1
|
Tosic N, Tomic Vujovic K, Vukovic V, Kotur N, Stankovic B, Marjanovic I, Antic D, Sarac S, Bibic T, Ivanovic J, Zukic B, Karan-Djurasevic T. High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia. Int J Mol Sci 2025; 26:1153. [PMID: 39940921 PMCID: PMC11817519 DOI: 10.3390/ijms26031153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play complex roles at multiple levels of gene regulation, thus modulating key cellular processes involved in the pathogenesis and progression of cancer. Aberrant expression of lncRNAs has been reported in various malignancies, including chronic lymphocytic leukemia (CLL). We investigated the expression of lnc-IRF2-3 and lnc-KIAA1755-4 in peripheral blood mononuclear cells of 112 previously untreated CLL patients by quantitative reverse-transcriptase polymerase chain reaction. Both lncRNAs were found to be overexpressed in CLL samples in comparison to healthy controls, and their high levels were associated with adverse clinico-biological characteristics of patients at diagnosis. High lnc-IRF2-3 expression was associated with high leukocyte and lymphocyte counts, high β2-microglobulin, advanced Binet stage, unfavorable cytogenetics, CD38-positivity and IGHV-unmutated status. Regarding lnc-KIAA1755-4, its high expression was associated with high leukocyte count, lymphocyte count, β2-microglobulin, lactate dehydrogenase and low hemoglobin, as well as with IGHV-unmutated status. In addition, we observed shorter time to first treatment and overall survival of patients expressing high levels of both lncRNAs in comparison to low-expressing patients. In summary, our study showed that high lnc-IRF2-3 and lnc-KIAA1755-4 expression at diagnosis predicts poor survival in CLL. The mechanisms of their upregulation, as well as their specific targets in CLL cells, remain to be elucidated.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Female
- Prognosis
- Middle Aged
- Aged
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Leukemic
- Aged, 80 and over
- Adult
- Leukocytes, Mononuclear/metabolism
- beta 2-Microglobulin
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Kristina Tomic Vujovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Vojin Vukovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nikola Kotur
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Biljana Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Darko Antic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sofija Sarac
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Tamara Bibic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Jelena Ivanovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| |
Collapse
|
2
|
Arseni L, Sigismondo G, Yazdanparast H, Hermansen JU, Mack N, Ohl S, Kalter V, Iskar M, Kalxdorf M, Friedel D, Rettel M, Paul Y, Ringshausen I, Eldering E, Dubois J, Kater AP, Zapatka M, Roessner PM, Tausch E, Stilgenbauer S, Dietrich S, Savitski MM, Skånland SS, Krijgsveld J, Lichter P, Seiffert M. Longitudinal omics data and preclinical treatment suggest the proteasome inhibitor carfilzomib as therapy for ibrutinib-resistant CLL. Nat Commun 2025; 16:1041. [PMID: 39863584 PMCID: PMC11762753 DOI: 10.1038/s41467-025-56318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance. Preclinical treatment with the irreversible proteasome inhibitor carfilzomib administered upon ibrutinib resistance prolongs survival of mice. Longitudinal proteomic analysis of ibrutinib-resistant patients identifies deregulation in protein post-translational modifications. Additionally, cells from ibrutinib-resistant patients effectively respond to several proteasome inhibitors in co-culture assays. Altogether, our results from orthogonal omics approaches identify proteasome inhibition as potentially attractive treatment for chronic lymphocytic leukemia patients resistant or refractory to ibrutinib.
