1
|
Fei F, Jariwala A, Pullarkat S, Loo E, Liu Y, Tizro P, Ali H, Otoukesh S, Amanam I, Artz A, Ally F, Telatar M, Nakamura R, Marcucci G, Afkhami M. Genomic Landscape of Myelodysplastic/Myeloproliferative Neoplasms: A Multi-Central Study. Int J Mol Sci 2024; 25:10214. [PMID: 39337700 PMCID: PMC11431978 DOI: 10.3390/ijms251810214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The accurate diagnosis and classification of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) are challenging due to the overlapping pathological and molecular features of myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN). We investigated the genomic landscape in different MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 97), atypical chronic myeloid leukemia (aCML; n = 8), MDS/MPN-unclassified (MDS/MPN-U; n = 44), and MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 12). Our study indicated that MDS/MPN is characterized by mutations commonly identified in myeloid neoplasms, with TET2 (52%) being the most frequently mutated gene, followed by ASXL1 (38.7%), SRSF2 (34.7%), and JAK2 (19.7%), among others. However, the distribution of recurrent mutations differs across the MDS/MPN subtypes. We confirmed that specific gene combinations correlate with specific MDS/MPN subtypes (e.g., TET2/SRSF2 in CMML, ASXL1/SETBP1 in aCML, and SF3B1/JAK2 in MDS/MPN-RS-T), with MDS/MPN-U being the most heterogeneous. Furthermore, we found that older age (≥65 years) and mutations in RUNX1 and TP53 were associated with poorer clinical outcomes in CMML (p < 0.05) by multivariate analysis. In MDS/MPN-U, CBL mutations (p < 0.05) were the sole negative prognostic factors identified in our study by multivariate analysis (p < 0.05). Overall, our study provides genetic insights into various MDS/MPN subtypes, which may aid in diagnosis and clinical decision-making for patients with MDS/MPN.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (A.J.)
| | - Amar Jariwala
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (A.J.)
- Fulgent Oncology, 4399 Santa Anita Ave, El Monte, CA 91731, USA
| | - Sheeja Pullarkat
- Department of Pathology, Division of Hematopathology, University of Los Angeles Medical Center, Los Angeles, CA 90095, USA
| | - Eric Loo
- Department of Pathology, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA
| | - Parastou Tizro
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (A.J.)
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Feras Ally
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Milhan Telatar
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (A.J.)
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (A.J.)
| |
Collapse
|
2
|
Mahmud M, Vasireddy S, Gowin K, Amaraneni A. Myeloproliferative Neoplasms: Contemporary Review and Molecular Landscape. Int J Mol Sci 2023; 24:17383. [PMID: 38139212 PMCID: PMC10744078 DOI: 10.3390/ijms242417383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Myelofibrosis (MF), Myeloproliferative neoplasms (MPNs), and MDS/MPN overlap syndromes have a broad range of clinical presentations and molecular abnormalities, making their diagnosis and classification complex. This paper reviews molecular aberration, epigenetic modifications, chromosomal anomalies, and their interactions with cellular and other immune mechanisms in the manifestations of these disease spectra, clinical features, classification, and treatment modalities. The advent of new-generation sequencing has broadened the understanding of the genetic factors involved. However, while great strides have been made in the pharmacological treatment of these diseases, treatment of advanced disease remains hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Muftah Mahmud
- Department of Medicine, Midwestern University Internal Medicine Residency Consortium, Cottonwood, AZ 86326, USA
| | - Swati Vasireddy
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85701, USA
| | - Krisstina Gowin
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| | - Akshay Amaraneni
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| |
Collapse
|
3
|
Decamp M, Klein E, Godon C, Lestringant V, Roynard P, Theisen O, Jimenez-Pocquet M, Roche-Lestienne C, Bidet A, Veronese L. Cytogenetics in the management of myeloproliferative neoplasms, mastocytosis and myelodysplastic/myeloproliferative neoplasms: Guidelines from the Group Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103424. [PMID: 38011761 DOI: 10.1016/j.retram.2023.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
Myeloproliferative neoplasms, mastocytosis, myeloid/lymphoid neoplasms with hypereosinophilia and tyrosine kinase gene fusions, and myelodysplastic/myeloproliferative neoplasms are clonal hematopoietic cancers that, with the exception of certain entities, have an indolent course. In addition to their increasingly important role in the diagnosis of these entities, as shown by the recent classification of hematolymphoid tumors in the 5th edition of the World Health Organization and the International Consensus Classification of myeloid neoplasms and acute leukemias, identification of the profile of acquired genetic abnormalities is essential for adapting patient management and early detection of patients at high risk of progression. Alongside molecular abnormalities, cytogenetic abnormalities play an important role in the diagnosis, prognosis and follow-up of these diseases. Here, we review the recent literature on the impact of chromosomal abnormalities in these different entities and provide updated cytogenetic recommendations and guidelines for their management.
Collapse
Affiliation(s)
- Matthieu Decamp
- CHU de Caen Normandie, Service de Génétique, Avenue de la côte de Nacre, 14033 Cedex 9, Caen 14000, France.
| | - Emilie Klein
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Catherine Godon
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | - Pauline Roynard
- Institut de Génétique Médicale, CHRU de Lille, Lille, France
| | - Olivier Theisen
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | | | - Audrey Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, Clermont-Ferrand, France
| |
Collapse
|
4
|
Hilberink JR, van Zeventer IA, Chitu DA, Pabst T, Klein SK, Stussi G, Griskevicius L, Valk PJM, Cloos J, van de Loosdrecht AA, Breems D, van Lammeren-Venema D, Boersma R, Jongen-Lavrencic M, Fehr M, Hoogendoorn M, Manz MG, Söhne M, van Marwijk Kooy R, Deeren D, van der Poel MWM, Legdeur MC, Tick L, Chalandon Y, Ammatuna E, Blum S, Löwenberg B, Ossenkoppele GJ, Huls G. Age and sex associate with outcome in older AML and high risk MDS patients treated with 10-day decitabine. Blood Cancer J 2023; 13:93. [PMID: 37336890 DOI: 10.1038/s41408-023-00850-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 06/21/2023] Open
Abstract
Treatment choice according to the individual conditions remains challenging, particularly in older patients with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS). The impact of performance status, comorbidities, and physical functioning on survival is not well defined for patients treated with hypomethylating agents. Here we describe the impact of performance status (14% ECOG performance status 2), comorbidity (40% HCT-comorbidity index ≥ 2), and physical functioning (41% short physical performance battery < 9 and 17% ADL index < 6) on overall survival (OS) in 115 older patients (age ≥ 66 years) treated on a clinical trial with a 10-day decitabine schedule. None of the patient-related variables showed a significant association with OS. Multivariable analysis revealed that age > 76 years was significantly associated with reduced OS (HR 1.58; p = 0.043) and female sex was associated with superior OS (HR 0.62; p = 0.06). We further compared the genetic profiles of these subgroups. This revealed comparable mutational profiles in patients younger and older than 76 years, but, interestingly, revealed significantly more prevalent mutated ASXL1, STAG2, and U2AF1 in male compared to female patients. In this cohort of older patients treated with decitabine age and sex, but not comorbidities, physical functioning or cytogenetic risk were associated with overall survival.
