1
|
Romano L, Seu KG, Blanc L, Kalfa TA. Crosstalk between terminal erythropoiesis and granulopoiesis within their common niche: the erythromyeloblastic island. Curr Opin Hematol 2023; 30:99-105. [PMID: 37254853 PMCID: PMC10236084 DOI: 10.1097/moh.0000000000000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW The identity of the erythroblastic island (EBI) macrophage (Mϕ) has been under investigation for decades since it was recognized as the first hematopoietic niche 'nursing' terminal erythropoiesis. This review will focus on the current insights to the characteristics and the role of the EBI Mϕ balancing terminal erythropoiesis and granulopoiesis. RECENT FINDINGS While the EBI has long been known as the niche for erythroid precursors, significant advancements in biology research technologies, including optimization of EBI enrichment protocols, single-cell ribonucleic acid sequencing, and imaging flow cytometry, have recently revealed that granulocytic precursors co-exist in this niche, termed erythromyeloblastic island (EMBI). More importantly, the balance noted at baseline between terminal granulopoiesis and erythropoiesis within EBIs/EMBIs is altered with diseases affecting hematopoiesis, such as stress erythropoiesis and inflammatory conditions causing anemia of inflammation. The role of the EMBI niche has yet to be fully investigated mechanistically, however, a notable degree of transcriptional and cell surface marker heterogeneity has been identified for the EMBI Mϕ, implicating its plasticity and diverse function. SUMMARY Terminal erythropoiesis and granulopoiesis are regulated within the EMBI. Investigations of their balance within this niche in health and disease may reveal new targets for treatment of diseases of terminal hematopoiesis.
Collapse
Affiliation(s)
- Laurel Romano
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Katie G. Seu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Theodosia A. Kalfa
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Mukherjee K, Bieker JJ. Transcriptional Control of Gene Expression and the Heterogeneous Cellular Identity of Erythroblastic Island Macrophages. Front Genet 2021; 12:756028. [PMID: 34880902 PMCID: PMC8646026 DOI: 10.3389/fgene.2021.756028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
During definitive erythropoiesis, maturation of erythroid progenitors into enucleated reticulocytes requires the erythroblastic island (EBI) niche comprising a central macrophage attached to differentiating erythroid progenitors. Normally, the macrophage provides a nurturing environment for maturation of erythroid cells. Its critical physiologic importance entails aiding in recovery from anemic insults, such as systemic stress or acquired disease. Considerable interest in characterizing the central macrophage of the island niche led to the identification of putative cell surface markers enriched in island macrophages, enabling isolation and characterization. Recent studies focus on bulk and single cell transcriptomics of the island macrophage during adult steady-state erythropoiesis and embryonic erythropoiesis. They reveal that the island macrophage is a distinct cell type but with widespread cellular heterogeneity, likely suggesting distinct developmental origins and biological function. These studies have also uncovered transcriptional programs that drive gene expression in the island macrophage. Strikingly, the master erythroid regulator EKLF/Klf1 seems to also play a major role in specifying gene expression in island macrophages, including a putative EKLF/Klf1-dependent transcription circuit. Our present review and analysis of mouse single cell genetic patterns suggest novel expression characteristics that will enable a clear enrichment of EBI subtypes and resolution of island macrophage heterogeneity. Specifically, the discovery of markers such as Epor, and specific features for EKLF/Klf1-expressing island macrophages such as Sptb and Add2, or for SpiC-expressing island macrophage such as Timd4, or for Maf/Nr1h3-expressing island macrophage such as Vcam1, opens exciting possibilities for further characterization of these unique macrophage cell types in the context of their critical developmental function.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.,Tisch Cancer Center, Mount Sinai School of Medicine, New York, NY, United States.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 2021; 46:100740. [PMID: 32798012 DOI: 10.1016/j.blre.2020.100740] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
A characteristic feature of terminal erythropoiesis in mammals is extrusion of the highly condensed nucleus out of the cytoplasm. Other vertebrates, including fish, reptiles, amphibians, and birds, undergo nuclear condensation but do not enucleate. Enucleation provides mammals evolutionary advantages by gaining extra space for hemoglobin and being more flexible to migrate through capillaries. Nascent reticulocytes further mature into red blood cells through membrane and proteome remodeling and organelle clearance. Over the past decade, novel molecular mechanisms and signaling pathways have been uncovered that play important roles in chromatin condensation, enucleation, and reticulocyte maturation. These advances not only increase understanding of the physiology of erythropoiesis, but also facilitate efforts in generating in vitro red blood cells for various translational application. In the present review, recent studies in epigenetic modification and release of histones during chromatin condensation are highlighted. New insights in enucleation, including protein sorting, vesicle trafficking, transcriptional regulation, noncoding RNA, cytoskeleton remodeling, erythroblastic islands, and cytokinesis, are summarized. Moreover, organelle clearance and proteolysis mediated by ubiquitin-proteasome degradation during reticulocytes maturation is also examined. Perspectives for future directions in this rapidly evolving research area are also provided.
