1
|
Li J, Ye C, Li H, Li J. Targeting the IKZF1/BCL-2 axis as a novel therapeutic strategy for treating acute T-cell lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2457777. [PMID: 39862423 PMCID: PMC11776473 DOI: 10.1080/15384047.2025.2457777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL. METHODS CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter. IKZF1 overexpression and knockdown experiments were performed in T-ALL cell lines. The effects of CX-4945 and venetoclax, alone and in combination, were evaluated in vitro and in vivo T-ALL models. RESULTS CUT&Tag sequencing identified IKZF1 binding to the BCL-2 promoter, establishing it as a transcriptional repressor. Functional assays demonstrated that IKZF1 overexpression reduced BCL-2 mRNA levels and increased repressive histone marks at the BCL-2 promoter, while IKZF1 knockdown led to elevated BCL-2 expression. CX-4945, a CK2 inhibitor, could reduced BCL-2 levels in T-ALL cells. Notably, knockdown of IKZF1 partially rescued the CX-4945-induced repression of BCL-2. These results underscore the CK2-IKZF1 signaling axis as a key regulator of BCL-2 expression. In vitro, CX-4945 enhanced the cytotoxicity of venetoclax, with the combination showing significant synergistic effects and increased apoptosis in T-ALL cell lines. In vivo studies with cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models demonstrated that CX-4945 and venetoclax combined therapy provided superior therapeutic efficacy, reducing tumor burden and prolonging survival compared to single-agent treatments. CONCLUSIONS IKZF1 represses BCL-2 in T-ALL, and targeting the CK2-IKZF1 axis with CX-4945 and venetoclax offers a promising therapeutic strategy, showing enhanced efficacy and potential as a novel treatment approach for T-ALL.
Collapse
Affiliation(s)
- Juan Li
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
- Institute of Hematology, Affiliated hospital of Yangzhou University, Taixing, China
| | - Chunmei Ye
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
- Institute of Hematology, Affiliated hospital of Yangzhou University, Taixing, China
| | - Hui Li
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
| | - Jun Li
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
- Institute of Hematology, Affiliated hospital of Yangzhou University, Taixing, China
| |
Collapse
|
2
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
3
|
Han Q, Gu Y, Xiang H, Zhang L, Wang Y, Yang C, Li J, Steiner C, Lapalombella R, Woyach JA, Yang Y, Dovat S, Song C, Ge Z. Targeting WDR5/ATAD2 signaling by the CK2/IKAROS axis demonstrates therapeutic efficacy in T-ALL. Blood 2025; 145:1407-1421. [PMID: 39785511 PMCID: PMC11969266 DOI: 10.1182/blood.2024024130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD repeat-containing protein 5 (WDR5) in T-ALL. With in vitro and in vivo models, we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2). Moreover, the function of a zinc finger transcription factor of the Kruppel family (IKAROS) is often impaired by genetic alteration and casein kinase II (CK2) which is overexpressed in T-ALL. We found that IKAROS directly regulates WDR5 transcription; CK2 inhibitor, CX-4945, strongly suppresses WDR5 expression by restoring IKAROS function. Last, combining CX-4945 with WDR5 inhibitor demonstrates synergistic efficacy in the patient-derived xenograft mouse models. In conclusion, our results demonstrated that WDR5/ATAD2 is a new oncogenic signaling pathway in T-ALL, and simultaneous targeting of WRD5 and CK2/IKAROS has synergistic antileukemic efficacy and represents a promising potential strategy for T-ALL therapy.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Huimin Xiang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Linyao Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Wang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chan Yang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jun Li
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chelsea Steiner
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Rosa Lapalombella
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Jennifer A. Woyach
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Hershey Medical Center, Pennsylvania State University Medical College, Hershey, PA
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
4
|
Lo Nigro L, Arrabito M, Andriano N, Iachelli V, La Rosa M, Bonaccorso P. Characterization of CK2, MYC and ERG Expression in Biological Subgroups of Children with Acute Lymphoblastic Leukemia. Int J Mol Sci 2025; 26:1076. [PMID: 39940843 PMCID: PMC11817342 DOI: 10.3390/ijms26031076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Despite the excellent survival rate, relapse occurs in 20% of children with ALL. Deep analyses of cell signaling pathways allow us to identify new markers and/or targets promising more effective and less toxic therapy. We analyzed 61 diagnostic samples collected from 35 patients with B- and 26 with T-ALL, respectively. The expression of CK2, MYC and ERG genes using Sybr-Green assay and the comparative 2-ΔΔCt method using 20 healthy donors (HDs) was evaluated. We observed a statistically significant difference in CK2 expression in non-HR (p = 0.010) and in HR (p = 0.0003) T-ALL cases compared to HDs. T-ALL patients with PTEN-Exon7 mutation, IKZF1 and CDKN2A deletions showed high CK2 expression. MYC expression was higher in pediatric T-ALL patients than HDs (p = 0.019). Surprisingly, we found MYC expression to be higher in non-HR than in HR T-ALL patients. TLX3 (HOX11L2)-rearranged T-ALLs (27%) in association with CRLF2 overexpression (23%) showed very high MYC expression. In B-ALLs, we detected CK2 expression higher than HDs and MYC overexpression in HR compared to non-HR patients, particularly in MLL-rearranged B-ALLs. We observed a strong difference in ERG expression between pediatric T- and B-ALL cases. In conclusion, we confirmed CK2 as a prognostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Luca Lo Nigro
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy; (M.A.); (N.A.); (V.I.); (M.L.R.); (P.B.)
- Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy
| | - Marta Arrabito
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy; (M.A.); (N.A.); (V.I.); (M.L.R.); (P.B.)
- Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy
| | - Nellina Andriano
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy; (M.A.); (N.A.); (V.I.); (M.L.R.); (P.B.)
| | - Valeria Iachelli
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy; (M.A.); (N.A.); (V.I.); (M.L.R.); (P.B.)
| | - Manuela La Rosa
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy; (M.A.); (N.A.); (V.I.); (M.L.R.); (P.B.)
| | - Paola Bonaccorso
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico-San Marco, 95123 Catania, Italy; (M.A.); (N.A.); (V.I.); (M.L.R.); (P.B.)
| |
Collapse
|
5
|
Copelan E, Gale RP. Hematopoietic cell transplantation soon after first relapse in acute myeloid leukemia - the PROS. Haematologica 2025; 110:4-6. [PMID: 39744857 PMCID: PMC11696229 DOI: 10.3324/haematol.2024.285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 10/10/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC.
| | - Robert P Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London
| |
Collapse
|
6
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024; 65:2077-2087. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
7
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024; 18:995-1005. [PMID: 39469853 PMCID: PMC11633390 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
G C B, Hoyt LJ, Dovat S, Dong F. Upregulation of nuclear protein Hemgn by transcriptional repressor Gfi1 through repressing PU.1 contributes to the anti-apoptotic activity of Gfi1. J Biol Chem 2024; 300:107860. [PMID: 39374784 PMCID: PMC11550643 DOI: 10.1016/j.jbc.2024.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Gfi1 is a transcriptional repressor that plays a critical role in hematopoiesis. The repressive activity of Gfi1 is mediated mainly by its SNAG domain that interacts with and thereby recruits the histone demethylase LSD1 to its target genes. An important function of Gfi1 is to protect hematopoietic cells against stress-induced apoptosis, which has been attributed to its participation in the posttranscriptional modifications of p53 protein, leading to suppression of p53 activity. In this study, we show that Gfi1 upregulated the expression of Hemgn, a nuclear protein, through a 16-bp promoter region spanning from +47 to +63 bp relative to the transcription start site (TSS), which was dependent on its interaction with LSD1. We further demonstrate that Gfi1, Ikaros, and PU.1 are bound to this 16-bp region. However, while Ikaros activated Hemgn and collaborated with Gfi1 to augment Hemgn expression, it was not required for Gfi1-mediated Hemgn upregulation. In contrast, PU.1 repressed Hemgn and inhibited Hemgn upregulation by Gfi1. Notably, PU.1 knockdown and deficiency, while augmenting Hemgn expression, abolished Hemgn upregulation by Gfi1. PU.1 (Spi-1) is repressed by Gfi1. We show here that PU.1 repression by Gfi1 preceded and correlated well with Hemgn upregulation. Thus, our data strongly suggest that Gfi1 upregulates Hemgn by repressing PU.1. In addition, we demonstrate that Hemgn upregulation contributed to the anti-apoptotic activity of Gfi1 in a p53-independent manner.
Collapse
Affiliation(s)
- Binod G C
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Laney Jia Hoyt
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
9
|
Deng H, Rao X, Zhang S, Chen L, Zong Y, Zhou R, Meng R, Dong X, Wu G, Li Q. Protein kinase CK2: An emerging regulator of cellular metabolism. Biofactors 2024; 50:624-633. [PMID: 38158592 DOI: 10.1002/biof.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The protein kinase casein kinase 2 (CK2) exerts its influence on the metabolism of three major cellular substances by phosphorylating essential protein molecules involved in various cellular metabolic pathways. These substances include hormones, especially insulin, rate-limiting enzymes, transcription factors of key genes, and cytokines. This regulatory role of CK2 is closely tied to important cellular processes such as cell proliferation and apoptosis. Additionally, tumor cells undergo metabolic reprogramming characterized by aerobic glycolysis, accelerated lipid β-oxidation, and abnormally active glutamine metabolism. In this context, CK2, which is overexpressed in various tumors, also plays a pivotal role. Hence, this review aims to summarize the regulatory mechanisms of CK2 in diverse metabolic pathways and tumor development, providing novel insights for the diagnosis, treatment, and prognosis of metabolism-related diseases and cancers.
Collapse
Affiliation(s)
- Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Budurlean L, Tukaramrao DB, Zhang L, Dovat S, Broach J. Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection. J Pers Med 2024; 14:291. [PMID: 38541033 PMCID: PMC10971281 DOI: 10.3390/jpm14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.
Collapse
Affiliation(s)
- Laura Budurlean
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Lijun Zhang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sinisa Dovat
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - James Broach
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
11
|
Paolino J, Tsai HK, Harris MH, Pikman Y. IKZF1 Alterations and Therapeutic Targeting in B-Cell Acute Lymphoblastic Leukemia. Biomedicines 2024; 12:89. [PMID: 38255194 PMCID: PMC10813044 DOI: 10.3390/biomedicines12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
IKZF1 encodes the transcription factor IKAROS, a zinc finger DNA-binding protein with a key role in lymphoid lineage development. IKAROS plays a critical role in the development of lineage-restricted mature lymphocytes. Deletions within IKZF1 in B-cell acute lymphoblastic leukemia (B-ALL) lead to a loss of normal IKAROS function, conferring leukemic stem cell properties, including self-renewal and subsequent uncontrolled growth. IKZF1 deletions are associated with treatment resistance and inferior outcomes. Early identification of IKZF1 deletions in B-ALL may inform the intensification of therapy and other potential treatment strategies to improve outcomes in this high-risk leukemia.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Harrison K. Tsai
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA (M.H.H.)
| | - Marian H. Harris
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA (M.H.H.)