Collapse
Affiliation(s)
- Jacobien R Hilberink
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Dana A Chitu
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Thomas Pabst
- Department of Oncology, University Hospital, Inselspital, and University of Bern, Bern, Switzerland
| | - Saskia K Klein
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
- Department of Internal Medicine, Meander Hospital Amersfoort, Amersfoort, the Netherlands
| | - Georg Stussi
- Department of Hematology, Oncology Institute of Southern Switzerland, Ospedale Regionale, Bellinzona, Switzerland
| | - Laimonas Griskevicius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius University, Vilnius, Lithuania
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Dimitri Breems
- Department of Hematology, ZNA Stuivenberg/Middelheim, Antwerp, Belgium
| | | | - Rinske Boersma
- Department of Hematology, Amphia Hospital, Breda, the Netherlands
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Martin Fehr
- Department of Medical oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mels Hoogendoorn
- Department of Hematology, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - Markus G Manz
- Department of Medical Oncology and Hematology, Universitätsspital Zurich, Zurich, Switzerland
| | - Maaike Söhne
- Department of Hematology, Antonius Hospital, Nieuwegein, the Netherlands
| | | | - Dries Deeren
- Department of Hematology, AZ Delta Roeselare, Roeselare, Belgium
| | - Marjolein W M van der Poel
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Lidwine Tick
- Department of hematology, Maxima Medical Center, Veldhoven, the Netherlands
| | - Yves Chalandon
- Division of hematology, University Hospital Genève and Faculty of Medicine, University of Genève, Genève, Switzerland
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | - Sabine Blum
- Service and Central Laboratory of Hematology, Department of Oncology and Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Faria C, Tzankov A. Progression in Myeloid Neoplasms: Beyond the Myeloblast. Pathobiology 2023; 91:55-75. [PMID: 37232015 PMCID: PMC10857805 DOI: 10.1159/000530940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Disease progression in myelodysplastic syndromes (MDS), myelodysplastic-myeloproliferative neoplasms (MDS/MPN), and myeloproliferative neoplasms (MPN), altogether referred to as myeloid neoplasms (MN), is a major source of mortality. Apart from transformation to acute myeloid leukemia, the clinical progression of MN is mostly due to the overgrowth of pre-existing hematopoiesis by the MN without an additional transforming event. Still, MN may evolve along other recurrent yet less well-known scenarios: (1) acquisition of MPN features in MDS or (2) MDS features in MPN, (3) progressive myelofibrosis (MF), (4) acquisition of chronic myelomonocytic leukemia (CMML)-like characteristics in MPN or MDS, (5) development of myeloid sarcoma (MS), (6) lymphoblastic (LB) transformation, (7) histiocytic/dendritic outgrowths. These MN-transformation types exhibit a propensity for extramedullary sites (e.g., skin, lymph nodes, liver), highlighting the importance of lesional biopsies in diagnosis. Gain of distinct mutations/mutational patterns seems to be causative or at least accompanying several of the above-mentioned scenarios. MDS developing MPN features often acquire MPN driver mutations (usually JAK2), and MF. Conversely, MPN gaining MDS features develop, e.g., ASXL1, IDH1/2, SF3B1, and/or SRSF2 mutations. Mutations of RAS-genes are often detected in CMML-like MPN progression. MS ex MN is characterized by complex karyotypes, FLT3 and/or NPM1 mutations, and often monoblastic phenotype. MN with LB transformation is associated with secondary genetic events linked to lineage reprogramming leading to the deregulation of ETV6, IKZF1, PAX5, PU.1, and RUNX1. Finally, the acquisition of MAPK-pathway gene mutations may shape MN toward histiocytic differentiation. Awareness of all these less well-known MN-progression types is important to guide optimal individual patient management.
Collapse
Affiliation(s)
- Carlos Faria
- Department of Anatomical Pathology, Coimbra University Hospital, Coimbra, Portugal
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Patwardhan PP, Aarabi M, Aggarwal N. Genomics of myelodysplastic/myeloproliferative neoplasm. Semin Diagn Pathol 2023; 40:195-201. [PMID: 37105794 DOI: 10.1053/j.semdp.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Myelodysplastic/ Myeloproliferative neoplasms (MDS/MPN) demonstrate overlapping pathologic and molecular features of myelodysplastic (MDS) and myeloproliferative (MPN) neoplasms. Diagnosis is difficult based on morphology alone, requiring exclusion of various non-neoplastic causes for CBC abnormalities and morphologic findings and other myeloid neoplasms. Identifying a clonal abnormality by cytogenetics or molecular studies has vastly improved our ability to diagnose MDS/MPN and has been incorporated in the different classification schemas. Currently two separate classification systems are in use- The 5th edition WHO and international consensus classification. The two competing classifications emphasize genetic work-up and are similar on many levels; however, they do introduce diagnostic dilemma when diagnosing certain entities such as chronic myelomonocytic leukemia in the presence of NPM1 mutations. The genetic profile overlaps among different subentities; however, the combination and the incidence of mutations; together with the clinical features and morphology helps in further subclassification. In this review, we discuss the advances in molecular characterization of MDS/MPN. We attempt to summarize the differences between the various classification schemes, and highlight the changes made in the diagnostic criteria.
Collapse
Affiliation(s)
| | - Mahmoud Aarabi
- UPMC Medical Genetics & Genomics Laboratories, UPMC Magee-Womens Hospital, Pittsburgh, PA, 15213, United States of America; Departments of Pathology, and Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States of America
| | - Nidhi Aggarwal
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
7
|
Al-Ghamdi YA, Lake J, Bagg A, Thakral B, Wang SA, Bueso-Ramos C, Masarova L, Verstovsek S, Rogers HJ, Hsi ED, Gralewski JH, Chabot-Richards D, George TI, Rets A, Hasserjian RP, Weinberg OK, Parilla M, Arber DA, Padilla O, Orazi A, Tam W. Triple-Negative Primary Myelofibrosis: A Bone Marrow Pathology Group Study. Mod Pathol 2023; 36:100016. [PMID: 36788093 DOI: 10.1016/j.modpat.2022.100016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm driven by canonical gene mutations in JAK2, CALR, or MPL in >80% of the cases. PMF that lacks these canonical alterations is termed triple-negative PMF (TN-PMF). The pathologic and genetic characteristics of TN-PMF compared with those of conventional PMF with canonical driver mutations (DM-PMF) have not been well studied. We aimed to identify clinicopathologic and molecular genetic differences between patients with TN-PMF (n = 56) and DM-PMF (n = 89), all of whom fulfilled the 2016 World Health Organization diagnostic criteria for PMF. Compared with the control group, patients in the TN-PMF group were more likely to have thrombocytopenia and less likely to have organomegaly. The bone marrow in patients with TN-PMF showed fewer granulocytic elements and more frequent dyserythropoiesis. Cytogenetic analysis showed a higher incidence of trisomy 8. Targeted next-generation sequencing revealed a lower frequency of ASXL1 mutations but enrichment of ASXL1/SRSF2 comutations. Our findings demonstrated several clinicopathologic and molecular differences between TN-PMF and DM-PMF. These findings, particularly the observed mutation profile characterized by a higher frequency of ASXL1 and SRSF2 comutation, suggest that at least a subset of TN-PMF may be pathogenetically different from DM-PMF, with potential prognostic implications.