Collapse
Affiliation(s)
- Yang Mei
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Yijie Liu
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation. Blood 2021; 136:235-246. [PMID: 32350523 DOI: 10.1182/blood.2019003480] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Anemic stress induces stress erythropoiesis, which rapidly generates new erythrocytes to restore tissue oxygenation. Stress erythropoiesis is best understood in mice where it is extramedullary and occurs primarily in the spleen. However, both human and mouse stress erythropoiesis use signals and progenitor cells that are distinct from steady-state erythropoiesis. Immature stress erythroid progenitors (SEPs) are derived from short-term hematopoietic stem cells. Although the SEPs are capable of self-renewal, they are erythroid restricted. Inflammation and anemic stress induce the rapid proliferation of SEPs, but they do not differentiate until serum erythropoietin (Epo) levels increase. Here we show that rather than directly regulating SEPs, Epo promotes this transition from proliferation to differentiation by acting on macrophages in the splenic niche. During the proliferative stage, macrophages produce canonical Wnt ligands that promote proliferation and inhibit differentiation. Epo/Stat5-dependent signaling induces the production of bioactive lipid mediators in macrophages. Increased production of prostaglandin J2 (PGJ2) activates peroxisome proliferator-activated receptor γ (PPARγ)-dependent repression of Wnt expression, whereas increased production of prostaglandin E2 (PGE2) promotes the differentiation of SEPs.
Collapse
|
5
|
Li W, Guo R, Song Y, Jiang Z. Erythroblastic Island Macrophages Shape Normal Erythropoiesis and Drive Associated Disorders in Erythroid Hematopoietic Diseases. Front Cell Dev Biol 2021; 8:613885. [PMID: 33644032 PMCID: PMC7907436 DOI: 10.3389/fcell.2020.613885] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023] Open
Abstract
Erythroblastic islands (EBIs), discovered more than 60 years ago, are specialized microenvironments for erythropoiesis. This island consists of a central macrophage with surrounding developing erythroid cells. EBI macrophages have received intense interest in the verifications of the supporting erythropoiesis hypothesis. Most of these investigations have focused on the identification and functional analyses of EBI macrophages, yielding significant progresses in identifying and isolating EBI macrophages, as well as verifying the potential roles of EBI macrophages in erythropoiesis. EBI macrophages express erythropoietin receptor (Epor) both in mouse and human, and Epo acts on both erythroid cells and EBI macrophages simultaneously in the niche, thereby promoting erythropoiesis. Impaired Epor signaling in splenic niche macrophages significantly inhibit the differentiation of stress erythroid progenitors. Moreover, accumulating evidence suggests that EBI macrophage dysfunction may lead to certain erythroid hematological disorders. In this review, the heterogeneity, identification, and functions of EBI macrophages during erythropoiesis under both steady-state and stress conditions are outlined. By reviewing the historical data, we discuss the influence of EBI macrophages on erythroid hematopoietic disorders and propose a new hypothesis that erythroid hematopoietic disorders are driven by EBI macrophages.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxin Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Mukherjee K, Xue L, Planutis A, Gnanapragasam MN, Chess A, Bieker JJ. EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis. eLife 2021; 10:61070. [PMID: 33570494 PMCID: PMC7932694 DOI: 10.7554/elife.61070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of erythroid Krüppel-like factor (EKLF)/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single-cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together, these studies provide a detailed perspective on the importance of EKLF in the establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
| | - Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Andrew Chess
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
- Tisch Cancer InstituteNew York, NYUnited States
- Mindich Child Health and Development Institute, Mount Sinai School of MedicineNew York, NYUnited States
| |
Collapse
|
7
|
Splenectomy Prior to Experimental Induction of Autoimmune Hepatitis Promotes More Severe Hepatic Inflammation, Production of IL-17 and Apoptosis. Biomedicines 2021; 9:biomedicines9010058. [PMID: 33435354 PMCID: PMC7827897 DOI: 10.3390/biomedicines9010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
Autoimmune hepatitis (AIH) is detected at a late stage in the course of the disease. Therefore, induction and etiology are largely unclear. It is controversial if the induction of autoimmunity occurs in the liver or in the spleen. In our experimental murine AIH model, the induction of autoimmunity did not occur in the spleen. Instead, a protective role of the spleen could be more likely. Therefore, we splenectomized mice followed by induction of experimental murine AIH. Splenectomized mice presented more severe portal inflammation. Furthermore, these mice had more IL-17, IL-23 receptor (IL-23R) and caspase 3 (casp3) and a decreased amount of erythropoietin in serum, while intrahepatic T cell compartments were unaffected. These results indicate that the spleen is not necessary for induction of AIH, and splenectomy disrupts the ability to immune regulate the intensity of hepatic inflammation, production of IL-17 and apoptosis.
Collapse
|
8
|
Stress Erythropoiesis is a Key Inflammatory Response. Cells 2020; 9:cells9030634. [PMID: 32155728 PMCID: PMC7140438 DOI: 10.3390/cells9030634] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Bone marrow medullary erythropoiesis is primarily homeostatic. It produces new erythrocytes at a constant rate, which is balanced by the turnover of senescent erythrocytes by macrophages in the spleen. Despite the enormous capacity of the bone marrow to produce erythrocytes, there are times when it is unable to keep pace with erythroid demand. At these times stress erythropoiesis predominates. Stress erythropoiesis generates a large bolus of new erythrocytes to maintain homeostasis until steady state erythropoiesis can resume. In this review, we outline the mechanistic differences between stress erythropoiesis and steady state erythropoiesis and show that their responses to inflammation are complementary. We propose a new hypothesis that stress erythropoiesis is induced by inflammation and plays a key role in maintaining erythroid homeostasis during inflammatory responses.
Collapse
|