1
|
Ysebaert L, Mouchel PL, Laurent C, Quillet-Mary A. The multi-faceted roles of MYC in the prognosis of chronic lymphocytic leukemia. Leuk Lymphoma 2025; 66:805-817. [PMID: 39743868 DOI: 10.1080/10428194.2024.2447362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
In this review, we focus on the pro-oncogene MYC, the modes of deregulation in mouse and human B-cells, its undisputable importance in the evaluation of biological prognostication of patients, but also how it impacts on response to modern therapeutics, and how it should be targeted to improve the overall survival of chronic lymphocytic lymphoma (CLL) patients. After an overview of the current understanding of the molecular dysregulation of c-MYC, we will show how CLL, both in its indolent and transformed phases, has developed among other B-cell lymphomas a tight regulation of its expression through the chronic activation of B-Cell Receptors (among others). This is particularly important if one desires to understand the mechanisms at stake in the over-expression of c-MYC especially in the lymph nodes compartment. So doing, we will show how this oncogene orchestrates pivotal cellular functions such as metabolism, drug resistance, proliferation and histologic transformation (Richter syndrome).
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Prognosis
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Animals
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Loic Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Department of Hematology, IUC Toulouse-Oncopole, Toulouse, France
| | | | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Department of Hematology, IUC Toulouse-Oncopole, Toulouse, France
| | - Anne Quillet-Mary
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| |
Collapse
|
2
|
Chen SS. Mouse models of CLL: In vivo modeling of disease initiation, progression, and transformation. Semin Hematol 2024; 61:201-207. [PMID: 38755077 DOI: 10.1053/j.seminhematol.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a highly complex disease characterized by the proliferation of CD5+ B cells in lymphoid tissues. Current modern treatments have brought significant clinical benefits to CLL patients. However, there are still unmet needs. Patients relapse on Bruton's tyrosine kinase inhibitors and BCL2 inhibitors and often develop more aggressive diseases including Richter transformation (RT), an incurable complication of up to ∼10% patients. This evidence underscores the need for improved immunotherapies, combination treatment strategies, and predictive biomarkers. A mouse model that can recapitulate human CLL disease and certain components of the tumor immune microenvironment represents a promising preclinical tool for such purposes. In this review, we provide an overview of CRISPR-engineered and xenograft mouse models utilizing either cell lines, or primary CLL cells suitable for studies of key events driving the disease onset, progression and transformation of CLL. We also review how CRISPR/Cas9 established mouse models carrying loss-of-function lesions allow one to study key mutations driving disease progression. Finally, we discuss how next generation humanized mice might improve to generation of faithful xenograft mouse models of human CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Humans
- Mice
- Disease Models, Animal
- Disease Progression
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Tumor Microenvironment/immunology
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Shih-Shih Chen
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York.
| |
Collapse
|
3
|
Fernandez Botana I, Gonder S, Klapp V, Moussay E, Paggetti J. Eμ-TCL1 adoptive transfer mouse model of chronic lymphocytic leukemia. Methods Cell Biol 2024; 188:109-129. [PMID: 38880520 DOI: 10.1016/bs.mcb.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Despite being the most common adult leukemia in the western world, Chronic Lymphocytic Leukemia (CLL) remains a life-threatening and incurable disease. Efforts to develop new treatments are highly dependent on the availability of appropriate mouse models for pre-clinical testing. The Eμ-TCL1 mouse model is the most established pre-clinical approach to study CLL pathobiology and response to treatment, backed by numerous studies highlighting its resemblance to the most aggressive form of this malignancy. In contrast to the transgenic Eμ-TCL1 model, employing the adoptive transfer of Eμ-TCL1-derived splenocytes in immunocompetent C57BL/6 mice results in a comparably rapid (e.g., leukemic development within weeks compared to months in the transgenic model) and reliable model mimicking CLL. In this chapter, we would like to provide readers with a thoroughly optimized, detailed, and comprehensive protocol to use the adoptive transfer Eμ-TCL1 model in their research.
