1
|
Crispin PJ, Choi PY, Gardiner EE. SkM-ing information from traumatized tissue. J Thromb Haemost 2022; 20:1306-1308. [PMID: 35596515 PMCID: PMC9545928 DOI: 10.1111/jth.15721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Philip J. Crispin
- ACRF Department Cancer Biology and TherapeuticsThe John Curtin School of Medical Research, The Australian National UniversityCanberraACTAustralia
- Department of Clinical HaematologyThe Canberra HospitalGarranACTAustralia
| | - Philip Y. Choi
- ACRF Department Cancer Biology and TherapeuticsThe John Curtin School of Medical Research, The Australian National UniversityCanberraACTAustralia
- Department of Clinical HaematologyThe Canberra HospitalGarranACTAustralia
| | - Elizabeth E. Gardiner
- ACRF Department Cancer Biology and TherapeuticsThe John Curtin School of Medical Research, The Australian National UniversityCanberraACTAustralia
| |
Collapse
|
2
|
Morla S, Deguchi H, Zilberman-Rudenko J, Gruber A, McCarty OJT, Srivastava P, Gailani D, Griffin JH. Skeletal muscle myosin promotes coagulation by binding factor XI via its A3 domain and enhancing thrombin-induced factor XI activation. J Biol Chem 2022; 298:101567. [PMID: 35007530 PMCID: PMC8856988 DOI: 10.1016/j.jbc.2022.101567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/01/2022] Open
Abstract
Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jevgenia Zilberman-Rudenko
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA; Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - András Gruber
- Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Priyanka Srivastava
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Gailani
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA; Department of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
3
|
Morla S, Deguchi H, Fernández JA, Ruf W, Brekken RA, Griffin JH. Procoagulant activities of skeletal muscle and cardiac myosins require both myosin protein and myosin-associated anionic phospholipids. Blood 2021; 137:1839-1842. [PMID: 33232975 PMCID: PMC8020266 DOI: 10.1182/blood.2020008580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | - Wolfram Ruf
- Department of Immunology, Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX; and
| | - John H Griffin
- Department of Molecular Medicine and
- Department of Medicine, University of California-San Diego, San Diego, CA
| |
Collapse
|
4
|
Lind SE. Phosphatidylserine is an overlooked mediator of COVID-19 thromboinflammation. Heliyon 2021; 7:e06033. [PMID: 33495740 PMCID: PMC7817455 DOI: 10.1016/j.heliyon.2021.e06033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
A ubiquitous component of cell membrane, phosphatidylserine (PS), is likely to play a major, but as yet unrecognized, role in the thromboinflammation of COVID-19 and other critical illnesses. PS is present in all plasma membranes but is "hidden" on the inner surface by the action of an ATP-requiring enzyme. Failure of PS to be sequestered on the inner surface of cell membranes, release of PS-containing microparticles from cells, or shedding of enveloped viruses allows it to interact with extracellular proteins, including those of the coagulation and complement systems. Detection and quantification of circulating PS is not standardized, and current methodologies have either focused on circulating cellular elements or subcellular plasma components, but not both. PS may also promote thromboinflammation without circulating if expressed on the surface of endothelial cells, a condition that might only be documented if novel imaging techniques are developed. Research into the role of PS in inflammation and coagulation, called here a "procoagulant phospholipidopathy" may provide novel insights and therapeutic approaches for patients with a variety of illnesses.
Collapse
Affiliation(s)
- Stuart E Lind
- Departments of Medicine and Pathology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
5
|
Deguchi H, Morla S, Griffin JH. Novel blood coagulation molecules: Skeletal muscle myosin and cardiac myosin. J Thromb Haemost 2021; 19:7-19. [PMID: 32920971 PMCID: PMC7819347 DOI: 10.1111/jth.15097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
6
|
Mattila N, Hisada Y, Przybyla B, Posma J, Jouppila A, Haglund C, Seppänen H, Mackman N, Lassila R. Levels of the cancer biomarker CA 19-9 are associated with thrombin generation in plasma from treatment-naïve pancreatic cancer patients. Thromb Res 2020; 199:21-31. [PMID: 33385797 DOI: 10.1016/j.thromres.2020.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is associated with a hypercoagulable state and high mortality. Increases in the plasma levels of tumor marker carbohydrate antigen (CA) 19-9 are used in diagnosis and follow-up but have also been reported to precede venous thromboembolism (VTE). AIMS We examined the association between CA 19-9 and thrombin generation (TG) in plasma from PDAC patients, as well as their association with coagulation biomarkers prior to pancreatic surgery. In addition, we determined the effect of commercial sources of CA 19-9 on TG. METHODS We collected plasma from 58 treatment-naïve PDAC patients without any signs of VTE. We measured levels of CA 19-9, FVIII, fibrinogen, D-dimer, antithrombin and extracellular vesicle (EV) tissue factor (TF) activity and TG using a Calibrated Automated Thrombogram (CAT). The effect of different commercial sources of CA 19-9 on TG in Standard Human Plasma (SHP) was also studied. RESULTS Patient plasma samples were divided into 4 preoperative groups based on the level of CA 19-9: none < 2, low = 3-200, high = 201-1000, and very high > 1000 U/mL. CA 19-9 levels were associated with several of the TG parameters, including endogenous thrombin potential, peak, and time to peak. CA 19-9 did not associate with any of the coagulation biomarkers. Spiking of SHP with CA 19-9 increased TG but this was decreased by an anti-TF antibody. CONCLUSIONS CA 19-9 was associated with TG in patients prior to any pancreatic cancer treatments or signs of VTE. Some commercial sources of CA 19-9 enhanced TG in SHP seemingly due to contaminating TF.
Collapse
Affiliation(s)
- N Mattila
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Y Hisada
- UNC Blood Research Center, Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Przybyla
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | - A Jouppila
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Clinical Research Institute HUCH, Helsinki, Finland; Research Programs Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - C Haglund
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - H Seppänen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - N Mackman
- UNC Blood Research Center, Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Lassila
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Research Programs Unit in Systems Oncology, University of Helsinki, Helsinki, Finland; HUSLAB Laboratory Services, Clinical Chemistry, Helsinki, Finland.
| |
Collapse
|