Collapse
Affiliation(s)
- Yahya A Al-Ghamdi
- Department of Pathology, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Jonathan Lake
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Eric D Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jonathon H Gralewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Anton Rets
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Megan Parilla
- Department of Pathology, Loyola University, Maywood, Illinois
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Osvaldo Padilla
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
8
|
Sex Differences in the Spectrum of Clonal Hematopoiesis. Hemasphere 2023; 7:e832. [PMID: 36713353 PMCID: PMC9875964 DOI: 10.1097/hs9.0000000000000832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
|
9
|
Moyo TK, Mendler JH, Itzykson R, Kishtagari A, Solary E, Seegmiller AC, Gerds AT, Ayers GD, Dezern AE, Nazha A, Valent P, van de Loosdrecht AA, Onida F, Pleyer L, Cirici BX, Tibes R, Geissler K, Komrokji RS, Zhang J, Germing U, Steensma DP, Wiseman DH, Pfeilstöecker M, Elena C, Cross NCP, Kiladjian JJ, Luebbert M, Mesa RA, Montalban-Bravo G, Sanz GF, Platzbecker U, Patnaik MM, Padron E, Santini V, Fenaux P, Savona MR. The ABNL-MARRO 001 study: a phase 1-2 study of randomly allocated active myeloid target compound combinations in MDS/MPN overlap syndromes. BMC Cancer 2022; 22:1013. [PMID: 36153475 PMCID: PMC9509596 DOI: 10.1186/s12885-022-10073-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) comprise several rare hematologic malignancies with shared concomitant dysplastic and proliferative clinicopathologic features of bone marrow failure and propensity of acute leukemic transformation, and have significant impact on patient quality of life. The only approved disease-modifying therapies for any of the MDS/MPN are DNA methyltransferase inhibitors (DNMTi) for patients with dysplastic CMML, and still, outcomes are generally poor, making this an important area of unmet clinical need. Due to both the rarity and the heterogeneous nature of MDS/MPN, they have been challenging to study in dedicated prospective studies. Thus, refining first-line treatment strategies has been difficult, and optimal salvage treatments following DNMTi failure have also not been rigorously studied. ABNL-MARRO (A Basket study of Novel therapy for untreated MDS/MPN and Relapsed/Refractory Overlap Syndromes) is an international cooperation that leverages the expertise of the MDS/MPN International Working Group (IWG) and provides the framework for collaborative studies to advance treatment of MDS/MPN and to explore clinical and pathologic markers of disease severity, prognosis, and treatment response. METHODS ABNL MARRO 001 (AM-001) is an open label, randomly allocated phase 1/2 study that will test novel treatment combinations in MDS/MPNs, beginning with the novel targeted agent itacitinib, a selective JAK1 inhibitor, combined with ASTX727, a fixed dose oral combination of the DNMTi decitabine and the cytidine deaminase inhibitor cedazuridine to improve decitabine bioavailability. DISCUSSION Beyond the primary objectives of the study to evaluate the safety and efficacy of novel treatment combinations in MDS/MPN, the study will (i) Establish the ABNL MARRO infrastructure for future prospective studies, (ii) Forge innovative scientific research that will improve our understanding of pathogenetic mechanisms of disease, and (iii) Inform the clinical application of diagnostic criteria, risk stratification and prognostication tools, as well as response assessments in this heterogeneous patient population. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov on August 19, 2019 (Registration No. NCT04061421).
Collapse
Affiliation(s)
- Tamara K Moyo
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
- Levine Cancer Institute, Charlotte, NC, USA
| | - Jason H Mendler
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ashwin Kishtagari
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | - Eric Solary
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Adam C Seegmiller
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | | | - Gregory D Ayers
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | | | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Francesco Onida
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Lisa Pleyer
- Third Medical Department With Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria
- Salzburg Cancer Research Institute Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
| | - Blanca Xicoy Cirici
- Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Bellaterr, Spain
| | | | | | | | - Jing Zhang
- University of Wisconsin-Madison, Madison, WI, USA
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | - Michael Pfeilstöecker
- Hanusch Hospital and Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | | | | | - Jean-Jacques Kiladjian
- Université de Paris, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | | | - Ruben A Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | | | | | | | | | - Eric Padron
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Michael R Savona
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA.
| |
Collapse
|
10
|
Kanagal-Shamanna R, Orazi A, Hasserjian RP, Arber DA, Reichard K, Hsi ED, Bagg A, Rogers HJ, Geyer J, Darbaniyan F, Do KA, Devins KM, Pozdnyakova O, George TI, Cin PD, Greipp PT, Routbort MJ, Patel K, Garcia-Manero G, Verstovsek S, Medeiros LJ, Wang SA, Bueso-Ramos C. Myelodysplastic/myeloproliferative neoplasms-unclassifiable with isolated isochromosome 17q represents a distinct clinico-biologic subset: a multi-institutional collaborative study from the Bone Marrow Pathology Group. Mod Pathol 2022; 35:470-479. [PMID: 34775472 PMCID: PMC8967812 DOI: 10.1038/s41379-021-00961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
Classification of myeloid neoplasms with isolated isochromosome i(17q) [17p deletion with inherent monoallelic TP53 loss plus 17q duplication] is controversial. Most cases fall within the WHO unclassifiable myelodysplastic/myeloproliferative neoplasms (MDS/MPN-U) category. The uniformly dismal outcomes warrant better understanding of this entity. We undertook a multi-institutional retrospective study of 92 adult MDS/MPN-U cases from eight institutions. Twenty-nine (32%) patients had isolated i(17q) [MDS/MPN-i(17q)]. Compared to MDS/MPN without i(17q), MDS/MPN-i(17q) patients were significantly younger, had lower platelet and absolute neutrophil counts, and higher frequency of splenomegaly and circulating blasts. MDS/MPN-i(17q) cases showed frequent bilobed neutrophils (75% vs. 23%; P = 0.03), hypolobated megakaryocytes (62% vs. 20%; P = 0.06), and a higher frequency of SETBP1 (69% vs. 5%; P = 0.002) and SRSF2 (63% vs. 5%; P = 0.006) mutations that were frequently co-existent (44% vs. 0%; P = 0.01). TP53 mutations were rare. The mutation profile of MDS/MPN-U-i(17q) was similar to other myeloid neoplasms with i(17q) including atypical chronic myeloid leukemia, chronic myelomonocytic leukemia, myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis, myelodysplastic syndrome and acute myeloid leukemia, with frequent concomitant SETBP1/SRSF2 mutations observed across all the diagnostic entities. Over a median follow-up of 52 months, patients with MDS/MPN-i(17q) showed a shorter median overall survival (11 vs. 28 months; P < 0.001). The presence of i(17q) retained independent poor prognostic value in multivariable Cox-regression analysis [HR 3.686 (1.17-11.6); P = 0.026] along with splenomegaly. We suggest that MDS/MPN-i(17q) warrants recognition as a distinct subtype within the MDS/MPN-U category based on its unique clinico-biologic features and uniformly poor prognosis.