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Kastner P, Chan S. IKAROS Family Transcription Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:33-52. [PMID: 39017838 DOI: 10.1007/978-3-031-62731-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The IKAROS family of transcription factors comprises four zinc-finger proteins (IKAROS, HELIOS, AIOLOS, and EOS), which over the last decades have been established to be critical regulators of the development and function of lymphoid cells. These factors act as homo- or heterodimers and are involved both in gene activation and repression. Their function often involves cross-talk with other regulatory circuits, such as the JAK/STAT, NF-κB, and NOTCH pathways. They control lymphocyte differentiation at multiple stages and are notably critical for lymphoid commitment in multipotent hematopoietic progenitors and for T and B cell differentiation downstream of pre-TCR and pre-BCR signaling. They also control many aspects of effector functions in mature B and T cells. They are dysregulated or mutated in multiple pathologies affecting the lymphoid system, which range from leukemia to immunodeficiencies. In this chapter, we review the molecular and physiological function of these factors in lymphocytes and their implications in human pathologies.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch-Graffenstaden, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch-Graffenstaden, France.
- Université de Strasbourg, Illkirch-Graffenstaden, France.
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch-Graffenstaden, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch-Graffenstaden, France.
- Université de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
13
|
Gu S, Hou Y, Dovat K, Dovat S, Song C, Ge Z. Synergistic effect of HDAC inhibitor Chidamide with Cladribine on cell cycle arrest and apoptosis by targeting HDAC2/c-Myc/RCC1 axis in acute myeloid leukemia. Exp Hematol Oncol 2023; 12:23. [PMID: 36849955 PMCID: PMC9972767 DOI: 10.1186/s40164-023-00383-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND More effective targeted therapy and new combination regimens are needed for Acute myeloid leukemia (AML), owing to the unsatisfactory long-term prognosis of the disease. Here, we investigated the synergistic effect and the mechanism of a histone deacetylase inhibitor, Chidamide in combination with Cladribine, a purine nucleoside antimetabolite analog in the disease. METHODS Cell counting kit-8 assays and Chou-Talalay's combination index were used to examine the synergistic effect of Chidamide and Cladribine on AML cell lines (U937, THP-1, and MV4-11) and primary AML cells. PI and Annexin-V/PI assays were used to detect the cell cycle effect and apoptosis effect, respectively. Global transcriptome analysis, RT-qPCR, c-MYC Knockdown, western blotting, co-immunoprecipitation, and chromatin immunoprecipitation assays were employed to explore the molecule mechanisms. RESULTS The combination of Chidamide with Cladribine showed a significant increase in cell proliferation arrest, the G0/G1 phase arrest, and apoptosis compared to the single drug control in AML cell lines along with upregulated p21Waf1/Cip1 expression and downregulated CDK2/Cyclin E2 complex, and elevated cleaved caspase-9, caspase-3, and PARP. The combination significantly suppresses the c-MYC expression in AML cells, and c-MYC knockdown significantly increased the sensitivity of U937 cells to the combination compared to single drug control. Moreover, we observed HDAC2 interacts with c-Myc in AML cells, and we further identified that c-Myc binds to the promoter region of RCC1 that also could be suppressed by the combination through c-Myc-dependent. Consistently, a positive correlation of RCC1 with c-MYC was observed in the AML patient cohort. Also, RCC1 and HDAC2 high expression are associated with poor survival in AML patients. Finally, we also observed the combination significantly suppresses cell growth and induces the apoptosis of primary cells in AML patients with AML1-ETO fusion, c-KIT mutation, MLL-AF6 fusion, FLT3-ITD mutation, and in a CMML-BP patient with complex karyotype. CONCLUSIONS Our results demonstrated the synergistic effect of Chidamide with Cladribine on cell growth arrest, cell cycle arrest, and apoptosis in AML and primary cells with genetic defects by targeting HDAC2/c-Myc/RCC1 signaling in AML. Our data provide experimental evidence for the undergoing clinical trial (Clinical Trial ID: NCT05330364) of Chidamide plus Cladribine as a new potential regimen in AML.