Collapse
Affiliation(s)
- Iria Fernandez Botana
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
4
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
5
|
Playa-Albinyana H, Arenas F, Royo R, Giró A, López-Oreja I, Aymerich M, López-Guerra M, Frigola G, Beà S, Delgado J, Garcia-Roves PM, Campo E, Nadeu F, Colomer D. Chronic lymphocytic leukemia patient-derived xenografts recapitulate clonal evolution to Richter transformation. Leukemia 2024; 38:557-569. [PMID: 38017105 PMCID: PMC10912031 DOI: 10.1038/s41375-023-02095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell neoplasm with a heterogeneous clinical behavior. In 5-10% of patients the disease transforms into a diffuse large-B cell lymphoma known as Richter transformation (RT), which is associated with dismal prognosis. Here, we aimed to establish patient-derived xenograft (PDX) models to study the molecular features and evolution of CLL and RT. We generated two PDXs by injecting CLL (PDX12) and RT (PDX19) cells into immunocompromised NSG mice. Both PDXs were morphologically and phenotypically similar to RT. Whole-genome sequencing analysis at different time points of the PDX evolution revealed a genomic landscape similar to RT tumors from both patients and uncovered an unprecedented RT subclonal heterogeneity and clonal evolution during PDX generation. In PDX12, the transformed cells expanded from a very small subclone already present at the CLL stage. Transcriptomic analysis of PDXs showed a high oxidative phosphorylation (OXPHOS) and low B-cell receptor (BCR) signaling similar to the RT in the patients. IACS-010759, an OXPHOS inhibitor, reduced proliferation, and circumvented resistance to venetoclax. In summary, we have generated new RT-PDX models, one of them from CLL cells that mimicked the evolution of CLL to RT uncovering intrinsic features of RT cells of therapeutical value.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Heterografts
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Clonal Evolution/genetics
- Prognosis
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
Collapse
Affiliation(s)
- Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ariadna Giró
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene López-Oreja
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Marta Aymerich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Beà
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
- Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo M Garcia-Roves
- University of Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
6
|
Gorczynski R. Translation of Data from Animal Models of Cancer to Immunotherapy of Breast Cancer and Chronic Lymphocytic Leukemia. Genes (Basel) 2024; 15:292. [PMID: 38540350 PMCID: PMC10970502 DOI: 10.3390/genes15030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
The field of clinical oncology has been revolutionized over the past decade with the introduction of many new immunotherapies the existence of which have depended to a large extent on experimentation with both in vitro analysis and the use of various animal models, including gene-modified mice. The discussion below will review my own laboratory's studies, along with those of others in the field, on cancer immunotherapy. Our own studies have predominantly dwelt on two models of malignancy, namely a solid tumor model (breast cancer) and lymphoma. The data from our own laboratory, and that of other scientists, highlights the novel information so obtained, and the evidence that application of such information has already had an impact on immunotherapy of human oncologic diseases.
Collapse
Affiliation(s)
- Reginald Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, C/O 429 Drewry Avenue, Toronto, ON M2R 2K6, Canada
| |
Collapse
|
7
|
Märkl F, Schultheiß C, Ali M, Chen SS, Zintchenko M, Egli L, Mietz J, Chijioke O, Paschold L, Spajic S, Holtermann A, Dörr J, Stock S, Zingg A, Läubli H, Piseddu I, Anz D, Minden MDV, Zhang T, Nerreter T, Hudecek M, Minguet S, Chiorazzi N, Kobold S, Binder M. Mutation-specific CAR T cells as precision therapy for IGLV3-21 R110 expressing high-risk chronic lymphocytic leukemia. Nat Commun 2024; 15:993. [PMID: 38307904 PMCID: PMC10837166 DOI: 10.1038/s41467-024-45378-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
The concept of precision cell therapy targeting tumor-specific mutations is appealing but requires surface-exposed neoepitopes, which is a rarity in cancer. B cell receptors (BCR) of mature lymphoid malignancies are exceptional in that they harbor tumor-specific-stereotyped sequences in the form of point mutations that drive self-engagement of the BCR and autologous signaling. Here, we use a BCR light chain neoepitope defined by a characteristic point mutation (IGLV3-21R110) for selective targeting of a poor-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. We develop murine and humanized CAR constructs expressed in T cells from healthy donors and CLL patients that eradicate IGLV3-21R110 expressing cell lines and primary CLL cells, but neither cells expressing the non-pathogenic IGLV3-21G110 light chain nor polyclonal healthy B cells. In vivo experiments confirm epitope-selective cytolysis in xenograft models in female mice using engrafted IGLV3-21R110 expressing cell lines or primary CLL cells. We further demonstrate in two humanized mouse models lack of cytotoxicity towards human B cells. These data provide the basis for advanced approaches of resistance-preventive and biomarker-guided cellular targeting of functionally relevant lymphoma driver mutations sparing normal B cells.