Collapse
MESH Headings
- Adult
- Biological Products
- Bone Marrow/pathology
- Humans
- Isochromosomes/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Mutation
- Retrospective Studies
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Science Center, El Paso, TX, USA
| | | | | | | | - Eric D Hsi
- Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Adam Bagg
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Julia Geyer
- Weill Cornell Medical College, New York, NY, USA
| | | | - Kim-Anh Do
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle M Devins
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Mark J Routbort
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Srdan Verstovsek
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sa A Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
11
|
Enjeti AK, Agarwal R, Blombery P, Chee L, Chua CC, Grigg A, Hamad N, Iland H, Lane S, Perkins A, Singhal D, Tate C, Tiong IS, Ross DM. Panel-based gene testing in myelodysplastic/myeloproliferative neoplasm- overlap syndromes: Australasian Leukaemia and Lymphoma Group (ALLG) consensus statement. Pathology 2022; 54:389-398. [DOI: 10.1016/j.pathol.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
12
|
McLornan DP, Hargreaves R, Hernández-Boluda JC, Harrison CN. How I manage myeloproliferative neoplasm-unclassifiable: Practical approaches for 2022 and beyond. Br J Haematol 2022; 197:407-416. [PMID: 35191542 DOI: 10.1111/bjh.18087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Myeloproliferative neoplasm (MPN)-unclassifiable (MPN-U) or not otherwise specified represents a rare, poorly defined and heterogeneous group of MPNs. Disease incidence is difficult to define but likely represents close to 5% of all MPNs when strict World Health Organisation (WHO) criteria are applied. Dynamic review over time is required to assess if the disease can be re-classified into another MPN entity. A diagnosis of MPN-U leads to many challenges for both the patient and physician alike including lack of agreed monitoring and therapeutic guidelines, validated prognostic markers and licenced therapies coupled with exclusion from clinical trials. MPN-U has an inherent risk of an aggressive clinical course and transformation in some but who, and when to treat in the chronic phase, including identifying who may require more aggressive therapy at an earlier stage, remains elusive. Moreover, despite the significant thrombotic risk, there is no agreement on systematic primary thromboprophylaxis. We hereby provide a contemporary overview of MPN-U in addition to four illustrative cases providing our collective suggested approaches to clinical challenges.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, Great Maze Pond, London, UK.,Department of Haematology, University College London Hospitals, London, UK
| | - Rupen Hargreaves
- Department of Haematology, University College London Hospitals, London, UK
| | | | - Claire N Harrison
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| |
Collapse
|
13
|
Molony P, Smith AC, Selvarajah S, Sakhdari A. MDS/MPN-Unclassifiable with t(X;17)(q28;q21) and KANSL1-MTCP1/CMC4 Fusion Gene. Cytogenet Genome Res 2022; 161:564-568. [PMID: 35038703 DOI: 10.1159/000521509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
Myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U) is a poorly characterized entity among overlap myeloid syndromes. Recent studies have shown heterogeneous mutational profiles in this group being able to subclassify them into entities closely related to the more well-established disorders under the umbrella term of the MDS/MPN group. Recurrent cytogenetic alterations are, nonetheless, rare in MDS/MPN-U. Here, for the first time, we report a case of MDS/MPN-U with a t(X;17)(q28;q21) chromosomal rearrangement leading to the KANSL1-MTCP1 fusion gene.
Collapse
Affiliation(s)
- Peter Molony
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shamini Selvarajah
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Sakhdari
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kuendgen A, Kasprzak A, Germing U. Hybrid or Mixed Myelodysplastic/Myeloproliferative Disorders - Epidemiological Features and Overview. Front Oncol 2021; 11:778741. [PMID: 34869027 PMCID: PMC8635204 DOI: 10.3389/fonc.2021.778741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The WHO-category Myelodysplastic/Myeloproliferative neoplasms (MDS/MPNs) recognizes a unique group of clonal myeloid malignancies exhibiting overlapping features of myelodysplastic as well as myeloproliferative neoplasms. The group consists of chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia, BCR-ABL1-negative (aCML), juvenile myelomonocytic leukemia (JMML), myelodysplastic/myeloproliferative neoplasm with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T), and myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U). The most frequent entity in this category is CMML, while all other diseases are extremely rare. Thus, only very limited data on the epidemiology of these subgroups exists. An appropriate diagnosis and classification can be challenging since the diagnosis is still largely based on morphologic criteria and myelodysplastic as well as myeloproliferative features can be found in various occurrences. The diseases in this category share several features that are common in this specific WHO-category, but also exhibit specific traits for each disease. This review summarizes published data on epidemiological features and offers a brief overview of the main diagnostic criteria and clinical characteristics of the five MDS/MPN subgroups.
Collapse
Affiliation(s)
- Andrea Kuendgen
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
15
|
Zhou J, Wu H, Guo C, Li B, Zhou LL, Liang AB, Fu JF. A comprehensive genome-wide analysis of long non-coding RNA and mRNA expression profiles of JAK2V617F-positive classical myeloproliferative neoplasms. Bioengineered 2021; 12:10564-10586. [PMID: 34738870 PMCID: PMC8810098 DOI: 10.1080/21655979.2021.2000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the progression of myeloid neoplasms, but the role of lncRNAs in the JAK2V617F-positive subtype of classical myeloproliferative neoplasms (cMPNs) remains unclear. This study was conducted to clarify the expression and regulation patterns of lncRNAs in JAK2V617F-positive cMPNs, and to explore new potential carcinogenic factors of cMPNs. Bioinformatics analysis of microarray detection and wet testing verification were performed to study the expression and regulation signature of differentially expressed lncRNAs (DELs) and related genes (DEGs) in cMPNs. The expression of lncRNAs and mRNAs were observed to significantly dysregulated in JAK2V617F-positive cMPN patients compared with the normal controls. Co-expression analysis indicated that there were significant differences of the co-expression pattern of lncRNAs and mRNAs in JAK2V617F-positive cMPN patients compared to normal controls. GO and KEGG pathway analysis of DEGs and DELs showed the involvement of several pathways previously reported to regulate the pathogenesis of leukemia and cMPNs. Cis- and trans-regulation analysis of lncRNAs showed that ZNF141, DHX29, NOC2L, MAS1L, AFAP1L1, and CPN2 were significantly cis-regulated by lncRNA ENST00000356347, ENST00000456816, hsa-mir-449c, NR_026874, TCONS_00012136, uc003lqp.2, and ENST00000456816, respectively, and DELs were mostly correlated with transcription factors including CTBP2, SUZ12, REST, STAT2, and GATA4 to jointly regulate multiple target genes. In summary, expression profiles of lncRNAs and mRNAs were significantly altered in JAK2V617F-positive cMPNs, the relative signaling pathway, co-expression, cis- and trans-regulation were regulated by dysregulation of lncRNAs and several important genes, such as ITGB3, which may act as a promising carcinogenic factor, warrant further investigation.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| |
Collapse
|
16
|
Canonical Wnt: a safeguard and threat for erythropoiesis. Blood Adv 2021; 5:3726-3735. [PMID: 34516644 DOI: 10.1182/bloodadvances.2021004845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/β-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/β-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/β-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/β-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/β-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/β-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/β-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.