Collapse
Affiliation(s)
- Siyu Gu
- grid.11135.370000 0001 2256 9319Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009 China
| | - Yue Hou
- grid.11135.370000 0001 2256 9319Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009 China
| | - Katarina Dovat
- grid.29857.310000 0001 2097 4281Hershey Medical Center, Pennsylvania State University Medical College, Hershey, 17033 USA
| | - Sinisa Dovat
- grid.29857.310000 0001 2097 4281Hershey Medical Center, Pennsylvania State University Medical College, Hershey, 17033 USA
| | - Chunhua Song
- grid.29857.310000 0001 2097 4281Hershey Medical Center, Pennsylvania State University Medical College, Hershey, 17033 USA ,grid.412332.50000 0001 1545 0811Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH 43210 USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| |
Collapse
|
14
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Dong X, Li X, Gan Y, Ding J, Wei B, Zhou L, Cui W, Li W. TRAF4-mediated ubiquitination-dependent activation of JNK/Bcl-xL drives radioresistance. Cell Death Dis 2023; 14:102. [PMID: 36765039 PMCID: PMC9918491 DOI: 10.1038/s41419-023-05637-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
The E3 ligase TNF receptor-associated factor 4 (TRAF4) is upregulated and closely associated with tumorigenesis and the progression of multiple human malignancies. However, its effect on radiosensitivity in colorectal cancer (CRC) has not been elucidated. The present study found that TRAF4 was significantly increased in CRC clinical tumor samples. Depletion of TRAF4 impaired the malignant phenotype of CRC cells and sensitized irradiation-induced cell death. Irradiation activated the c-Jun N-terminal kinases (JNKs)/c-Jun signaling via increasing JNKs K63-linked ubiquitination and phosphorylation. Furthermore, c-Jun activation triggered the transcription of the antiapoptotic protein Bcl-xL, thus contributing to the radioresistance of CRC cells. TRAF4 was positively correlated with c-Jun and Bcl-xL, and blocking TRAF4 or inhibiting Bcl-xL with inhibitor markedly promoted ionizing radiation (IR)-induced intrinsic apoptosis and sensitized CRC cells to radiotherapy in vitro and in vivo. Our findings illustrate a potential mechanism of radioresistance, emphasizing the clinical value of targeting the TRAF4/Bcl-xL axis in CRC therapy.
Collapse
Affiliation(s)
- Xin Dong
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jie Ding
- Department of Anesthesia, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Baojun Wei
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
16
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Tang B, Cai Z, Wang Z, Lin D, He X, Li Q, Liang X, Huang K, Zhou X, Lin R, Xu N, Fan Z, Huang F, Sun J, Liu X, Liu Q, Zhou H. Allogeneic hematopoietic stem cell transplantation overcome the poor prognosis of patients with IKZF1plus CD20-a very high-risk subtype in B-cell acute lymphoblastic leukemia. Bone Marrow Transplant 2022; 57:1751-1757. [PMID: 36056210 DOI: 10.1038/s41409-022-01797-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Genetic deletions of IKZF1 (IKZF1del) and IKZF1del plus other mutations (IKZF1plus) have been identified in B-cell acute lymphoblastic leukemia (B-ALL) with a poor prognosis. Herein, we investigated the combination of IKZF1del and CD20 immunotypes in adult patients with B-ALL in the PDT-ALL-2016 cohort. This study cohort consisted of 161 patients with B-ALL with detailed information on IKZF1del and CD20 expression. The independent cohort included 196 patients from the TARGET dataset. IKZF1del was detected in 36.0% of patients with 3-year event-free survival (EFS) of 37.1 ± 6.7% and overall survival (OS) of 51.5 ± 7.3%, compared to IKZF1 wild-type (IKZF1wt) with an EFS 55.3 ± 5.1% (P = 0.011) and OS 74.4 ± 4.5% (P = 0.013), respectively. CD20-positive (CD20+) was associated with inferior EFS compared to the CD20-negative (CD20-) group (P = 0.020). Furthermore, IKZF1del coupled with CD20+, IKZF1del/CD20+, comprised 12.4% of patients with a 3-year EFS of 25.0 ± 9.7%, compared with IKZF1wt/CD20- (P ≤ 0.001) and IKZF1del/CD20- (P = 0.047) groups. Multivariable analyses demonstrated the independence of IKZF1del/CD20+, with the highest predicted hazard ratio for EFS and OS. Furthermore, the prognostic panel of IKZF1del/CD20+ was confirmed in the TARGET cohort. Notably, neither the IKZF1del, CD20+, or IKZF1del/CD20+ groups were identified to have poor outcomes in the cohort of allogeneic hematopoietic stem cell transplantation (n = 81).Collectively, our data define IKZF1del/CD20+ as a very high-risk subtype in B-ALL, and allo-HSCT could abrogate the poor outcome of both IKZF1del and IKZF1del/CD20+ subsets.
Collapse
Affiliation(s)
- Bingqing Tang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dainan Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Xianjun He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hematology, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Qiuli Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hematology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaojie Liang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyu Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
19
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
20
|
Zhou L, Wang H, Liu H, Huang Z, Wang Z, Zhou X, Mu X. The synergistic therapeutic effect of imatinib and protein kinase CK2 Inhibition correlates with PI3K-AKT activation in gastrointestinal stromal tumors. Clin Res Hepatol Gastroenterol 2022; 46:101886. [PMID: 35183792 DOI: 10.1016/j.clinre.2022.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Casein kinase 2 (CK2) has been reported to be involved in several cellular processes in multiple cancers. However, the role of CK2 in GIST remains unclear. AIM We aimed to investigate the combinatorial treatment of imatinib (IM) and CK2 inhibition on the progression of GISTs. METHODS GIST biopsies and adjacent normal tissues were collected from patients. GIST882 and GIST48 cell lines were subjected to investigate the effect of IM and CK2 inhibition in GIST cells. CCK-8 assay, Caspase-3 activity assay, western blotting, and flow cytometry analysis were employed in the present investigation. RESULTS Our results showed that CK2 was highly expressed in GIST biopsies, and inhibition of CK2 resulted in decrease in cell viability and increase in apoptosis of GIST cells. Moreover, the combination treatment with CX-4945 (CX) and IM resulted in a more significant decrease in cell viability and increase in cell apoptosis compared with mono-treatment. Mechanistically, the combination treatment influenced the activation of the PI3K/AKT pathway. The activation of the PI3K/AKT pathway reversed the synergistic impacts of the combined treatment on cell viability and apoptosis. CONCLUSION Our results demonstrated that inhibition of CK2 combined with IM exhibited a synergistic anti-cancer effect on GIST cells through inactivation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Linsen Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, Jiangsu 215006, China; Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Hao Wang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Haofeng Liu
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University and Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Zhijun Huang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Zhiqiang Wang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, Jiangsu 215006, China.
