1
|
Isabelle C, Boles A, McConnell K, Keller R, Burzinski R, Hutchins Z, Calabretto G, Cheslow L, Xu J, Chakravarti N, Porcu P, Nikbakht N, Mishra A. CD38 in the pathobiology of cutaneous T-cell lymphoma and the potential for combination therapeutic intervention. Leukemia 2025; 39:1146-1156. [PMID: 40057636 PMCID: PMC12055602 DOI: 10.1038/s41375-025-02551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Cutaneous T-Cell Lymphoma (CTCL) is a non-Hodgkin's lymphoma involving malignant skin-homing T-cells, characterized by variable severity and limited treatment options. Our study shows that patient samples and derived cell lines express CD38 on CTCL cells, and αCD38 antibodies effectively target CD38 in a mouse model. In vivo αCD38 antibody treatment led to the loss of CD38 expression in residual tumor cells, highlighting the need for innovative strategies to improve CTCL outcomes despite the CD38 loss in residual tumor cells. To investigate the role of CD38 in CTCL pathology, we used CRISPR-Cas9 to create CD38-deficient (CD38KO) CTCL cells. These CD38KO cells showed higher expression of oncogenes B-catenin, TCF7, and BCL6, along with reduced migration. Elevated NAD+ levels in CD38KO cells increased cellular respiration after CD38 inhibition in CD38WT cells. In vivo, CD38KO cell transplants led to more aggressive tumors, likely due to elevated β-catenin, Bcl6, and Tcf-1 signaling. Prior research in multiple myeloma showed αCD38 antibody efficacy relies on CD38 expression. We discovered that panobinostat, a histone deacetylase inhibitor, increased surface CD38 expression in CTCL cells dose-dependently. Combining panobinostat with αCD38 antibody in a CTCL mouse model significantly improved survival compared to the antibody alone, underscoring CD38's therapeutic potential in CTCL. CD38 is expressed in CTCL cells and can be targeted with αCD38 antibody. αCD38 antibody treatment leads to a significant reduction in CTCL cells, while residual cells lose CD38 expression. Knocking out CD38 from CTCL cells leads to increases in intracellular NAD+ and increased cellular respiration. Additionally, CD38KO cells have increased protein levels of β-catenin, Tcf1 (encoded by TCF7), and Bcl6. CD38KO CTCL cells grow more aggressively in vivo than CD38WT CTCL cells. Treating CTCL cells with panobinostat increases CD38 expression. A dual combination treatment of panobinostat and αCD38 antibody in a mouse model of CTCL improved survival outcomes compared to αCD38 antibody treatment alone. (Figure made with Biorender.com).
Collapse
Affiliation(s)
- Colleen Isabelle
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amy Boles
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen McConnell
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robyn Keller
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rachel Burzinski
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zachary Hutchins
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Giulia Calabretto
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lara Cheslow
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Xu
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nitin Chakravarti
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pierluigi Porcu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anjali Mishra
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Morán-Plata FJ, Muñoz-García N, Barrena S, Yeguas A, Balanzategui A, Carretero-Domínguez S, Pozo J, Lécrevisse Q, González-González M, Bárcena P, Alcoceba M, Herrero-García M, Solano F, López-Parra M, Martín García-Sancho A, de Sá Ferreira-Facio C, Villamor N, Lau C, Dos Anjos Teixeira M, Botafogo V, Orfao A, Almeida J. Maturation-Related and Functional-Associated Phenotypic Profile of Tumor T Cells in Mature/Peripheral T-Cell Neoplasms: Association With the Diagnostic Subtype of the Disease. J Transl Med 2025; 105:104180. [PMID: 40288651 DOI: 10.1016/j.labinv.2025.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/20/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
T-cell chronic lymphoproliferative disorders (T-CLPD) are a heterogeneous group of mature T-cell malignancies, the classification of which remains challenging. In this study, we classified tumor cells from 86 patients diagnosed with either T-CLPD (n = 81) or T-cell acute lymphoblastic leukemia (n = 5) into precise functional and maturation-associated compartments, based on their phenotypic similarities with their normal maturation-related and functional associated T-cell counterparts. A database was generated using blood samples from 6 sex- and age-matched healthy donors as a template for normal T-cell subset flow cytometric immunophenotypes, to which tumor cells of individual patients were compared. Except for nodal T follicular-helper cell lymphoma and adult T-cell leukemia/lymphoma, which showed phenotypes overlapping with that of T follicular-helper and T regulatory cells, respectively, all other T-CLPD displayed immunophenotypic profiles consistent with conventional T helper (Th) cells, with different maturation-associated profiles per diagnostic category. These included predominant naive/naive-central memory phenotypes in T-cell prolymphocytic leukemia to terminal effector cytotoxic cellular profiles in T-cell large granular lymphocytic leukemia; other T-CLPD diagnostic categories (mostly Sézary syndrome/mycosis fungoides) resembled the diverse memory T-cell subsets. Interestingly, immunophenotypically less-mature tumor cells (T-cell prolymphocytic leukemia) displayed more heterogeneous Th profiles, whereas those with memory T-cell profiles showed more consistent Th-associated patterns (eg, Th2 or Th17 in Sézary syndrome/mycosis fungoides), and the most mature neoplasms (eg, T-cell large granular lymphocytic leukemia) systematically displayed a Th1-like pattern, reflecting progressively lower plasticity for the more advanced tumor-associated maturation stages. These findings confirm the presence of distinct phenotypic patterns resembling specific maturation-associated and Th-related profiles of normal T cells among distinct diagnostic categories of T-CLPD, which might contribute to a more precise classification of T-CLPD.