Collapse
Affiliation(s)
- Florian Märkl
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Murtaza Ali
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | | - Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastijan Spajic
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Anne Holtermann
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Janina Dörr
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Sophia Stock
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Andreas Zingg
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Ignazio Piseddu
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | | | - Tianjiao Zhang
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Hortal AM, Villanueva A, Arellano I, Prieto C, Mendoza P, Bustelo XR, Alarcón B. Mice Overexpressing Wild-Type RRAS2 Are a Novel Model for Preclinical Testing of Anti-Chronic Lymphocytic Leukemia Therapies. Cancers (Basel) 2023; 15:5817. [PMID: 38136362 PMCID: PMC10742337 DOI: 10.3390/cancers15245817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the most common type of leukemia in the Western world. Mutation in different genes, such as TP53 and ATM, and deletions at specific chromosomic regions, among which are 11q or 17p, have been described to be associated to worse disease prognosis. Recent research from our group has demonstrated that, contrary to what is the usual cancer development process through missense mutations, B-CLL is driven by the overexpression of the small GTPase RRAS2 in its wild-type form without activating mutations. Some mouse models of this disease have been developed to date and are commonly used in B-CLL research, but they present different disadvantages such as the long waiting period until the leukemia fully develops, the need to do cell engraftment or, in some cases, the fact that the model does not recapitulate the alterations found in human patients. We have recently described Rosa26-RRAS2fl/flxmb1-Cre as a new mouse model of B-CLL with a full penetrance of the disease. In this work, we have validated this mouse model as a novel tool for the development of new therapies for B-CLL, by testing two of the most broadly applied targeted agents: ibrutinib and venetoclax. This also opens the door to new targeted agents against R-RAS2 itself, an approach not yet explored in the clinic.
Collapse
Affiliation(s)
- Alejandro M. Hortal
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Ana Villanueva
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Irene Arellano
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Cristina Prieto
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Pilar Mendoza
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Balbino Alarcón
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| |
Collapse
|
9
|
Parry EM, Roulland S, Okosun J. DLBCL arising from indolent lymphomas: How are they different? Semin Hematol 2023; 60:277-284. [PMID: 38072721 DOI: 10.1053/j.seminhematol.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 03/12/2024]
Abstract
Transformation to diffuse large B-cell lymphoma (DLBCL) is a recognized, but unpredictable, clinical inflection point in the natural history of indolent lymphomas. Large retrospective studies highlight a wide variability in the incidence of transformation across the indolent lymphomas and the adverse outcomes associated with transformed lymphomas. Opportunities to dissect the biology of transformed indolent lymphomas have arisen with evolving technologies and unique tissue collections enabling a growing appreciation, particularly, of their genetic basis, how they relate to the preceding indolent lymphomas and the comparative biology with de novo DLBCL. This review summarizes our current understanding of both the clinical and biological aspects of transformed lymphomas and the outstanding questions that remain.