| | - Xiangming Mu
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China.
| |
Collapse
|
21
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
22
|
Wang L, Liu X, Kang Q, Pan C, Zhang T, Feng C, Chen L, Wei S, Wang J. Nrf2 Overexpression Decreases Vincristine Chemotherapy Sensitivity Through the PI3K-AKT Pathway in Adult B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:876556. [PMID: 35646695 PMCID: PMC9134735 DOI: 10.3389/fonc.2022.876556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled proliferation is an important cancer cell biomarker, which plays a critical role in carcinogenesis, progression and development of resistance to chemotherapy. An improved understanding of novel genes modulating cancer cell proliferation and mechanism will help develop new therapeutic strategies. The nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, decreases apoptosis when its expression is upregulated. However, the relationship between Nrf2 and Vincristine (VCR) chemotherapy resistance in B-cell acute lymphoblastic leukemia (B-ALL) is not yet established. Our results showed that Nrf2 levels could sufficiently modulate the sensitivity of B-ALL cells to VCRby regulating an apoptotic protein, i.e., the Bcl-2 agonist of cell death (BAD). Chemotherapeutic agents used for the treatment of B-ALL induced Nrf2 overactivation and PI3K-AKT pathway activation in the cells, independent of the resistance to chemotherapy; thus, a potential resistance loop during treatment for B-ALL with a drug combination is established. Therefore, B-ALL patients with a high expression of Nrf2 might mean induction chemotherapy with VCR effective little.
Collapse
Affiliation(s)
- Li Wang
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Xin Liu
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Qian Kang
- Department of Hematology, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Haematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chengyun Pan
- Department of Hematology, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Haematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianzhuo Zhang
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Cheng Feng
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Lu Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Haematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, China
| |
Collapse
|
23
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
24
|
Zhang L, Zhou S, Zhou T, Li X, Tang J. Targeting the lncRNA DUXAP8/miR-29a/ PIK3CA Network Restores Doxorubicin Chemosensitivity via PI3K-AKT-mTOR Signaling and Synergizes With Inotuzumab Ozogamicin in Chemotherapy-Resistant B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:773601. [PMID: 35311115 PMCID: PMC8924619 DOI: 10.3389/fonc.2022.773601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to determine the expression profiles of long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in chemotherapy-resistant B-cell acute lymphoblastic leukemia (B-ALL). Methods LncRNA, miRNA, and mRNA profiles were assessed by RNA-seq in diagnostic bone marrow samples from 6 chemotherapy-resistant and 6 chemotherapy-sensitive B-ALL patients. The lncRNA DUXAP8/miR-29a/PIK3CA signaling network was identified as the most dysregulated in chemoresistant patient samples, and its effect on cellular phenotypes, PI3K-AKT-mTOR signaling, and chemosensitivity of doxorubicin (Dox)-resistant Nalm-6 (N6/ADR), and Dox-resistant 697 (697/ADR) cells were assessed. Furthermore, its synergy with inotuzumab ozogamicin treatment was investigated. Results 1,338 lncRNAs, 75 miRNAs, and 1620 mRNAs were found to be dysregulated in chemotherapy-resistant B-ALL in comparison to chemotherapy-sensitive B-ALL patient samples. Through bioinformatics analyses and RT-qPCR validation, the lncRNA DUXAP8/miR-29a/PIK3CA network and PI3K-AKT-mTOR signaling were identified as significantly associated with B-ALL chemotherapy resistance. In N6/ADR and 697/ADR cells, LncRNA DUXAP8 overexpression and PIK3CA overexpression induced proliferation and inhibited apoptosis, and their respective knockdowns inhibited proliferation, facilitated apoptosis, and restored Dox chemosensitivity. MiR-29a was shown to affect the lncRNA DUXAP8/PIK3CA network, and luciferase reporter gene assay showed direct binding between lncRNA DUXAP8 and miR-29a, as well as between miR-29a and PIK3CA. Targeting lncRNA DUXAP8/miR-29a/PIK3CA network synergized with inotuzumab ozogamicin's effect on N6/ADR and 697/ADR cells. Conclusion Targeting the lncRNA DUXAP8/miR-29a/PIK3CA network not only induced an apoptotic effect on Dox-resistant B-ALL and restored Dox chemosensitivity via PI3K-AKT-mTOR signaling but also showed synergism with inotuzumab ozogamicin treatment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Melvold K, Giliberto M, Karlsen L, Ayuda‐Durán P, Hanes R, Holien T, Enserink J, Brown JR, Tjønnfjord GE, Taskén K, Skånland SS. Mcl-1 and Bcl-xL levels predict responsiveness to dual MEK/Bcl-2 inhibition in B-cell malignancies. Mol Oncol 2022; 16:1153-1170. [PMID: 34861096 PMCID: PMC8895453 DOI: 10.1002/1878-0261.13153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022] Open
Abstract
Most patients with chronic lymphocytic leukemia (CLL) initially respond to targeted therapies, but eventually relapse and develop resistance. Novel treatment strategies are therefore needed to improve patient outcomes. Here, we performed direct drug testing on primary CLL cells and identified synergy between eight different mitogen-activated protein kinase kinase (MEK) inhibitors and the B-cell lymphoma 2 (Bcl-2) antagonist venetoclax. Drug sensitivity was independent of immunoglobulin heavy-chain gene variable region (IGVH) and tumor protein p53 (TP53) mutational status, and CLL cells from idelalisib-resistant patients remained sensitive to the treatment. This suggests that combined MEK/Bcl-2 inhibition may be an option for high-risk CLL. To test whether sensitivity could be detected in other B-cell malignancies, we performed drug testing on cell line models of CLL (n = 4), multiple myeloma (MM; n = 8), and mantle cell lymphoma (MCL; n = 7). Like CLL, MM cells were sensitive to the MEK inhibitor trametinib, and synergy was observed with venetoclax. In contrast, MCL cells were unresponsive to MEK inhibition. To investigate the underlying mechanisms of the disease-specific drug sensitivities, we performed flow cytometry-based high-throughput profiling of 31 signaling proteins and regulators of apoptosis in the 19 cell lines. We found that high expression of the antiapoptotic proteins myeloid cell leukemia-1 (Mcl-1) or B-cell lymphoma-extra large (Bcl-xL) predicted low sensitivity to trametinib + venetoclax. The low sensitivity could be overcome by combined treatment with an Mcl-1 or Bcl-xL inhibitor. Our findings suggest that MEK/Bcl-2 inhibition has therapeutic potential in leukemia and myeloma, and demonstrate that protein expression levels can serve as predictive biomarkers for treatment sensitivities.