Collapse
Affiliation(s)
- F Javier Morán-Plata
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Noemí Muñoz-García
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Susana Barrena
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Ana Yeguas
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Ana Balanzategui
- Institute of Biomedical Research of Salamanca, Salamanca, Spain; Service of Hematology, University Hospital of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Carretero-Domínguez
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Pozo
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain
| | - María González-González
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Paloma Bárcena
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain; Cell-purification Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Miguel Alcoceba
- Institute of Biomedical Research of Salamanca, Salamanca, Spain; Service of Hematology, University Hospital of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Herrero-García
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Fernando Solano
- Hospital Ntra Sra del Prado, Talavera De La Reina, Toledo, Spain
| | - Miriam López-Parra
- Institute of Biomedical Research of Salamanca, Salamanca, Spain; Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain; Service of Hematology, University Hospital of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiane de Sá Ferreira-Facio
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain; Department of Pathology, Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vitor Botafogo
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center, University of Salamanca, Salamanca, Spain; Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, Salamanca, Spain; Biomedical Research Networking Centre Consortium of Oncology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Sun J, Li T, Cui J, Zhang L, Wang G, Ma C, Zhang C, Wang Y. sEV-mediated intercellular transformation from MGAT4A High to MGAT4A Low tumor cells via the HOTAIRM1/miR-196b-5p axis promotes apoptosis resistance in CTCL. Oncogene 2025:10.1038/s41388-025-03356-6. [PMID: 40155530 DOI: 10.1038/s41388-025-03356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
ncRNAs encapsulated in small extracellular vesicles (sEVs) facilitate intercellular communication and are associated with tumor progression. lncRNA-HOTAIRM1 is aberrantly expressed in various cancers. However, HOTAIRM1 expression and its downstream ceRNA network in CTCL remains unclear. In this study, we found that HOTAIRM1 was reduced in CTCL. Elevated HOTAIRM1 inhibited proliferation and induced apoptosis in vitro, resulting in reduced in vivo tumorigenic capacity. Whole-transcriptome sequencing and scRNA-Seq confirmed that differential expression of HOTAIRM1/miR-196b-5p/MGAT4A axis induces apoptosis resistance in CTCL. Mechanistically, reduced MGAT4A expression in CTCL leads to decreased N-glycosylation modification of membrane proteins and reduced Galectin-1 affinity, thereby inducing partial resistance to Galectin-1-induced apoptosis. Meanwhile, benign CD4 + T cells show sensitivity to Galectin-1-induced apoptosis due to their relatively higher MGAT4A expression. Furthermore, MGAT4ALow CTCL tumor cells transformed MGAT4AHigh CD4+ benign cells into MGAT4ALow cells by secreting sEVs containing miR-196b-5p, thereby reducing Galectin-1 binding and inducing apoptosis resistance. Engineered sEVs from HOTAIRM1-overexpressing cells contain elevated HOTAIRM1, which can specifically target malignant T cells, with reduced miR-196b-5p and increased MGAT4A, demonstrating apoptosis-inducing and tumor-suppressive effects in CTCL. This study identified changes in HOTAIRM1/miR-196b-5p/MGAT4A axis and N-glycosylation modifications in CTCL. Engineered HOTAIRM1-loaded sEVs demonstrated promising targeting and therapeutic effects in CTCL.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Tingting Li
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jing Cui
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
| | - Lihua Zhang
- Department of Pathology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
- Tianjin Union Medical Center, Tianjin, China
| | - Chuan Ma