Collapse
MESH Headings
- Piperidines
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Adenine/analogs & derivatives
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Animals
- Humans
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Mice
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Proteasome Inhibitors/pharmacology
- Proteasome Inhibitors/therapeutic use
- Proteomics
- Proteasome Endopeptidase Complex/metabolism
- Cell Line, Tumor
- Female
- Disease Models, Animal
- Transcriptome
- Male
Collapse
Affiliation(s)
- Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Haniyeh Yazdanparast
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johanne U Hermansen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Norman Mack
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Kalter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Dennis Friedel
- Division of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mandy Rettel
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Yashna Paul
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingo Ringshausen
- Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Eric Eldering
- Department of Experimental Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Julie Dubois
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sascha Dietrich
- Heidelberg University, Department of Hematology, Heidelberg, Germany
- Düsseldorf University, Department of Hematology, Düsseldorf, Germany
| | - Mikhail M Savitski
- EMBL, Proteomics Core Facility, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Aslan B, Manyam G, Iles LR, Tantawy SI, Desikan SP, Wierda WG, Gandhi V. Transcriptomic and proteomic differences in BTK-WT and BTK-mutated CLL and their changes during therapy with pirtobrutinib. Blood Adv 2024; 8:4487-4501. [PMID: 38968154 PMCID: PMC11395759 DOI: 10.1182/bloodadvances.2023012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT Covalent Bruton tyrosine kinase inhibitors (cBTKis), which bind to the BTK C481 residue, are now primary therapeutics for chronic lymphocytic leukemia (CLL). Alterations at C481, primarily C481S, prevent cBTKi binding and lead to the emergence of resistant clones. Pirtobrutinib is a noncovalent BTKi that binds to both wild-type (WT) and C481S-mutated BTK and has shown efficacy in BTK-WT and -mutated CLL patient groups. To compare baseline clinical, transcriptomic, and proteomic characteristics and their changes during treatment in these 2 groups, we used 67 longitudinal peripheral blood samples obtained during the first 3 cycles of treatment with pirtobrutinib from 18 patients with CLL (11 BTK-mutated, 7 BTK-WT) enrolled in the BRUIN (pirtobrutinib in relapsed or refractory B-cell malignancies) trial. Eastern Cooperative Oncology Group performance status, age, and Rai stage were similar in both groups. At baseline, lymph nodes were larger in the BTK-mutated cohort. All patients achieved partial remission within 4 cycles of pirtobrutinib. Lactate dehydrogenase and β2-microglobulin levels decreased in both cohorts after 1 treatment cycle. Expression analysis demonstrated upregulation of 35 genes and downregulation of 6 in the BTK-mutated group. Gene set enrichment analysis revealed that the primary pathways enriched in BTK-mutated cells were involved in cell proliferation, metabolism, and stress response. Pathways associated with metabolism and proliferation were downregulated in both groups during pirtobrutinib treatment. Proteomic data corroborated transcriptomic findings. Our data identified inherent differences between BTK-mutated and -WT CLL and demonstrated molecular normalization of plasma and omics parameters with pirtobrutinib treatment in both groups.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mutation
- Middle Aged
- Transcriptome
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Proteomics/methods
- Female
- Male
- Aged
- Piperidines/therapeutic use
- Piperidines/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Aged, 80 and over
Collapse
Affiliation(s)
- Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lakesla R. Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai Prasad Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Ramberger E, Sapozhnikova V, Ng YLD, Dolnik A, Ziehm M, Popp O, Sträng E, Kull M, Grünschläger F, Krüger J, Benary M, Müller S, Gao X, Murgai A, Haji M, Schmidt A, Lutz R, Nogai A, Braune J, Laue D, Langer C, Khandanpour C, Bassermann F, Döhner H, Engelhardt M, Straka C, Hundemer M, Beule D, Haas S, Keller U, Einsele H, Bullinger L, Knop S, Mertins P, Krönke J. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. NATURE CANCER 2024; 5:1267-1284. [PMID: 38942927 PMCID: PMC11358022 DOI: 10.1038/s43018-024-00784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2024] [Indexed: 06/30/2024]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valeriia Sapozhnikova
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yuen Lam Dora Ng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dolnik
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Eric Sträng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Kull
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Florian Grünschläger
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Josefine Krüger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sina Müller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiang Gao
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Arunima Murgai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Annika Schmidt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Lutz
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Nogai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Braune
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Laue
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Florian Bassermann
- Department of Medicine III, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Hartmut Döhner
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | - Michael Hundemer
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Simon Haas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Ulrich Keller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
- Nuremberg General Hospital, Nuremberg, Germany.
- Paracelsus Medical School, Nuremberg, Germany.