Collapse
Affiliation(s)
- Katrine Melvold
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
| | - Mariaserena Giliberto
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Linda Karlsen
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Pilar Ayuda‐Durán
- Faculty of MedicineCentre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalNorway
| | - Robert Hanes
- Faculty of MedicineCentre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalNorway
| | - Toril Holien
- Department of Clinical and Molecular MedicineNTNU – Norwegian University of Science and TechnologyTrondheimNorway
- Department of Immunology and Transfusion MedicineSt. Olav’s University HospitalTrondheimNorway
- Department of HematologySt. Olav’s University HospitalTrondheimNorway
| | - Jorrit Enserink
- Faculty of MedicineCentre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalNorway
- Faculty of Mathematics and Natural SciencesDepartment of BiosciencesUniversity of OsloNorway
| | - Jennifer R. Brown
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Geir E. Tjønnfjord
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
- Department of HaematologyOslo University HospitalNorway
| | - Kjetil Taskén
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Sigrid S. Skånland
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
| |
Collapse
|
26
|
Pucko EB, Ostrowski RP. Inhibiting CK2 among Promising Therapeutic Strategies for Gliomas and Several Other Neoplasms. Pharmaceutics 2022; 14:331. [PMID: 35214064 PMCID: PMC8877581 DOI: 10.3390/pharmaceutics14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In gliomas, casein kinase 2 (CK2) plays a dominant role in cell survival and tumour invasiveness and is upregulated in many brain tumours. Among CK2 inhibitors, benzimidazole and isothiourea derivatives hold a dominant position. While targeting glioma tumour cells, they show limited toxicity towards normal cells. Research in recent years has shown that these compounds can be suitable as components of combined therapies with hyperbaric oxygenation. Such a combination increases the susceptibility of glioma tumour cells to cell death via apoptosis. Moreover, researchers planning on using any other antiglioma investigational pharmaceutics may want to consider using these agents in combination with CK2 inhibitors. However, different compounds are not equally effective when in such combination. More research is needed to elucidate the mechanism of treatment and optimize the treatment regimen. In addition, the role of CK2 in gliomagenesis and maintenance seems to have been challenged recently, as some compounds structurally similar to CK2 inhibitors do not inhibit CK2 while still being effective at reducing glioma viability and invasion. Furthermore, some newly developed inhibitors specific for CK2 do not appear to have strong anticancer properties. Further experimental and clinical studies of these inhibitors and combined therapies are warranted.
Collapse
Affiliation(s)
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
27
|
The Immune Regulatory Role of Protein Kinase CK2 and Its Implications for Treatment of Cancer. Biomedicines 2021; 9:biomedicines9121932. [PMID: 34944749 PMCID: PMC8698504 DOI: 10.3390/biomedicines9121932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
Protein Kinase CK2, a constitutively active serine/threonine kinase, fulfills its functions via phosphorylating hundreds of proteins in nearly all cells. It regulates a variety of cellular signaling pathways and contributes to cell survival, proliferation and inflammation. CK2 has been implicated in the pathogenesis of hematologic and solid cancers. Recent data have documented that CK2 has unique functions in both innate and adaptive immune cells. In this article, we review aspects of CK2 biology, functions of the major innate and adaptive immune cells, and how CK2 regulates the function of immune cells. Finally, we provide perspectives on how CK2 effects in immune cells, particularly T-cells, may impact the treatment of cancers via targeting CK2.