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Morán-Plata FJ, Muñoz-García N, Barrena S, Yeguas A, Balanzategui A, Carretero-Domínguez S, Lécrevisse Q, González-González M, Mateos S, Silos L, Alcoceba M, Solano F, López-Parra M, Botafogo V, Orfao A, Almeida J. Altered immune cell profiles in blood of mature/peripheral T-cell leukemia/lymphoma patients: an EuroFlow study. Front Immunol 2025; 16:1561152. [PMID: 40191194 PMCID: PMC11968749 DOI: 10.3389/fimmu.2025.1561152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The interactions between T-cell chronic lymphoproliferative disorder (T-CLPD) tumor cells and the bystander immune cells may play a critical role in the failure of immune surveillance and disease progression, but the altered blood immune profiles of T-CLPD remain unknown. Methods Here we analyzed the distribution of residual non-tumoral immune cells in blood of 47 T-CLPD patients -14 T-prolymphocytic leukemia (T-PLL), 7 Sézary syndrome/mycosis fungoides (SS/MF) and 26 T-large granular lymphocytic leukemia (T-LGLL)-, as tumor models of neoplastic T-cells that resemble naive/central memory (N/CM), memory and terminal effector T-cells, respectively, compared to 110 age- and sex-matched healthy donors, using spectral flow cytometry. Results Overall, our results showed deeply altered immune cell profiles in T-PLL, characterized by significantly increased counts of monocytes, dendritic cells, B-cells, NK-cells and innate lymphoid cells (ILC) -particularly ILC3-, together with reduced normal T-cells. In contrast, SS/MF showed neutrophilia, associated with decreased numbers of dendritic cells and NK-cells, potentially reflecting their increased migration from blood to the skin. In turn, T-LGLL displayed the mildest immune impairment, dependent on the TCD4+ vs. TCD8+ nature of the clonal T-cells and presence of STAT3 mutations among TαβCD8+ T-LGLL cases. Further dissection of the normal T-cell compartment showed a significant reduction of the earliest T-cell maturation compartments (N/CM) in T-PLL and SS/MF, whereas T-cells remained within normal ranges in T-LGLL, with only a minor reduction of N/CM T-cells. Conclusion These findings point out the existence of differentially altered innate and adaptive immune cell profiles in the distinct diagnostic subtypes of T-CLPD, with progressively less pronounced alterations from T-PLL and SS/MF to T-LGLL.
Collapse
Affiliation(s)
- F. Javier Morán-Plata
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Noemí Muñoz-García
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana Barrena
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Yeguas
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Ana Balanzategui
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Carretero-Domínguez
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - María González-González
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Sheila Mateos
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Silos
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
| | - Miguel Alcoceba
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miriam López-Parra
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Vitor Botafogo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Lin L, Roccuzzo G, Yakymiv Y, Marchisio S, Ortolan E, Funaro A, Senetta R, Pala V, Bagot M, de Masson A, Battistella M, Guenova E, Ribero S, Quaglino P. The CD39/CD73/Adenosine and NAD/CD38/CD203a/CD73 Axis in Cutaneous T-Cell Lymphomas. Cells 2025; 14:309. [PMID: 39996780 PMCID: PMC11854806 DOI: 10.3390/cells14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL), characterized by malignant T-cell proliferation primarily in the skin, includes subtypes such as mycosis fungoides (MF) and Sézary syndrome (SS). The tumor microenvironment (TME) is central to their pathogenesis, with flow cytometry and histology being the gold standards for detecting malignant T cells within the TME. Alongside emerging molecular markers, particularly clonality analysis, these tools are indispensable for accurate diagnosis and treatment planning. Of note, adenosine signaling within the TME has been shown to suppress immune responses, affecting various cell types. The expression of CD39, CD73, and CD38, enzymes involved in adenosine production, can be elevated in MF and SS, contributing to immune suppression. Conversely, the expression of CD26, part of the adenosine deaminase/CD26 complex, that degrades adenosine, is often lost by circulating tumoral cells. Flow cytometry has demonstrated increased levels of CD39 and CD73 on Sézary cells, correlating with disease progression and prognosis, while CD38 shows a variable expression, with its prognostic significance remaining under investigation. Understanding these markers' roles in the complexity of TME-mediated immune evasion mechanisms might enhance diagnostic precision and offer new therapeutic targets in CTCL.
