friesgaard Øbro
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Christensen
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Susanne Rosthøj
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Matilda Degn
- Dept. of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
| | - Gitte Wullf Jürgensen
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hans O Madsen
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Klug Albertsen
- Dept. of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peder Skov Wehner
- H.C. Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Steen Rosthøj
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kjeld Schmiegelow
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Dept. of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Faculty of Medicine, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
42
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
43
|
Clinical impacts of copy number variations in B-cell differentiation and cell cycle control genes in pediatric B-cell acute lymphoblastic leukemia: a single centre experience. Radiol Oncol 2021; 56:92-101. [PMID: 34957727 PMCID: PMC8884847 DOI: 10.2478/raon-2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background IKZF1 gene deletions have been identified as a poor prognostic factor in pediatric B-cell acute lymphoblastic leukemia (B-ALL), especially in the presence of co-occurring deletions (IKZF1plus profile). This study aimed to determine the frequency of IKZF1 deletions and deletions in other B-cell differentiation and cell cycle control genes, and their prognostic impact in Slovenian pediatric B-ALL patients. Patients and methods We studied a cohort of 99 patients diagnosed with B-ALL from January 2012 to December 2020 and treated according to the ALL IC-BFM 2009 protocol. Eighty-eight bone marrow or peripheral blood samples were analysed for copy number variations (CNVs) using the SALSA MLPA P335 ALL-IKZF1 probemix. Results At least one CNV was detected in more than 65% of analysed samples. The most frequently altered genes were PAX5 and CDKN2A/B (30.7%, 26.1%, and 25.0%, respectively). Deletions in IKZF1 were present in 18.2% of analysed samples and were associated with an inferior 5-year event-free survival (EFS; 54.8% vs. 85.9%, p = 0.016). The IKZF1plus profile was identified in 12.5% of the analysed samples, and these patients had an inferior 5-year EFS than those with deletions in IKZF1 only and those without deletions (50.8% vs. 75.0% vs. 85.9%, respectively, p = 0.049). Overall survival (OS) was also worse in patients with the IKZF1plus profile than those with deletions in IKZF1 only and those without deletions (5-year OS 76.2% vs. 100% vs. 93.0%, respectively). However, the difference between the groups was not statistically significant. Conclusions Our results are in concordance with the results obtained in larger cooperative clinical trials. Copy number variations analysis using the SALSA MLPA kit is a reliable tool for initial diagnostic approach in children with B-ALL, even in smaller institutions in low- and middle-income countries.
Collapse
|
44
|
Gökbuget N. MRD in adult Ph/BCR-ABL-negative ALL: how best to eradicate? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:718-725. [PMID: 35158373 PMCID: PMC8824253 DOI: 10.1182/hematology.2021000224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evaluation of minimal residual disease (MRD) during first-line treatment and after salvage therapy is part of the standard management of acute lymphoblastic leukemia (ALL). Persistent or recurrent MRD is one of the most relevant prognostic factors and identifies a group of patients with resistance to standard chemotherapy. These patients have a high risk of relapse despite continued first-line therapy. Although stem cell transplantation (SCT) is an appropriate strategy, patients with high MRD show an increased relapse rate even after SCT. Approximately one-quarter of adult ALL patients develop an MRD failure, defined as MRD above 0.01% after standard induction and consolidation. The best time point and level of MRD for treatment modification are matters of debate. In order to eradicate MRD and thereby improve chances for a cure, new targeted compounds with different mechanisms of action compared to chemotherapy are being utilized. These compounds include monoclonal antibodies, chimeric antigen receptor T cells, and molecular targeted compounds. Essential factors for decision-making, available compounds, and follow-up therapies are discussed.
Collapse
Affiliation(s)
- Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
| |
Collapse
|
45
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Gupta DG, Varma N, Kumar A, Naseem S, Sachdeva MUS, Binota J, Bose P, Gupta M, Sonam P, Rana P, Malhotra P, Khadwal A, Trehan A, Varma S. PHi-RACE: PGIMER in-house rapid & cost effective classifier for the detection of BCR-ABL1-like acute lymphoblastic leukaemia in Indian patients. Leuk Lymphoma 2021; 63:633-643. [PMID: 34783280 DOI: 10.1080/10428194.2021.1999439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For the detection of BCR-ABL1-like ALL cases, two methodologies, specifically Gene expression profiling (GEP) or Next-generation targeted sequencing (NGS) and TaqMan based low-density (TLDA) card, are being used. NGS is very costly and TLDA is not widely commercially available. In this study, we quantified the expression of 8 selected overexpressed genes in 536 B-ALL cases. We identified 26.67% (143/536) BCR-ABL1-like ALLs using hierarchical clustering and principal component analysis. BCR-ABL1-like ALL cases were significantly older at presentation (p = 0.036) and had male preponderance (p = 0.047) compared to BCR-ABL1-negative ALL cases. MRD-positivity and induction failure were more commonest in BCR-ABL1-like ALL cases (30.55 vs.19.35% in BCR-ABL1-negative ALL cases). Lastly, we built a PHi-RACE classifier (sensitivity = 95.2%, specificity= 83.7%, AUC= 0.927) using logistic regression to detect BCR-ABL1-like ALL cases promptly at diagnosis. This classifier is beneficial for hematologists in quick decision making at baseline to start tailored treatment regimes.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Minakshi Gupta
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Sonam
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Palak Rana
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
47
|
Transcriptional and Mutational Profiling of B-Other Acute Lymphoblastic Leukemia for Improved Diagnostics. Cancers (Basel) 2021; 13:cancers13225653. [PMID: 34830809 PMCID: PMC8616234 DOI: 10.3390/cancers13225653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.