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| | - Jan Krönke
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Goergen E, Al-Sawaf O. The prognostic significance of genomic complexity in patients with CLL. Leuk Lymphoma 2024; 65:873-881. [PMID: 38593054 DOI: 10.1080/10428194.2024.2333448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Chromosomal aberrations are a common feature of cancer and can fuel cancer progression and treatment resistance. In chronic lymphocytic leukemia (CLL), the presence of multiple chromosomal aberrations is commonly referred to as "genomic complexity" or "complex karyotype"- (CKT). In the context of chemo- and chemoimmunotherapy, genomic complexity is associated with poor response to treatment and short survival, while some targeted therapies are able to mitigate its adverse prognostic impact. This article reviews currently available data and literature on the role of genomic complexity in CLL. The currently established tools to measure genomic complexity in patients with CLL are summarized and their strengths and weaknesses for routine diagnostics are evaluated. Moreover, possible definitions of CKT as an indicator for genomic complexity are discussed. Finally, data on the impact of CKT on clinical outcomes of patients with CLL are reviewed and the implications for patient stratification are presented.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Prognosis
- Chromosome Aberrations
- Genomics/methods
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Ellinor Goergen
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Othman Al-Sawaf
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- R01 CA222007 NCI NIH HHS
- R01 GM122775 NIGMS NIH HHS
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- R01 CA182905 NCI NIH HHS
- P50 CA127001 NCI NIH HHS
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Jiménez C, Garrote-de-Barros A, López-Portugués C, Hernández-Sánchez M, Díez P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int J Mol Sci 2024; 25:4644. [PMID: 38731863 PMCID: PMC11083628 DOI: 10.3390/ijms25094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
| | - Alba Garrote-de-Barros
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Carlos López-Portugués
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Paula Díez
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Faculty of Medicine and Health Science, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Hengeveld PJ, Kolijn PM, Demmers JA, Doff W, Dubois JM, Rijken M, Assmann JL, van der Straten L, Boiten HJ, Gussinklo KJ, Valk PJ, Faber LM, Westerweel PE, Kater AP, Levin MD, Langerak AW. High-throughput Proteomics Identifies THEMIS2 as Independent Biomarker of Treatment-free Survival in Untreated CLL. Hemasphere 2023; 7:e951. [PMID: 37731707 PMCID: PMC10508458 DOI: 10.1097/hs9.0000000000000951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
It remains challenging in chronic lymphocytic leukemia (CLL) to distinguish between patients with favorable and unfavorable time-to-first treatment (TTFT). Additionally, the downstream protein correlates of well-known molecular features of CLL are not always clear. To address this, we selected 40 CLL patients with TTFT ≤24 months and compared their B cell intracellular protein expression with 40 age- and sex-matched CLL patients with TTFT >24 months using mass spectrometry. In total, 3268 proteins were quantified in the cohort. Immunoglobulin heavy-chain variable (IGHV) mutational status and trisomy 12 were most impactful on the CLL proteome. Comparing cases to controls, 5 proteins were significantly upregulated, whereas 3 proteins were significantly downregulated. Of these, only THEMIS2, a signaling protein acting downstream of the B cell receptor, was significantly associated with TTFT, independently of IGHV and TP53 mutational status (hazard ratio, 2.49 [95% confidence interval, 1.62-3.84]; P < 0.001). This association was validated on the mRNA and protein level by quantitative polymerase chain reaction and ELISA, respectively. Analysis of 2 independently generated RNA sequencing and mass spectrometry datasets confirmed the association between THEMIS2 expression and clinical outcome. In conclusion, we present a comprehensive characterization of the proteome of untreated CLL and identify THEMIS2 expression as a putative biomarker of TTFT.
Collapse
Affiliation(s)
- Paul J. Hengeveld
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | | | - Wouter Doff
- Proteomics Center, Erasmus MC, Rotterdam, the Netherlands
| | - Julie M.N. Dubois
- Department of Hematology and Experimental Immunology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Melissa Rijken
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | | | - Lina van der Straten
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Henk Jan Boiten
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Kirsten J. Gussinklo
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Peter J.M. Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Laura M. Faber
- Department of Hematology, Red Cross Hospital, Beverwijk, the Netherlands
| | - Peter E. Westerweel
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Arnon P. Kater
- Department of Hematology and Experimental Immunology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | |
Collapse
|
9
|
Lütge A, Lu J, Hüllein J, Walther T, Sellner L, Wu B, Rosenquist R, Oakes CC, Dietrich S, Huber W, Zenz T. Subgroup-specific gene expression profiles and mixed epistasis in chronic lymphocytic leukemia. Haematologica 2023; 108:2664-2676. [PMID: 37226709 PMCID: PMC10614035 DOI: 10.3324/haematol.2022.281869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Understanding the molecular and phenotypic heterogeneity of cancer is a prerequisite for effective treatment. For chronic lymphocytic leukemia (CLL), recurrent genetic driver events have been extensively cataloged, but this does not suffice to explain the disease's diverse course. Here, we performed RNA sequencing on 184 CLL patient samples. Unsupervised analysis revealed two major, orthogonal axes of gene expression variation: the first one represented the mutational status of the immunoglobulin heavy variable (IGHV) genes, and concomitantly, the three-group stratification of CLL by global DNA methylation. The second axis aligned with trisomy 12 status and affected chemokine, MAPK and mTOR signaling. We discovered non-additive effects (epistasis) of IGHV mutation status and trisomy 12 on multiple phenotypes, including the expression of 893 genes. Multiple types of epistasis were observed, including synergy, buffering, suppression and inversion, suggesting that molecular understanding of disease heterogeneity requires studying such genetic events not only individually but in combination. We detected strong differentially expressed gene signatures associated with major gene mutations and copy number aberrations including SF3B1, BRAF and TP53, as well as del(17)(p13), del(13)(q14) and del(11)(q22.3) beyond dosage effect. Our study reveals previously underappreciated gene expression signatures for the major molecular subtypes in CLL and the presence of epistasis between them.