Collapse
|
28
|
Wei H, Yang W, Hong H, Yan Z, Qin H, Benveniste EN. Protein Kinase CK2 Regulates B Cell Development and Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:799-808. [PMID: 34301844 DOI: 10.4049/jimmunol.2100059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022]
Abstract
Protein kinase CK2 (also known as Casein Kinase 2) is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory CK2β subunits. CK2 is overexpressed and overactive in B cell acute lymphoblastic leukemia and diffuse large B cell lymphomas, leading to inappropriate activation of the NF-κB, JAK/STAT, and PI3K/AKT/mTOR signaling pathways and tumor growth. However, whether CK2 regulates normal B cell development and differentiation is not known. We generated mice lacking CK2α specifically in B cells (using CD19-driven Cre recombinase). These mice exhibited cell-intrinsic expansion of marginal zone B cells at the expense of transitional B cells, without changes in follicular B cells. Transitional B cells required CK2α to maintain adequate BCR signaling. In the absence of CK2α, reduced BCR signaling and elevated Notch2 signaling activation increased marginal zone B cell differentiation. Our results identify a previously unrecognized function for CK2α in B cell development and differentiation.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Wei Yang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Huixian Hong
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Hongwei Qin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
29
|
Selective BCL-X L Antagonists Eliminate Infected Cells from a Primary-Cell Model of HIV Latency but Not from Ex Vivo Reservoirs. J Virol 2021; 95:e0242520. [PMID: 33980597 DOI: 10.1128/jvi.02425-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HIV persists, despite immune responses and antiretroviral therapy, in viral reservoirs that seed rebound viremia if therapy is interrupted. Previously, we showed that the BCL-2 protein contributes to HIV persistence by conferring a survival advantage to reservoir-harboring cells. Here, we demonstrate that many of the BCL-2 family members are overexpressed in HIV-infected CD4+ T cells, indicating increased tension between proapoptotic and prosurvival family members-and suggesting that inhibition of prosurvival members may disproportionately affect the survival of HIV-infected cells. Based on these results, we chose to study BCL-XL due to its consistent overexpression and the availability of selective antagonists. Infection of primary CD4+ T cells with HIV resulted in increased BCL-XL protein expression, and treatment with two selective BCL-XL antagonists, A-1155463 and A-1551852, led to selective death of productively infected CD4+ T cells. In a primary cell model of latency, both BCL-XL antagonists drove reductions in HIV DNA and in infectious cell frequencies both alone and in combination with the latency reversing agent bryostatin-1, with little off-target cytotoxicity. However, these antagonists, with or without bryostatin-1 or in combination with the highly potent latency reversing agent combination phorbol myristate acetate (PMA) + ionomycin, failed to reduce total HIV DNA and infectious reservoirs in ex vivo CD4+ T cells from antiretroviral therapy (ART)-suppressed donors. Our results add to growing evidence that bona fide reservoir-harboring cells are resistant to multiple "kick and kill" modalities-relative to latency models. We also interpret our results as encouraging further exploration of BCL-XL antagonists for cure, where combination approaches, including with immune effectors, may unlock the ability to eliminate ex vivo reservoirs. IMPORTANCE Although antiretroviral therapy (ART) has transformed HIV infection into a manageable chronic condition, there is no safe or scalable cure. HIV persists in "reservoirs" of infected cells that reinitiate disease progression if ART is interrupted. Whereas most efforts to eliminate this reservoir have focused on exposing these cells to immune-mediated clearance by reversing viral latency, recent work shows that these cells also resist being killed. Here, we identify a "prosurvival" factor, BCL-XL, that is overexpressed in HIV-infected cells, and demonstrate selective toxicity to these cells by BCL-XL antagonists. These antagonists also reduced reservoirs in a primary-cell latency model but were insufficient to reduce "natural" reservoirs in ex vivo CD4+ T cells-adding to growing evidence that the latter are resilient in a way that is not reflected in models. We nonetheless suggest that the selective toxicity of BCL-XL antagonists to HIV-infected cells supports their prioritization for testing in combinations aimed at reducing ex vivo reservoirs.
Collapse
|
30
|
Ge Z, Song C, Ding Y, Tan BH, Desai D, Sharma A, Gowda R, Yue F, Huang S, Spiegelman V, Payne JL, Reeves ME, Iyer S, Dhanyamraju PK, Imamura Y, Bogush D, Bamme Y, Yang Y, Soliman M, Kane S, Dovat E, Schramm J, Hu T, McGrath M, Chroneos ZC, Payne KJ, Gowda C, Dovat S. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia 2021; 35:1267-1278. [PMID: 33531656 PMCID: PMC8102195 DOI: 10.1038/s41375-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.
Collapse
Affiliation(s)
- Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Zhongda Hospital, Medical School of Southeast University Nanjing, 210009, Nanjing, China
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Feng Yue
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Jonathon L Payne
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Mark E Reeves
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Soumya Iyer
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Yuka Imamura
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yevgeniya Bamme
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yiping Yang
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Mario Soliman
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shriya Kane
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Elanora Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tommy Hu
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Mary McGrath
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zissis C Chroneos
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kimberly J Payne
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
31
|
Klink M, Rahman MA, Song C, Dhanyamraju PK, Ehudin M, Ding Y, Steffens S, Bhadauria P, Iyer S, Aliaga C, Desai D, Huang S, Claxton D, Sharma A, Gowda C. Mechanistic Basis for In Vivo Therapeutic Efficacy of CK2 Inhibitor CX-4945 in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13051127. [PMID: 33807974 PMCID: PMC7975325 DOI: 10.3390/cancers13051127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Acute Myeloid Leukemia is an aggressive disease with poor outcomes. New targeted therapies that can boost the effects of currently used chemotherapy medications without added toxicity are needed. Targeting an overactive kinase, called the protein Kinase CK2 in AML, helps leukemia cells undergo cell death and helps certain chemotherapy drugs work better. Here, we present evidence that CX-4945, a CK2 inhibitor drug, effectively kills leukemia cells in mouse models and shows the mechanism of action responsible for these effects. Leukemia cells are more sensitive to a decrease in CK2 kinase levels than normal cells. Our results show that inhibiting CK2 kinase makes AML cells more susceptible to anthracycline-induced cell death. Anthracyclines like daunorubicin and doxorubicin are widely used to treat leukemia in children and adults. A rational combination of protein kinase CK2 inhibitors with the standard of care chemotherapy may help treat AML more effectively. Abstract Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeutic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates IKAROS and disrupts IKAROS’ transcriptional activity by impairing DNA-binding and association with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphorylation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma like–2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and mechanistic bases for the addition of CK2 inhibitors to AML therapy.