Collapse
|
17
|
Li Y, Beck RC, Moore EM. Pathogenic Mutations and Atypical Flow Cytometric Findings Characterize the Majority of Unclassifiable Myelodysplastic/Myeloproliferative Neoplasms. Am J Clin Pathol 2021; 156:634-643. [PMID: 33877292 DOI: 10.1093/ajcp/aqaa281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are a group of rare and heterogeneous hematopoietic disorders that frequently present a diagnostic challenge. Here we present our institutional experience with next-generation sequencing (NGS), together with morphologic, flow cytometric, and cytogenetic evaluation, in the diagnosis of MDS/MPN, with particular emphasis on MDS/MPN unclassifiable (MPN-U). METHODS We evaluated the morphologic, flow cytometric, cytogenetic, and molecular characteristics of all MDS/MPN cases that underwent NGS at our institution between April 2016 and February 2019. RESULTS Thirty-seven cases of MDS/MPN were identified, including 14 cases of MDS/MPN-U. Ninety-seven percent harbored mutations and immunophenotypic aberrancies (36/37), while only 38% had cytogenetic abnormalities (12/32). The MDS/MPN-U group had the highest rate of myeloblast phenotypic abnormalities and had a high mutation rate of approximately 2.7 mutated genes per case, most commonly in JAK2, SRSF2, and ASXL1. CONCLUSIONS No single ancillary study was abnormal in every case, but all cases had at least one abnormal finding, demonstrating the usefulness of a multiparameter approach to the diagnosis of MDS/MPN. Although a few specific mutations were found exclusively in MDS/MPN-U and JAK2 mutations were most prevalent, larger studies are needed to determine whether MDS/MPN-U has a mutational "fingerprint," which may aid in diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OHUSA
| | - Rose C Beck
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OHUSA
| | - Erika M Moore
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OHUSA
| |
Collapse
|
18
|
Hochman MJ, Savani BN, Jain T. Examining disease boundaries: Genetics of myelodysplastic/myeloproliferative neoplasms. EJHAEM 2021; 2:607-615. [PMID: 35844680 PMCID: PMC9175746 DOI: 10.1002/jha2.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid malignancies that are characterized by dysplasia resulting in cytopenias as well as proliferative features such as thrombocytosis or splenomegaly. Recent studies have better defined the genetics underlying this diverse group of disorders. Trisomy 8, monosomy 7, and loss of Y chromosome are the most common cytogenetic abnormalities seen. Chronic myelomonocytic leukemia (CMML) likely develops from early clones with TET2 mutations that drive granulomonocytic differentiation. Mutations in SRSF2 are common and those in the RAS-MAPK pathway are typically implicated in disease with a proliferative phenotype. Several prognostic systems have incorporated genetic features, with ASXL1 most consistently demonstrating worse prognosis. Atypical chronic myeloid leukemia (aCML) is most known for granulocytosis with marked dysplasia and often harbors ASXL1 mutations, but SETBP1 and ETNK1 are more specific to this disease. MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) most commonly involves spliceosome mutations (namely SF3B1) and mutations in the JAK-STAT pathway. Finally, MDS/MPN-unclassifiable (MDS/MPN-U) is least characterized but a significant fraction carries mutations in TP53. The remaining patients have clinical and/or genetic features similar to the other MDS/MPNs, suggesting there is room to better characterize this entity. Evolution from age-related clonal hematopoiesis to MDS/MPN likely depends on the order of mutation acquisition and interactions between various biologic factors. Genetics will continue to play a critical role in our understanding of these illnesses and advancing patient care.
Collapse
Affiliation(s)
- Michael J. Hochman
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bipin N. Savani
- Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
19
|
Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood 2021; 136:1851-1862. [PMID: 32573691 DOI: 10.1182/blood.2019004229] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
More than 90% of patients with myelodysplastic/myeloproliferative neoplasms (MDSs/MPNs) harbor somatic mutations in myeloid-related genes, but still, current diagnostic criteria do not include molecular data. We performed genome-wide sequencing techniques to characterize the mutational landscape of a large and clinically well-characterized cohort including 367 adults with MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 119), atypical chronic myeloid leukemia (aCML; n = 71), MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 71), and MDS/MPN unclassifiable (MDS/MPN-U; n = 106). A total of 30 genes were recurrently mutated in ≥3% of the cohort. Distribution of recurrently mutated genes and clonal architecture differed among MDS/MPN subtypes. Statistical analysis revealed significant correlations between recurrently mutated genes, as well as genotype-phenotype associations. We identified specific gene combinations that were associated with distinct MDS/MPN subtypes and that were mutually exclusive with most of the other MDSs/MPNs (eg, TET2-SRSF2 in CMML, ASXL1-SETBP1 in aCML, and SF3B1-JAK2 in MDS/MPN-RS-T). Patients with MDS/MPN-U were the most heterogeneous and displayed different molecular profiles that mimicked the ones observed in other MDS/MPN subtypes and that had an impact on the outcome of the patients. Specific gene mutations also had an impact on the outcome of the different MDS/MPN subtypes, which may be relevant for clinical decision-making. Overall, the results of this study help to elucidate the heterogeneity found in these neoplasms, which can be of use in the clinical setting of MDS/MPN.
Collapse
|
20
|
Karantanos T, Gondek LP, Varadhan R, Moliterno AR, DeZern AE, Jones RJ, Jain T. Gender-related differences in the outcomes and genomic landscape of patients with myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Br J Haematol 2021; 193:1142-1150. [PMID: 34028801 PMCID: PMC8217263 DOI: 10.1111/bjh.17534] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
Myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes show a male predominance and men with MDS/MPN have worse outcomes, but it is unknown if the mutational burden differs between genders. We reviewed 167 patients with MDS/MPN and found that men had worse overall survival [hazard ratio (HR) 2·09, 95% confidence interval (CI) 1·16-3·75; P = 0·013] independent of subtype, Revised International Prognostic Scoring System score and age at diagnosis. We analysed the genomic data of a subset of 100 patients. Men had 0·88 more somatic mutations on average (95% CI 0·20-1·56, P = 0·011) independent of subtype, sample source and blast percentage. More somatic mutations was associated with a higher incidence of transformation to acute myeloid leukaemia (subdistribution HR 1·30, 95% CI 1·01-1·70; P = 0·046). Men had 0·70 more mutations in high-risk genes [additional sex combs like-1 (ASXL1), enhancer of zeste homolog 2 (EZH2), Runt-related transcription factor 1 (RUNX1), SET binding protein 1 (SETBP1), NRAS proto-oncogene, GTPase (NRAS), stromal antigen 2 (STAG2)] on average (95% CI 0·11-1·29, P = 0·021), and 13-times higher odds of harbouring an EZH2 mutation (95% CI 1·64-102·94, P = 0·015). The presence of an EZH2 mutation was associated with worse survival among men (HR 2·98, 95% CI 1·1-8·0; P = 0·031). Our present findings suggest that the worse outcomes in men with MDS/MPN are associated with a higher number of somatic mutations, especially in high-risk genes. These results warrant validation in larger cohorts and investigation of the underlying mechanisms.