Collapse
Affiliation(s)
- Almut Lütge
- Genome Biology Unit, EMBL, Heidelberg, Germany; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich
| | - Junyan Lu
- Genome Biology Unit, EMBL, Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg
| | | | - Tatjana Walther
- Molecular Therapy in Hematology and Oncology and Department of Translational Oncology, NCT and DKFZ, Heidelberg
| | - Leopold Sellner
- Molecular Therapy in Hematology and Oncology and Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany; Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Bian Wu
- Molecular Therapy in Hematology and Oncology and Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Hospital, Solna
| | - Christopher C Oakes
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | | | - Thorsten Zenz
- Molecular Therapy in Hematology and Oncology and Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich.
| |
Collapse
|
10
|
Wu Y, Jin M, Fernandez M, Hart KL, Liao A, Ge X, Fernandes SM, McDonald T, Chen Z, Röth D, Ghoda LY, Marcucci G, Kalkum M, Pillai RK, Danilov AV, Li JJ, Chen J, Brown JR, Rosen ST, Siddiqi T, Wang L. METTL3-Mediated m6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL. Blood Cancer Discov 2023; 4:228-245. [PMID: 37067905 PMCID: PMC10150290 DOI: 10.1158/2643-3230.bcd-22-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
RNA splicing dysregulation underlies the onset and progression of cancers. In chronic lymphocytic leukemia (CLL), spliceosome mutations leading to aberrant splicing occur in ∼20% of patients. However, the mechanism for splicing defects in spliceosome-unmutated CLL cases remains elusive. Through an integrative transcriptomic and proteomic analysis, we discover that proteins involved in RNA splicing are posttranscriptionally upregulated in CLL cells, resulting in splicing dysregulation. The abundance of splicing complexes is an independent risk factor for poor prognosis. Moreover, increased splicing factor expression is highly correlated with the abundance of METTL3, an RNA methyltransferase that deposits N6-methyladenosine (m6A) on mRNA. METTL3 is essential for cell growth in vitro and in vivo and controls splicing factor protein expression in a methyltransferase-dependent manner through m6A modification-mediated ribosome recycling and decoding. Our results uncover METTL3-mediated m6A modification as a novel regulatory axis in driving splicing dysregulation and contributing to aggressive CLL. SIGNIFICANCE METTL3 controls widespread splicing factor abundance via translational control of m6A-modified mRNA, contributes to RNA splicing dysregulation and disease progression in CLL, and serves as a potential therapeutic target in aggressive CLL. See related commentary by Janin and Esteller, p. 176. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Mike Fernandez
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Kevyn L. Hart
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Aijun Liao
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Xinzhou Ge
- Department of Statistics, University of California, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, California
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tinisha McDonald
- The Hematopoietic Tissue Biorepository, City of Hope National Comprehensive Cancer Center, Duarte, California
- Department of Hematological Malignancies Translational Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Daniel Röth
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, California
| | - Lucy Y. Ghoda
- The Hematopoietic Tissue Biorepository, City of Hope National Comprehensive Cancer Center, Duarte, California
- Department of Hematological Malignancies Translational Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Guido Marcucci
- The Hematopoietic Tissue Biorepository, City of Hope National Comprehensive Cancer Center, Duarte, California
- Department of Hematological Malignancies Translational Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, California
| | - Raju K. Pillai
- Department of Pathology, City of Hope National Comprehensive Cancer Center, Duarte, California
| | - Alexey V. Danilov
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, California
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven T. Rosen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tanya Siddiqi
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
11
|