Collapse
Affiliation(s)
- Morgann Klink
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Mohammad Atiqur Rahman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Pavan Kumar Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Melanie Ehudin
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Sadie Steffens
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Preeti Bhadauria
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Radiation Oncology, University of Chicago,Chicago, IL 60607, USA
| | - Cesar Aliaga
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Suming Huang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Correspondence: ; Tel.: 717-531-6012; Fax: 717-531-4789
| |
Collapse
|
32
|
Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers (Basel) 2021; 13:cancers13030576. [PMID: 33540838 PMCID: PMC7867364 DOI: 10.3390/cancers13030576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is the eighth leading malignancy in the world, accounting for 4% of all cancers with poor outcome when metastatic. Protein kinases are highly druggable proteins, which are often aberrantly activated in cancers. The aim of our study was to identify candidate targets for metastatic clear cell renal cell carcinoma therapy, using chemo-genomic-based high-throughput screening. We found that the combined inhibition of the CK2 and ATM kinases in renal tumor cells and patient-derived tumor samples induces synthetic lethality. Mechanistic investigations unveil that this drug combination triggers apoptosis through HIF-2α-(Hypoxic inducible factor HIF-2α) dependent reactive oxygen species (ROS) overproduction, giving a new option for patient care in metastatic RCC. Abstract Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.
Collapse
|
33
|
Dovat E, Song C, Hu T, Rahman MA, Dhanyamraju PK, Klink M, Bogush D, Soliman M, Kane S, McGrath M, Ding Y, Desai D, Sharma A, Gowda C. Transcriptional Regulation of PIK3CD and PIKFYVE in T-Cell Acute Lymphoblastic Leukemia by IKAROS and Protein Kinase CK2. Int J Mol Sci 2021; 22:ijms22020819. [PMID: 33467550 PMCID: PMC7830534 DOI: 10.3390/ijms22020819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
IKAROS, encoded by the IKZF1 gene, is a DNA-binding protein that functions as a tumor suppressor in T cell acute lymphoblastic leukemia (T-ALL). Recent studies have identified IKAROS’s novel function in the epigenetic regulation of gene expression in T-ALL and uncovered many genes that are likely to be directly regulated by IKAROS. Here, we report the transcriptional regulation of two genes, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD) and phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE), by IKAROS in T-ALL. PIK3CD encodes the protein p110δ subunit of phosphoinositide 3-kinase (PI3K). The PI3K/AKT pathway is frequently dysregulated in cancers, including T-ALL. IKAROS binds to the promoter regions of PIK3CD and PIKFYVE and reduces their transcription in primary T-ALL. Functional analysis demonstrates that IKAROS functions as a transcriptional repressor of both PIK3CD and PIKFYVE. Protein kinase CK2 (CK2) is a pro-oncogenic kinase that is overexpressed in T-ALL. CK2 phosphorylates IKAROS, impairs IKAROS’s DNA-binding ability, and functions as a repressor of PIK3CD and PIKFYVE. CK2 inhibition results in increased IKAROS binding to the promoters of PIK3CD and PIKFYVE and the transcriptional repression of both these genes. Overall, the presented data demonstrate for the first time that in T-ALL, CK2 hyperactivity contributes to PI3K signaling pathway upregulation, at least in part, through impaired IKAROS transcriptional regulation of PIK3CD and PIKFYVE. Targeting CK2 restores IKAROS’s regulatory effects on the PI3K oncogenic signaling pathway.
Collapse
Affiliation(s)
- Elanora Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
- Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Tommy Hu
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Mohammad Atiqur Rahman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Pavan Kumar Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Morgann Klink
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Daniel Bogush
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (E.D.); (C.S.); (T.H.); (M.A.R.); (P.K.D.); (M.K.); (D.B.); (M.S.); (S.K.); (M.M.); (Y.D.)
- Correspondence: ; Tel.: +1-91-717-531-6012
| |
Collapse
|
34
|
Increased Incidence of IKZF1 deletions and IGH-CRLF2 translocations in B-ALL of Hispanic/Latino children-a novel health disparity. Leukemia 2021; 35:2399-2402. [PMID: 33531655 PMCID: PMC8324481 DOI: 10.1038/s41375-021-01133-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
|
35
|
D'Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell Oncol (Dordr) 2020; 43:1003-1016. [PMID: 33052585 PMCID: PMC7717057 DOI: 10.1007/s13402-020-00566-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective. CONCLUSIONS In this review, we will address combined anti-cancer therapeutic strategies described so far which involve the use of CX-4945. Data from preclinical studies clearly show the ability of CX-4945 to synergistically cooperate with different classes of anti-neoplastic agents, thereby contributing to an orchestrated anti-tumour action against multiple targets. Overall, these promising outcomes support the translation of CX-4945 combined therapies into clinical anti-cancer applications.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|