Collapse
Affiliation(s)
- Theodoros Karantanos
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Lukasz P. Gondek
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Alison R. Moliterno
- Division of Adult Hematology, Department of Medicine, Johns Hopkins University, Baltimore MD
| | - Amy E. DeZern
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Richard J Jones
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| |
Collapse
|
21
|
Zhao M, Sun J, Liu S, Fan H, Fu Y, Tan Y, Gao S. Development of a myelodysplastic/myeloproliferative neoplasm-unclassifiable in a patient with acute myeloid leukemia: a case report and literature review. J Int Med Res 2021; 49:3000605211018426. [PMID: 34057843 PMCID: PMC8753788 DOI: 10.1177/03000605211018426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are a heterogeneous group of hematologic malignancies characterized by dysplastic and myeloproliferative overlapping features in the bone marrow and blood. The occurrence of the disease is related to age, prior history of MPN or MDS, and recent cytotoxic or growth factor therapy, but it rarely develops after acute myeloid leukemia (AML). We report a rare case of a patient diagnosed with AML with t(8; 21)(q22; q22) who received systematic chemotherapy. After 4 years of follow-up, MDS/MPN-unclassifiable occurred without signs of primary AML recurrence.
Collapse
Affiliation(s)
- Meifang Zhao
- The First Hospital of Jilin University, Changchun, China
| | - Jingnan Sun
- The First Hospital of Jilin University, Changchun, China
| | - Shanshan Liu
- The First Hospital of Jilin University, Changchun, China
| | - Hongqiong Fan
- The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- The First Hospital of Jilin University, Changchun, China
| | - Yehui Tan
- The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Genomic stratification of myelodysplastic/myeloproliferative neoplasms, unclassifiable: Sorting through the unsorted. Leukemia 2021; 35:3329-3333. [PMID: 33931725 DOI: 10.1038/s41375-021-01258-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023]
|
23
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
24
|
Palomo L, Acha P, Solé F. Genetic Aspects of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13092120. [PMID: 33925681 PMCID: PMC8124412 DOI: 10.3390/cancers13092120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid neoplasms characterized, at the time of their presentation, by the simultaneous presence of both myelodysplastic and myeloproliferative features. In MDS/MPN, the karyotype is often normal but mutations in genes that are common across myeloid neoplasms can be detected in a high proportion of cases by targeted sequencing. In this review, we intend to summarize the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of patients. Abstract Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are myeloid neoplasms characterized by the presentation of overlapping features from both myelodysplastic syndromes and myeloproliferative neoplasms. Although the classification of MDS/MPN relies largely on clinical features and peripheral blood and bone marrow morphology, studies have demonstrated that a large proportion of patients (~90%) with this disease harbor somatic mutations in a group of genes that are common across myeloid neoplasms. These mutations play a role in the clinical heterogeneity of these diseases and their clinical evolution. Nevertheless, none of them is specific to MDS/MPN and current diagnostic criteria do not include molecular data. Even when such alterations can be helpful for differential diagnosis, they should not be used alone as proof of neoplasia because some of these mutations may also occur in healthy older people. Here, we intend to review the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of the patients.
Collapse
Affiliation(s)
- Laura Palomo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Correspondence: ; Tel.: +34-93-557-2806
| |
Collapse
|
25
|
Karantanos T, Jain T, Moliterno AR, Jones RJ, DeZern AE. Sex-Related Differences in Chronic Myeloid Neoplasms: From the Clinical Observation to the Underlying Biology. Int J Mol Sci 2021; 22:2595. [PMID: 33807519 PMCID: PMC7961949 DOI: 10.3390/ijms22052595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid neoplasms are clonal diseases with variable clinical course and outcomes and despite the introduction of novel therapies, patients with high-risk disease continue to have overall poor outcomes. Different groups have highlighted that men have overall worse survival and higher incidence of transformation to acute leukemia compared to women across neoplasms such as myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap neoplasms, and CML. More recent studies evaluating the genomic profile of patients with these neoplasms demonstrated a male predominance for mutations in high-risk genes including ASXL1, U2AF1, SRSF2 and ZRSR2. The understanding of the underlying biology is limited but a number of hypotheses have been developed and are currently being investigated. This review summarizes the current knowledge about sex-related differences in the clinical outcomes and genomic profile of patients with chronic myeloid neoplasms and discusses the hypothesized biologic mechanisms as an attempt to explain these observations.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mutation/genetics
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Sex Characteristics
Collapse
Affiliation(s)
- Theodoros Karantanos
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA; (T.J.); (R.J.J.); (A.E.D.)
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA; (T.J.); (R.J.J.); (A.E.D.)
| | - Alison R. Moliterno
- Division of Adult Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA;
| | - Richard J. Jones
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA; (T.J.); (R.J.J.); (A.E.D.)
| | - Amy E. DeZern
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA; (T.J.); (R.J.J.); (A.E.D.)
| |
Collapse
|
26
|
Kuykendall AT, Tokumori FC, Komrokji RS. Traipsing Through Muddy Waters: A Critical Review of the Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes. Hematol Oncol Clin North Am 2021; 35:337-352. [PMID: 33641873 DOI: 10.1016/j.hoc.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myelodysplastic syndrome/Myeloproliferative neoplasms (MDS/MPNs) are molecularly complex, clinically heterogeneous diseases that exhibit proliferative and dysplastic features. Diagnostic criteria use clinical, pathologic, and genomic features to distinguish between disease entities, though considerable clinical and genetic overlap persists. MDS/MPNs are associated with a poor prognosis, save for MDS/MPN with ring sideroblasts and thrombocytosis, which can behave more indolently. The current treatment approach is risk-adapted and symptom-directed and largely extrapolated from experience in MDS or MPN. Gene sequencing has demonstrated frequent mutations involving signaling, epigenetic, and splicing pathways, which present numerous therapeutic opportunities for clinical investigation.