Li X, Huang Y, Zheng K, Yu G, Wang Q, Gu L, Li J, Wang H, Zhang W, Sun Y, Li C. Integrated proteomic and phosphoproteomic data-independent acquisition data evaluate the personalized drug responses of primary and metastatic tumors in colorectal cancer. BIOPHYSICS REPORTS 2023; 9:67-81. [PMID: 37753059 PMCID: PMC10518519 DOI: 10.52601/bpr.2022.210048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 11/18/2022] [Indexed: 02/19/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics and phosphoproteomics are powerful methods to study the biological mechanisms, diagnostic biomarkers, prognostic analysis, and drug therapy of tumors. Data-independent acquisition (DIA) mode is considered to perform better than data-dependent acquisition (DDA) mode in terms of quantitative reproducibility, specificity, accuracy, and identification of low-abundance proteins. Mini patient derived xenograft (MiniPDX) model is an effective model to assess the response to antineoplastic drugs in vivo and is helpful for the precise treatment of cancer patients. Kinases are favorable spots for tumor-targeted drugs, and their functional completion relies on signaling pathways through phosphorylating downstream substrates. Kinase-phosphorylation networks or edge interactions are considered more credible and permanent for characterizing complex diseases. Here, we provide a workflow for personalized drug response assessment in primary and metastatic colorectal cancer (CRC) tumors using DIA proteomic data, DIA phosphoproteomic data, and MiniPDX models. Three kinase inhibitors, afatinib, gefitinib, and regorafenib, are tested pharmacologically. The process mainly includes the following steps: clinical tissue collection, sample preparation, hybrid spectral libraries establishment, MS data acquisition, kinase-substrate network construction, in vivo drug test, and elastic regression modeling. Our protocol gives a more direct data basis for individual drug responses, and will improve the selection of treatment strategies for patients without the druggable mutation.
Collapse
Affiliation(s)
- Xumiao Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kuo Zheng
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Guanyu Yu
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Gu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingquan Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Zhang
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
12
|
Genetic and Clinical Characteristics of Korean Chronic Lymphocytic Leukemia Patients with High Frequencies of MYD88 Mutations. Int J Mol Sci 2023; 24:ijms24043177. [PMID: 36834590 PMCID: PMC9959581 DOI: 10.3390/ijms24043177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. However, CLL is relatively rare in Asia; its genetic features are rarely studied. Here, we aimed to genetically characterize Korean CLL patients and to elucidate the genetic and clinical associations based on data obtained from 113 patients at a single Korean institute. We used next-generation sequencing to explore the multi-gene mutational data and immunoglobulin heavy chain variable gene clonality with somatic hypermutation (SHM). MYD88 (28.3%), including L265P (11.5%) and V217F (13.3%), was the most frequently mutated gene, followed by KMT2D (6.2%), NOTCH1 (5.3%), SF3B1 (5.3%), and TP53 (4.4%). MYD88-mutated CLL was characterized by SHM and atypical immunophenotype with fewer cytogenetic abnormalities. The 5-year time to treatment (TTT) of the overall cohort was 49.8% ± 8.2% (mean ± standard deviation) and the 5-year overall survival was 86.2% ± 5.8%. Patients with SHM, isolated del(13q), TP53-wild type, and NOTCH1-wild type showed better results than those without these conditions. In the subgroup analyses, patients with SHM and L265P presented shorter TTT than patients with SHM but not L265P. In contrast, V217F was associated with a higher SHM percentage and showed a favorable prognosis. Our study revealed the distinct characteristics of Korean CLL patients with high frequencies of MYD88 mutations and their clinical relevance.
Collapse
|
13
|
Luo TY, Shi Y, Wang G, Spaner DE. Enhanced IFN Sensing by Aggressive Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1662-1673. [DOI: 10.4049/jimmunol.2200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Type I IFN is made by cells in response to stress. Cancer cells exist in a state of stress, but their IFN response is complex and not completely understood. This study investigated the role of autocrine IFN in human chronic lymphocytic leukemia (CLL) cells. CLL cells were found to make low amounts of IFN via TANK-binding kinase 1 pathways, but p-STAT1 and -STAT2 proteins along with IFN-stimulated genes that reflect IFN activation were variably downregulated in cultured CLL cells by the neutralizing IFNAR1 Ab anifrolumab. Patients with CLL were segregated into two groups based on the response of their leukemia cells to anifrolumab. Samples associated with more aggressive clinical behavior indicated by unmutated IGHV genes along with high CD38 and p-Bruton’s tyrosine kinase expression exhibited responses to low amounts of IFN that were blocked by anifrolumab. Samples with more indolent behavior were unaffected by anifrolumab. Hypersensitivity to IFN was associated with higher expression of IFNAR1, MX1, STAT1, and STAT2 proteins and lower activity of negative regulatory tyrosine phosphatases. Autocrine IFN protected responsive CLL cells from stressful tissue culture environments and therapeutic drugs such as ibrutinib and venetoclax in vitro, in part by upregulating Mcl-1 expression. These findings suggest hypersensitivity to IFN may promote aggressive clinical behavior. Specific blockade of IFN signaling may improve outcomes for patients with CLL with higher-risk disease.