Collapse
|
48
|
Burke MJ, Devidas M, Chen Z, Salzer WL, Raetz EA, Rabin KR, Heerema NA, Carroll AJ, Gastier-Foster JM, Borowitz MJ, Wood BL, Winick NJ, Carroll WL, Hunger SP, Loh ML, Larsen EC. Outcomes in adolescent and young adult patients (16 to 30 years) compared to younger patients treated for high-risk B-lymphoblastic leukemia: report from Children's Oncology Group Study AALL0232. Leukemia 2021; 36:648-655. [PMID: 34725453 DOI: 10.1038/s41375-021-01460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
Adolescent and young adult (AYA) patients 16-30 years old with high-risk acute lymphoblastic leukemia (HR-ALL) have inferior outcomes compared to younger HR-ALL patients. AALL0232 was a Phase 3 randomized Children's Oncology Group trial for newly diagnosed HR B-ALL (1-30 years). Between 2004 and 2011, 3154 patients enrolled with 3040 eligible and evaluable for induction. AYA patients comprised 20% of patients (16-21 years, n = 551; 22-30 years, n = 46). 5-year event-free survival and overall survival was 65.4 ± 2.2% and 77.4 ± 2.0% for AYA patients compared to 78.1 ± 0.9% and 87.3 ± 0.7% for younger patients (p < 0.0001). Five-year cumulative incidence of relapse was 18.5 ± 1.7% for AYA patients and 13.5 ± 0.7% for younger patients (p = 0.006), largely due to increased marrow relapses (14.0 ± 1.5% versus 9.1 ± 0.6%; p < 0.0001). Additionally, induction failure rate was higher in AYA (7.2 ± 1.1% versus 3.5 ± 0.4%; p < 0.001) and post-induction remission deaths were significantly higher in AYA (5.7 ± 1.0% versus 2.4 ± 0.3%; p < 0.0001). AALL0232 enrolled the largest number of AYA B-ALL patients to date, demonstrating significantly inferior survival and greater rates of treatment-related toxicities compared to younger patients. Although treatment intensification has improved outcomes in younger patients, they have not been associated with the same degree of improvement for older patients.
Collapse
Affiliation(s)
- Michael J Burke
- Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee, WI, USA.
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiguo Chen
- Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Wanda L Salzer
- U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Elizabeth A Raetz
- Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Michael J Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Naomi J Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William L Carroll
- Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Eric C Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| |
Collapse
|
49
|
Afkhami M, Ally F, Pullarkat V, Pillai RK. Genetics and Diagnostic Approach to Lymphoblastic Leukemia/Lymphoma. Cancer Treat Res 2021; 181:17-43. [PMID: 34626353 DOI: 10.1007/978-3-030-78311-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the genetics and biology of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia, ALL) has advanced rapidly in the past decade with advances in sequencing and other molecular techniques. Besides recurrent chromosomal abnormalities detected by karyotyping or fluorescence in situ hybridization, these leukemias/lymphomas are characterized by a variety of mutations, gene rearrangements as well as copy number alterations. This is particularly true in the case of Philadelphia-like (Ph-like) ALL, a major subset which has the same gene expression signature as Philadelphia chromosome-positive ALL but lacks BCR-ABL1 translocation. Ph-like ALL is associated with a worse prognosis and hence its detection is critical. However, techniques to detect this entity are complex and are not widely available. This chapter discusses various subsets of ALL and describes our approach to the accurate classification and prognostication of these cases.
Collapse
Affiliation(s)
- Michelle Afkhami
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| | - Feras Ally
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Vinod Pullarkat
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Raju K Pillai
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
50
|
Abdel-Rahman ZH, Heckman MG, Anagnostou T, White LJ, Kloft-Nelson SM, Knudson RA, Alkhateeb HB, Sproat LZ, Khera N, Murthy HS, Ayala E, Hogan WJ, Roy V, Peterson JF, Kharfan-Dabaja MA, Ketterling RP, Litzow MR, Baughn LB, Patnaik M, Greipp PT, Foran JM. Identification of adult Philadelphia-like acute lymphoblastic leukemia using a FISH-based algorithm distinguishes prognostic groups and outcomes. Blood Cancer J 2021; 11:156. [PMID: 34548472 PMCID: PMC8455651 DOI: 10.1038/s41408-021-00538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- Zaid H Abdel-Rahman
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Theodora Anagnostou
- Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Launia J White
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Sara M Kloft-Nelson
- Cytogenetics Core Laboratory, Medical Genome Facility, Mayo Clinic, Rochester, MN, USA
| | - Ryan A Knudson
- Cytogenetics Core Laboratory, Medical Genome Facility, Mayo Clinic, Rochester, MN, USA
| | | | - Lisa Z Sproat
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Nandita Khera
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Hemant S Murthy
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Ernesto Ayala
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vivek Roy
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - James M Foran
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|