Collapse
Affiliation(s)
- Andrew T Kuykendall
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA.
| | - Franco Castillo Tokumori
- University of South Florida, 17 Davis Boulevard, Suite 308, Tampa, FL 33606, USA. https://twitter.com/CTFrancoMD
| | - Rami S Komrokji
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA. https://twitter.com/Ramikomrokji
| |
Collapse
|
27
|
Hasserjian RP, Buckstein R, Patnaik MM. Navigating Myelodysplastic and Myelodysplastic/Myeloproliferative Overlap Syndromes. Am Soc Clin Oncol Educ Book 2021; 41:328-350. [PMID: 34010050 DOI: 10.1200/edbk_320113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndromes (MDS) and MDS/myeloproliferative neoplasms (MPNs) are clonal diseases that differ in morphologic diagnostic criteria but share some common disease phenotypes that include cytopenias, propensity to acute myeloid leukemia evolution, and a substantially shortened patient survival. MDS/MPNs share many clinical and molecular features with MDS, including frequent mutations involving epigenetic modifier and/or spliceosome genes. Although the current 2016 World Health Organization classification incorporates some genetic features in its diagnostic criteria for MDS and MDS/MPNs, recent accumulation of data has underscored the importance of the mutation profiles on both disease classification and prognosis. Machine-learning algorithms have identified distinct molecular genetic signatures that help refine prognosis and notable associations of these genetic signatures with morphologic and clinical features. Combined geno-clinical models that incorporate mutation data seem to surpass the current prognostic schemes. Future MDS classification and prognostication schema will be based on the portfolio of genetic aberrations and traditional features, such as blast count and clinical factors. Arriving at these systems will require studies on large patient cohorts that incorporate advanced computational analysis. The current treatment algorithm in MDS is based on patient risk as derived from existing prognostic and disease classes. Luspatercept is newly approved for patients with MDS and ring sideroblasts who are transfusion dependent after erythropoietic-stimulating agent failure. Other agents that address red blood cell transfusion dependence in patients with lower-risk MDS and the failure of hypomethylating agents in higher-risk disease are in advanced testing. Finally, a plethora of novel targeted agents and immune checkpoint inhibitors are being evaluated in combination with a hypomethylating agent backbone to augment the depth and duration of response and, we hope, improve overall survival.
Collapse
Affiliation(s)
| | - Rena Buckstein
- Division of Hematology/Oncology, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN
| |
Collapse
|
28
|
Hemsing AL, Gjertsen BT, Spetalen S, Helgeland L, Reikvam H. Favorable outcome of a patient with an unclassifiable myelodysplastic syndrome/myeloproliferative neoplasm treated with allogeneic hematopoietic stem cell transplantation. SAGE Open Med Case Rep 2021; 9:2050313X20988413. [PMID: 33628448 PMCID: PMC7841861 DOI: 10.1177/2050313x20988413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
The entity myelodysplastic syndrome/myeloproliferative neoplasm overlap syndrome is characterized by the coexistence of both myeloproliferative and myelodysplastic features in the bone marrow. Risk assessment and treatment recommendations have not been standardized, and clinicians rely on updated patient studies and reviews to make decisions for treatment approaches. Histopathological features have traditionally been important, although in the last decade, several studies have reported mutational profiles of this rare disease. Here, we present a case, wherein the patient presented with leukocytosis and the diagnostic work-up revealed features of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndrome. Mutational profiling revealed mutations in four genes associated with myeloid malignancies, namely, EZH2, CUX1, TET2, and BCOR. After initial therapy with hydroxyurea and interferon-α, the patient underwent allogeneic hematopoietic stem cell transplantation, with reduced intensity conditioning and a matched sibling donor. He had no signs of relapsed disease 2 years after the transplant. Based on the patient outcome, we summarize the diagnostic and therapeutic approaches for patients diagnosed with myelodysplastic syndrome/myeloproliferative neoplasm overlap syndrome, and review the current literature, emphasizing the role of genetic mutations and allogeneic hematopoietic stem cell transplantation. Larger and more detailed clinical studies are strongly needed to optimize and standardize diagnostic and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Anette Lodvir Hemsing
- Section of Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Section of Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Håkon Reikvam
- Section of Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Patnaik MM, Lasho TL. Genomics of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:450-459. [PMID: 33275756 PMCID: PMC7727543 DOI: 10.1182/hematology.2020000130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap syndromes are uniquely classified neoplasms occurring in both children and adults. This category consists of 5 neoplastic subtypes: chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), BCR-ABL1-negative atypical chronic myeloid leukemia (aCML), MDS/MPN-ring sideroblasts and thrombocytosis (MDS/MPN-RS-T), and MDS/MPN-unclassifiable (U). Cytogenetic abnormalities and somatic copy number variations are uncommon; however, >90% patients harbor gene mutations. Although no single gene mutation is specific to a disease subtype, certain mutational signatures in the context of appropriate clinical and morphological features can be used to establish a diagnosis. In CMML, mutated coexpression of TET2 and SRSF2 results in clonal hematopoiesis skewed toward monocytosis, and the ensuing acquisition of driver mutations including ASXL1, NRAS, and CBL results in overt disease. MDS/MPN-RS-T demonstrates features of SF3B1-mutant MDS with ring sideroblasts (MDS-RS), with the development of thrombocytosis secondary to the acquisition of signaling mutations, most commonly JAK2V617F. JMML, the only pediatric entity, is a bona fide RASopathy, with germline and somatic mutations occurring in the oncogenic RAS pathway giving rise to disease. BCR-ABL1-negative aCML is characterized by dysplastic neutrophilia and is enriched in SETBP1 and ETNK1 mutations, whereas MDS/MPN-U is the least defined and lacks a characteristic mutational signature. Molecular profiling also provides prognostic information, with truncating ASXL1 mutations being universally detrimental and germline CBL mutations in JMML showing spontaneous regression. Sequencing information in certain cases can help identify potential targeted therapies (IDH1, IDH2, and splicing mutations) and should be a mainstay in the diagnosis and management of these neoplasms.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Terra L Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Efficacy of ruxolitinib in a patient with myelodysplastic/myeloproliferative neoplasm unclassifiable and co-mutated JAK2, SF3B1 and TP53. Leuk Res Rep 2020; 14:100229. [PMID: 33194542 PMCID: PMC7645062 DOI: 10.1016/j.lrr.2020.100229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U) is a rare but heterogeneous subtype of MDS/MPN, with no specific genetic alterations and standard treatments. ASXL1, SRSF2, TET2, JAK2 and NRAS are commonly mutated in MDS/MPN-U. Double gene mutations could be detected in MDS/MPN-U, however, co-mutations of 3 and more genes in this disease entity are very rare. Here, we present a case of MDS/MPN-U with triple mutations involving JAK2, SF3B1, and TP53. After failure of traditional therapy including hydroxyurea and interferon-α, the patient received ruxolitinib monotherapy and achieved hematological response quickly. Though mutations in TP53 implied a poor prognosis in myeloid malignancies, this patient has maintained no AML transformation for 26 months since diagnosis. Further research on complex mutations in the pathogenesis and prognosis of MDS/MPN-U is warranted.