Collapse
Affiliation(s)
- Tina YuXuan Luo
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Spaner
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
- ¶Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Herbst SA, Vesterlund M, Helmboldt AJ, Jafari R, Siavelis I, Stahl M, Schitter EC, Liebers N, Brinkmann BJ, Czernilofsky F, Roider T, Bruch PM, Iskar M, Kittai A, Huang Y, Lu J, Richter S, Mermelekas G, Umer HM, Knoll M, Kolb C, Lenze A, Cao X, Österholm C, Wahnschaffe L, Herling C, Scheinost S, Ganzinger M, Mansouri L, Kriegsmann K, Kriegsmann M, Anders S, Zapatka M, Del Poeta G, Zucchetto A, Bomben R, Gattei V, Dreger P, Woyach J, Herling M, Müller-Tidow C, Rosenquist R, Stilgenbauer S, Zenz T, Huber W, Tausch E, Lehtiö J, Dietrich S. Proteogenomics refines the molecular classification of chronic lymphocytic leukemia. Nat Commun 2022; 13:6226. [PMID: 36266272 PMCID: PMC9584885 DOI: 10.1038/s41467-022-33385-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.
Collapse
Affiliation(s)
- Sophie A. Herbst
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Mattias Vesterlund
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Alexander J. Helmboldt
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rozbeh Jafari
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Ioannis Siavelis
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Matthias Stahl
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Eva C. Schitter
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Nora Liebers
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Berit J. Brinkmann
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Czernilofsky
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Tobias Roider
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Peter-Martin Bruch
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Murat Iskar
- grid.7497.d0000 0004 0492 0584Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam Kittai
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Ying Huang
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Junyan Lu
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sarah Richter
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Georgios Mermelekas
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Husen Muhammad Umer
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Mareike Knoll
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Carolin Kolb
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Angela Lenze
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Xiaofang Cao
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Cecilia Österholm
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linus Wahnschaffe
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carmen Herling
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sebastian Scheinost
- grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Ganzinger
- grid.7700.00000 0001 2190 4373Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Larry Mansouri
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Kriegsmann
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- grid.7700.00000 0001 2190 4373Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Simon Anders
- grid.7700.00000 0001 2190 4373Center for Molecular Biology of the University of Heidelberg (ZMBH), Heidelberg, Germany
| | - Marc Zapatka
- grid.7497.d0000 0004 0492 0584Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giovanni Del Poeta
- grid.6530.00000 0001 2300 0941Division of Hematology, University of Tor Vergata, Rome, Italy
| | - Antonella Zucchetto
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Valter Gattei
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Peter Dreger
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Jennifer Woyach
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Marco Herling
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carsten Müller-Tidow
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Richard Rosenquist
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Stilgenbauer
- grid.6582.90000 0004 1936 9748Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Thorsten Zenz
- grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.412004.30000 0004 0478 9977Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Wolfgang Huber
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Eugen Tausch
- grid.6582.90000 0004 1936 9748Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Janne Lehtiö
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Sascha Dietrich
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.14778.3d0000 0000 8922 7789Department of Hematolgy, Oncology and Immunolgy, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Demichev V, Szyrwiel L, Yu F, Teo GC, Rosenberger G, Niewienda A, Ludwig D, Decker J, Kaspar-Schoenefeld S, Lilley KS, Mülleder M, Nesvizhskii AI, Ralser M. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun 2022; 13:3944. [PMID: 35803928 PMCID: PMC9270362 DOI: 10.1038/s41467-022-31492-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The dia-PASEF technology uses ion mobility separation to reduce signal interferences and increase sensitivity in proteomic experiments. Here we present a two-dimensional peak-picking algorithm and generation of optimized spectral libraries, as well as take advantage of neural network-based processing of dia-PASEF data. Our computational platform boosts proteomic depth by up to 83% compared to previous work, and is specifically beneficial for fast proteomic experiments and those with low sample amounts. It quantifies over 5300 proteins in single injections recorded at 200 samples per day throughput using Evosep One chromatography system on a timsTOF Pro mass spectrometer and almost 9000 proteins in single injections recorded with a 93-min nanoflow gradient on timsTOF Pro 2, from 200 ng of HeLa peptides. A user-friendly implementation is provided through the incorporation of the algorithms in the DIA-NN software and by the FragPipe workflow for spectral library generation.