Collapse
Affiliation(s)
- Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sandrine Roulland
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Haemato-Oncology, St Bartholomew's Hospital, London, UK.
| |
Collapse
|
10
|
Lazarian G, Leroy B, Theves F, Hormi M, Letestu R, Eclache V, Tueur G, Ameur A, Bidet A, Cornillet-Lefebvre P, Davi F, Delabesse E, Estienne MH, Etancelin P, Kosmider O, Laibe S, Muller M, Nadal N, Naguib D, Pastoret C, Poulain S, Sujobert P, Veronese L, Imache S, Lefebvre V, Cymbalista F, Baran-Marszak F, Soussi T. The Broad Spectrum of TP53 Mutations in CLL: Evidence of Multiclonality and Novel Mutation Hotspots. Hum Mutat 2023; 2023:4880113. [PMID: 40225169 PMCID: PMC11918887 DOI: 10.1155/2023/4880113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2025]
Abstract
TP53 aberrations are a major predictive factor of resistance to chemoimmunotherapy in chronic lymphocytic leukemia (CLL), and an assessment of them before each line of treatment is required for theranostic stratification. Acquisition of subclonal TP53 abnormalities underlies the evolution of CLL. To better characterize the distribution, combination, and impact of TP53 variants in CLL, 1,056 TP53 variants collected from 683 patients included in a multicenter collaborative study in France were analyzed and compared to UMD_CLL, a dataset built from published articles collectively providing 5,173 TP53 variants detected in 3,808 patients. Our analysis confirmed the presence of several CLL-specific hotspot mutations, including a two-base pair deletion in codon 209 and a missense variant at codon 234, the latter being associated with alkylating treatment. Our analysis also identified a novel CLL-specific variant in the splice acceptor signal of intron 6 leading to the use of a cryptic splice site, similarly utilized by TP53 to generate p53psi, a naturally truncated p53 isoform localized in the mitochondria. Examination of both UMD_CLL and several recently released large-scale genomic analyses of CLL patients confirmed that this splice variant is highly enriched in this disease when compared to other cancer types. Using a TP53-specific single-nucleotide polymorphism, we also confirmed that copy-neutral loss of heterozygosity is frequent in CLL. This event can lead to misinterpretation of TP53 status. Unlike other cancers, CLL displayed a high proportion of patients harboring multiple TP53 variants. Using both in silico analysis and single molecule smart sequencing, we demonstrated the coexistence of distinct subclones harboring mutations on distinct alleles. In summary, our study provides a detailed TP53 mutational architecture in CLL and gives insights into how treatments may shape the genetic landscape of CLL patients.
Collapse
Affiliation(s)
- Grégory Lazarian
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Bernard Leroy
- Sorbonne Université, Place Jussieu, 75005 Paris, France
| | - Floriane Theves
- Service d'Hématologie Biologique, CHU Pitié Salpêtrière, Paris 75013, France
| | - Myriam Hormi
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Rémi Letestu
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Virginie Eclache
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Giulia Tueur
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Audrey Bidet
- Service d'Hématologie Biologique, CHU Bordeaux-Haut Lévêque, Bordeaux 33000, France
| | | | - Frédéric Davi
- Service d'Hématologie Biologique, CHU Pitié Salpêtrière, Paris 75013, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, CHU Toulouse, Inserm 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Pascaline Etancelin
- Laboratoire de Génétique Oncologique, Département de Biopathologie, Centre Henri Becquerel, 76038 Rouen, France
| | - Olivier Kosmider
- Service d'Hématologie Biologique, CHU Hôpital Cochin, Paris 75014, France
| | - Sophy Laibe
- XPath Cytogénétique et Biologie Moléculaire, Marseilles 13010, France
| | - Marc Muller
- Laboratoire de Génétique Médicale, CHRU Nancy-Hôpitaux de Brabois, Vandoeuvre-Lès-Nancy, 54511, France
| | - Nathalie Nadal
- Service de Génétique Chromosomique et Moléculaire, CHU Dijon, Dijon 21000, France
| | - Dina Naguib
- Service d'Hématologie Biologique, CHU Caen, Caen 14033, France
| | - Cédric Pastoret
- Service d'Hématologie Biologique, CHU Rennes, Rennes 35000, France
| | | | - Pierre Sujobert
- Service d'Hématologie Cellulaire, Hospices Civils de Lyon, Lyon 69002, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Samia Imache
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Valérie Lefebvre
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Florence Cymbalista