Collapse
|
31
|
Hebeda K, Boudova L, Beham-Schmid C, Orazi A, Kvasnicka HM, Gianelli U, Tzankov A. Progression, transformation, and unusual manifestations of myelodysplastic syndromes and myelodysplastic-myeloproliferative neoplasms: lessons learned from the XIV European Bone Marrow Working Group Course 2019. Ann Hematol 2020; 100:117-133. [PMID: 33128619 DOI: 10.1007/s00277-020-04307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Disease progression in myelodysplastic syndromes (MDS) and myelodysplastic-myeloproliferative neoplasms (MDS/MPN) is a major source of mortality. The European Bone Marrow Working Group organized a dedicated workshop to address MDS and MDS/MPN progression, and myeloid neoplasms with histiocytic and lymphoblastic outgrowths in 2019 in Frankfurt, Germany. In this report, we summarize clinical, histopathological, and molecular features of 28 cases. Most cases illustrate that prognostic mutational profiles change during follow-up due to accumulation of high-risk mutations in the trunk clone, and that results from repeated molecular testing can often explain the clinical progression, suggesting that regular genetic testing may predict transformation by early detection of aggressive clones. Importantly, identical mutations can be linked to different clinical behaviors or risks of fibrotic progression and/or transformation in a context-dependent manner, i.e., MDS or MDS/MPN. Moreover, the order of mutational acquisition and the involved cell lineages matter. Several cases exemplify that histiocytic outgrowths in myeloid neoplasms are usually accompanied by a more aggressive clinical course and may be considered harbinger of disease progression. Exceptionally, lymphoblastic transformations can be seen. As best estimable, the histiocytic and lymphoblastic compounds in all occasions were clonally related to the myeloid compound and-where studied-displayed genomic alterations of, e.g., transcription factor genes or genes involved in MAPK signaling that might be mechanistically linked to the respective type of non-myeloid outgrowth.
Collapse
Affiliation(s)
- Konnie Hebeda
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Attilio Orazi
- Department of Pathology, Texas Tech Health Sciences Center El Paso, El Paso, TX, USA
| | | | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and Fondazione IRCCS, Ca' Granda-Maggiore Policlinico, Milan, Italy
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, Schoenbeinstrasse 40, CH-4031, Basel, Switzerland.
| |
Collapse
|
32
|
Hunter AM, Padron E. Molecular genetics of MDS/MPN overlap syndromes. Best Pract Res Clin Haematol 2020; 33:101195. [DOI: 10.1016/j.beha.2020.101195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 01/05/2023]
|
33
|
Kurosawa S, Shimomura Y, Tachibana T, Ishiyama K, Ota S, Kobayashi T, Uchida N, Fukushima K, Ashida T, Matsuoka KI, Kanda J, Ichinohe T, Atsuta Y, Murata M, Aoki J. Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Myelodysplastic/Myeloproliferative Neoplasms-Unclassifiable: A Retrospective Nationwide Study of the Japan Society for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:1607-1611. [PMID: 32454216 DOI: 10.1016/j.bbmt.2020.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022]
Abstract
To date, there are no data focusing on outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U). This study aimed to evaluate outcomes and prognostic factors in patients with MDS/MPN-U after allo-HSCT using Japanese nationwide registry data. The primary endpoint was 3-year overall survival (OS); secondary endpoints included the cumulative incidence of relapse and nonrelapse mortality (NRM). We evaluated the prognostic factors for 3-year OS by univariate analysis using the log-rank test. In our cohort of 86 patients with MDS/MPN-U, we found a 3-year OS of 48.5%, cumulative incidence of relapse of 23.7%, and NRM of 26.3%. The 3-year OS was significantly worse in patients age ≥50 years compared with those age <50 years (38.1% versus 65.0%; P = .049) and in patients with disease progression compared with those without disease progression (28.4% versus 57.2%; P = .042). Our results suggest that allo-HSCT may offer a curative option for patients with MDS/MPN-U, and that age and disease status could be important indicators in helping clinicians determine treatment options for these patients.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Hospital Organization Kobe City Medical Centre General Hospital, Kobe, Japan
| | | | - Ken Ishiyama
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, Tokyo, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Ashida
- Division of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Hospital, Osaka, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Aoki
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
34
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Shallis RM, Zeidan AM. Myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U): More than just a "catch-all" term? Best Pract Res Clin Haematol 2019; 33:101132. [PMID: 32460977 DOI: 10.1016/j.beha.2019.101132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
The clinicopathology of MDS and MPN are not mutually exclusive and for this reason the category of myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) exists. Several sub-entities have been included under the MDS/MPN umbrella, including MDS/MPN-unclassifiable (MDS/MPN-U) for those cases whose morphologic and clinical phenotype do not meet criteria to be classified as any other MDS/MPN sub-entity. Though potentially regarded as a wastebasket diagnosis, since its integration into myeloid disease classification, MDS/MPN-U has been refined with increasing understanding of the mutational and genomic events that drive particular clinicopathologic phenotypes, even within MDS/MPN-U. The prototypical example is the identification of SF3B1 mutations and its durable association with MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T), an entity previously buried within, but now a separate category outside of MDS/MPN-U. Continued and enhanced study of those entities under MDS/MPN-U, a perhaps provisional category itself, is likely to progressively identify commonality between many "unclassifiables" to establish a new classifiable diagnosis.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Yale Cancer Center, New Haven, USA.
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Yale Cancer Center, New Haven, USA
| |
Collapse
|
36
|
Clinicopathologic characteristics, prognostication and treatment outcomes for myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U): Mayo Clinic-Moffitt Cancer Center study of 135 consecutive patients. Leukemia 2019; 34:656-661. [DOI: 10.1038/s41375-019-0574-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
|
37
|
Loghavi S, Wang SA. Defining the Boundary Between Myelodysplastic Syndromes and Myeloproliferative Neoplasms. Surg Pathol Clin 2019; 12:651-669. [PMID: 31352979 DOI: 10.1016/j.path.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article we provide a practical and comprehensive review of myeloid neoplasms with overlapping myelodysplastic (MDS) and myeloproliferative (MPN) features, with emphasis on recent updates in classification, particularly the utility of morphologic, cytogenetic, and molecular findings in better defining and classifying these disease entities. We provide the reader with a summary of the most recent developments and updates that have helped further our understanding of the genomic landscape, clinicopathologic features, and prognostic elements of myeloid neoplasms with MDS/MPN features.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Smith BN, Savona M, Komrokji RS. Challenges in Myelodysplastic/Myeloproliferative Neoplasms (MDS/MPN). CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:1-8. [PMID: 30555034 PMCID: PMC7493410 DOI: 10.1016/j.clml.2018.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022]
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are hybrid group of chronic myeloid neoplasms combining features of both MDS and MPN. The World Health Organization classification coined this group designation in 2008 to include chronic myelomonocytic leukemia, atypical chronic myeloid leukemia, juvenile myelomoncoytic leukemia, refractory anemia with ring sideroblasts and thrombocytosis as a provisional entity, and MDS/MPN unclassified. In this review, we highlight the challenges in diagnosing this group of the diseases, summarize the updates in classification, and discuss recent evolving understanding of the genetic landscape. We review risk-stratification models and overview the current management largely adapted from current MDS or MPN therapies. We define clinical benefit of therapy based on new proposed response criteria developed specifically for these groups of neoplasms. Finally, we introduce future opportunities including the planned international ABN MARRO (A Novel therapy combinations in untreated MDS/MPN And Relapsed/Refractory Overlap Syndromes) clinical study led by the MDS/MPN International Working Group.
Collapse
Affiliation(s)
- Brianna N Smith
- Department of Pediatrics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Michael Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Rami S Komrokji
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.
| |
Collapse
|