Collapse
Affiliation(s)
- Vadim Demichev
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry and Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.
| | - Lukasz Szyrwiel
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Agathe Niewienda
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Ludwig
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Decker
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | | | - Kathryn S Lilley
- Department of Biochemistry and Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Markus Ralser
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
16
|
Tan G, Wolski WE, Kummer S, Hofstetter M, Theocharides APA, Manz MG, Aebersold R, Meier-Abt F. Proteomic identification of proliferation and progression markers in human polycythemia vera stem and progenitor cells. Blood Adv 2022; 6:3480-3493. [PMID: 35008095 PMCID: PMC9198936 DOI: 10.1182/bloodadvances.2021005344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Polycythemia vera (PV) is a stem cell disorder characterized by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. To elucidate mechanisms controlling PV stem and progenitor cell biology, we applied a recently developed highly sensitive data-independent acquisition mass spectrometry workflow to purified hematopoietic stem and progenitor cell (HSPC) subpopulations of patients with chronic and progressed PV. We integrated proteomic data with genomic, transcriptomic, flow cytometry, and in vitro colony formation data. Comparative analyses revealed added information gained by proteomic compared with transcriptomic data in 30% of proteins with changed expression in PV patients. Upregulated biological pathways in hematopoietic stem and multipotent progenitor cells (HSC/MPPs) of PV included mammalian target of rapamycin (MTOR), STAT, and interferon signaling. We further identified a prominent reduction of clusterin (CLU) protein expression and a corresponding activation of nuclear factor-κB (NF-κB) signaling in HSC/MPPs of untreated PV patients compared with controls. Reversing the reduction of CLU and inhibiting NF-κB signaling decreased proliferation and differentiation of PV HSC/MPPs in vitro. Upon progression of PV, we identified upregulation of LGALS9 and SOCS2 protein expression in HSC/MPPs. Treatment of patients with hydroxyurea normalized the expression of CLU and NF-κB2 but not of LGALS9 and SOCS2. These findings expand the current understanding of the molecular pathophysiology underlying PV and provide new potential targets (CLU and NF-κB) for antiproliferative therapy in patients with PV.
Collapse
Affiliation(s)
- Ge Tan
- Functional Genomics Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Witold E. Wolski
- Functional Genomics Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Kummer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mara Hofstetter
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Alexandre P. A. Theocharides
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland; and
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Schlieren (Zurich), Switzerland
| |
Collapse
|
17
|
CD44-fibrinogen binding promotes bleeding in acute promyelocytic leukemia by in situ fibrin(ogen) deposition. Blood Adv 2022; 6:4617-4633. [PMID: 35511736 DOI: 10.1182/bloodadvances.2022006980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Early haemorrhagic death is still the main obstacle for the successful treatment of acute promyelocytic leukaemia (APL). However, the mechanisms underlying haemostatic perturbations in APL have not been fully elucidated. Here, we report that CD44 on the membrane of APL blasts and NB4 cells ligated bound fibrinogen, resulting in in situ deposition of fibrin and abnormal fibrin distribution. Clots formed by leukaemic cells in response to CD44 and fibrinogen interaction exhibited low permeability and resistance to fibrinolysis. Using flow cytometry and confocal microscopy, we found that CD44 was also involved in platelet and leukaemic cell adhesion. CD44 bound activated platelets but not resting platelets through interaction with P-selectin. APL cell-coated fibrinogen-activated platelets directly induce enhanced procoagulant activity of platelets. In vivo studies revealed that CD44 knockdown shortened bleeding time, increased the level of fibrinogen, and elevated the number of platelets by approximately 2-fold in an APL mouse model. Moreover, CD44 expression on leukaemic cells in an APL mouse model was not only associated with bleeding complications but was also related to the wound healing process and the survival time of APL mice. Collectively, our results suggest that CD44 may be a potential intervention target for preventing bleeding complications in APL.