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Fanny Baran-Marszak
- Service d'Hématologie Biologique, Hopital Avicenne, Hopitaux Universitaire de Paris Seine Saint Denis, Assistance Publique Hopitaux de Paris, Bobigny, France
| | - Thierry Soussi
- Sorbonne Université, Place Jussieu, 75005 Paris, France
- Centre de Recherche Saint-Antoine, UMRS_938, “Hematopoietic and Leukemic Development”, Sorbonne Université, 75012 Paris, France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | | |
Collapse
|
11
|
Penter L, ten Hacken E, Southard J, Lareau CA, Ludwig LS, Li S, Neuberg DS, Livak KJ, Wu CJ. Mitochondrial DNA Mutations as Natural Barcodes for Lineage Tracing of Murine Tumor Models. Cancer Res 2023; 83:667-672. [PMID: 36469010 PMCID: PMC9988704 DOI: 10.1158/0008-5472.can-22-0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Murine models are indispensable tools for functional genomic studies and preclinical testing of novel therapeutic approaches. Mitochondrial single-cell assay for transposase-accessible chromatin using sequencing (mtscATAC-seq) enables the dissection of cellular heterogeneity and clonal dynamics by capturing chromatin accessibility, copy-number variations (CNV), and mitochondrial DNA (mtDNA) mutations, yet its applicability to murine studies remains unexplored. By leveraging mtscATAC-seq in novel chronic lymphocytic leukemia and Richter syndrome mouse models, we report the detection of mtDNA mutations, particularly in highly proliferative murine cells, alongside CNV and chromatin state changes indicative of clonal evolution upon secondary transplant. This study thus demonstrates the feasibility and utility of multi-modal single-cell and natural barcoding approaches to characterize murine cancer models. SIGNIFICANCE mtDNA mutations can serve as natural barcodes to enable lineage tracing in murine cancer models, which can be used to provide new insights into disease biology and to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Caleb A. Lareau
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Leif S. Ludwig
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
ten Hacken E, Sewastianik T, Yin S, Hoffmann GB, Gruber M, Clement K, Penter L, Redd RA, Ruthen N, Hergalant S, Sholokhova A, Fell G, Parry EM, Broséus J, Guieze R, Lucas F, Hernández-Sánchez M, Baranowski K, Southard J, Joyal H, Billington L, Regis FFD, Witten E, Uduman M, Knisbacher BA, Li S, Lyu H, Vaisitti T, Deaglio S, Inghirami G, Feugier P, Stilgenbauer S, Tausch E, Davids MS, Getz G, Livak KJ, Bozic I, Neuberg DS, Carrasco RD, Wu CJ. In Vivo Modeling of CLL Transformation to Richter Syndrome Reveals Convergent Evolutionary Paths and Therapeutic Vulnerabilities. Blood Cancer Discov 2023; 4:150-169. [PMID: 36468984 PMCID: PMC9975769 DOI: 10.1158/2643-3230.bcd-22-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Tomasz Sewastianik
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Michaela Gruber
- CEMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kendell Clement
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
| | - Robert A. Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neil Ruthen
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sébastien Hergalant
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
| | - Alanna Sholokhova
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Geoffrey Fell
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Erin M. Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julien Broséus
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, Nancy, France
| | | | - Fabienne Lucas
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, Madrid, Spain
| | - Kaitlyn Baranowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jackson Southard
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Joyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Leah Billington
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Fara Faye D. Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth Witten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mohamed Uduman
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Binyamin A. Knisbacher
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haoxiang Lyu
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Pierre Feugier
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, Nancy, France
| | - Stephan Stilgenbauer
- Department III of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Eugen Tausch
- Department III of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kenneth J. Livak
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ruben D. Carrasco
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|