Collapse
|
18
|
Mani DR, Krug K, Zhang B, Satpathy S, Clauser KR, Ding L, Ellis M, Gillette MA, Carr SA. Cancer proteogenomics: current impact and future prospects. Nat Rev Cancer 2022; 22:298-313. [PMID: 35236940 DOI: 10.1038/s41568-022-00446-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Genomic analyses in cancer have been enormously impactful, leading to the identification of driver mutations and development of targeted therapies. But the functions of the vast majority of somatic mutations and copy number variants in tumours remain unknown, and the causes of resistance to targeted therapies and methods to overcome them are poorly defined. Recent improvements in mass spectrometry-based proteomics now enable direct examination of the consequences of genomic aberrations, providing deep and quantitative characterization of tumour tissues. Integration of proteins and their post-translational modifications with genomic, epigenomic and transcriptomic data constitutes the new field of proteogenomics, and is already leading to new biological and diagnostic knowledge with the potential to improve our understanding of malignant transformation and therapeutic outcomes. In this Review we describe recent developments in proteogenomics and key findings from the proteogenomic analysis of a wide range of cancers. Considerations relevant to the selection and use of samples for proteogenomics and the current technologies used to generate, analyse and integrate proteomic with genomic data are described. Applications of proteogenomics in translational studies and immuno-oncology are rapidly emerging, and the prospect for their full integration into therapeutic trials and clinical care seems bright.
Collapse
Affiliation(s)
- D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
TGF-β/SMAD Pathway Is Modulated by miR-26b-5p: Another Piece in the Puzzle of Chronic Lymphocytic Leukemia Progression. Cancers (Basel) 2022; 14:cancers14071676. [PMID: 35406446 PMCID: PMC8997107 DOI: 10.3390/cancers14071676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary TGF-β is a key immunoregulatory pathway that can limit the proliferation of B-lymphocytes. Chronic lymphocytic leukemia (CLL) has been historically conceptualized as a neoplasm characterized by accumulation of mature B cells escaping programmed cell death and undergoing cell-cycle arrest in the G0/G1 phase. However, new evidence indicates that tumor expansion is in fact a dynamic process in which cell proliferation also plays an important role. In general, cancers progress by the emergence of subclones with genomic aberrations distinct from the initial tumor. Often, these subclones are selected for advantages in cell survival and/or growth. Here, we provide novel evidence to explain, at least in part, the origins of CLL progression in a subgroup of patients with a poor clinical outcome. In this cohort, the immunoregulatory pathway TGF-β/SMAD is modulated by miR-26b-5p and the impairment of this axis bypasses cell cycle arrest in CLL cells facilitating disease progression. Abstract Clinical and molecular heterogeneity are hallmarks of chronic lymphocytic leukemia (CLL), a neoplasm characterized by accumulation of mature and clonal long-lived CD5 + B-lymphocytes. Mutational status of the IgHV gene of leukemic clones is a powerful prognostic tool in CLL, and it is well established that unmutated CLLs (U-CLLs) have worse evolution than mutated cases. Nevertheless, progression and treatment requirement of patients can evolve independently from the mutational status. Microenvironment signaling or epigenetic changes partially explain this different behavior. Thus, we think that detailed characterization of the miRNAs landscape from patients with different clinical evolution could facilitate the understanding of this heterogeneity. Since miRNAs are key players in leukemia pathogenesis and evolution, we aim to better characterize different CLL behaviors by comparing the miRNome of clinically progressive U-CLLs vs. stable U-CLLs. Our data show up-regulation of miR-26b-5p, miR-106b-5p, and miR-142-5p in progressive cases and indicate a key role for miR-26b-5p during CLL progression. Specifically, up-regulation of miR-26b-5p in CLL cells blocks TGF-β/SMAD pathway by down-modulation of SMAD-4, resulting in lower expression of p21−Cip1 kinase inhibitor and higher expression of c-Myc oncogene. This work describes a new molecular mechanism linking CLL progression with TGF-β modulation and proposes an alternative strategy to explore in CLL therapy.
Collapse
|
20
|
Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets. Blood Cancer J 2022; 12:43. [PMID: 35301276 PMCID: PMC8931092 DOI: 10.1038/s41408-022-00623-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
Protein expression for 384 total and post-translationally modified proteins was assessed in 871 CLL and MSBL patients and was integrated with clinical data to identify strategies for improving diagnostics and therapy, making this the largest CLL proteomics study to date. Proteomics identified six recurrent signatures that were highly prognostic of survival and time to first or second treatment at three levels: individual proteins, when grouped into 40 functionally related groups (PFGs), and systemically in signatures (SGs). A novel SG characterized by hairy cell leukemia like proteomics but poor therapy response was discovered. SG membership superseded other prognostic factors (Rai Staging, IGHV Status) and were prognostic for response to modern (BTK inhibition) and older CLL therapies. SGs and PFGs membership provided novel drug targets and defined optimal candidates for Watch and Wait vs. early intervention. Collectively proteomics demonstrates promise for improving classification, therapeutic strategy selection, and identifying novel therapeutic targets.
Collapse
|
21
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|