Collapse
Affiliation(s)
- Liyun Lin
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Gabriele Roccuzzo
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Yuliya Yakymiv
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Sara Marchisio
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy;
| | - Valentina Pala
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Martine Bagot
- Dermatology Department, Saint-Louis Hospital, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France; (M.B.); (A.d.M.)
| | - Adèle de Masson
- Dermatology Department, Saint-Louis Hospital, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France; (M.B.); (A.d.M.)
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France;
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland;
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| |
Collapse
|
6
|
Gniadecki R, Guenova E, Querfeld C, Nicolay JP, Scarisbrick J, Sokol L. Haematogenous seeding in mycosis fungoides and Sézary syndrome: current evidence and clinical implications. Br J Dermatol 2025; 192:381-389. [PMID: 39545505 DOI: 10.1093/bjd/ljae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of diseases characterized by abnormal neoplastic T-cell growth in the skin. Mycosis fungoides (MF), the most common CTCL, manifests as erythematous skin patches and/or plaques, tumours or erythroderma. The disease may involve blood, lymph nodes and rarely viscera. Sézary syndrome (SS) is a unique leukaemia/lymphoma syndrome related to MF, which presents with blood and skin involvement at diagnosis. The pathogenesis of MF/SS is not fully elucidated. The presence of skin lesions at distant sites underpins a hypothesis that MF/SS lesions may develop through haematogenous seeding. Phenotypic similarities between malignant and normal T cells led to the notion that disease-initiating mutations occur in specific subtypes of mature T cells, which are responsible for most CTCLs. However, this mature T-cell precursor model is not always consistent with clinical observations and research on MF/SS pathogenesis. Here, we review evidence supporting an alternative model of pathogenesis for MF/SS involving haematogenous seeding as a key process responsible for the initiation and progression of the disease. According to this hypothesis, malignant transformation occurs at an early stage of T-cell development (probably in bone marrow or thymus), yielding circulating neoplastic T cells which colonize the skin where the microenvironment is most permissive for proliferation and evolution. These mutated precursor cells seed the skin where they find a suitable niche to develop into clinically perceptible disease. Subsequently, malignant T cells can re-enter the bloodstream, re-seed pre-existing lesions and seed new areas of the skin, causing synchronous and convergent changes in the transcriptomic profile of lesions and tumours, and clinical disease progression - 'consecutive haematogenous seeding' captures this temporal phenomenon. This model radically changes the current understanding of CTCL pathogenesis, transforming it from a primarily cutaneous disease with secondary involvement of blood, to a systemic disease, where the spread of malignant cells through the blood to the skin is not a phenomenon of advanced disease but is an essential component of pathogenesis. This understanding of MF/SS could have several clinical implications, including standardizing our approach to assessing blood tumour burden, potential advances in prognosis and monitoring, and investigating combination treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Christiane Querfeld
- Department of Pathology and Division of Dermatology, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jan P Nicolay
- University Medical Center Mannheim/Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
7
|
Pichler AS, Amador C, Fujimoto A, Takeuchi K, de Jong D, Iqbal J, Staber PB. Advances in peripheral T cell lymphomas: pathogenesis, genetic landscapes and emerging therapeutic targets. Histopathology 2025; 86:119-133. [PMID: 39679758 DOI: 10.1111/his.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Peripheral T cell lymphomas (PTCLs) are a biologically diverse and aggressive group of non-Hodgkin lymphomas that originate from mature T cells, often presenting with complex clinical and morphological features. This review explores the challenges in diagnosing and classifying PTCLs, focusing on the intricate biology of the more common nodal entities. Advances in molecular diagnostics, such as mutational and gene expression profiling, have improved our understanding. However, the rarity and morphological variability of PTCLs continue to complicate the definition of biologically and clinically meaningful entities, as well as the application of current diagnoses in daily practice; these advancements have not yet translated into improved clinical outcomes. Standard therapies fail in most cases and lead to poor prognoses, highlighting the urgent need for improved therapeutic strategies. Precise characterisation of PTCL advances refined classification and supports the development of more targeted and effective treatments. Recent approaches have focused on biology-based risk stratification, either within specific entities or in an entity-agnostic manner. This development aims for improved treatment selection or even personalised treatment based on genetic, epigenetic and functional profiles.
Collapse
Affiliation(s)
- Alexander S Pichler
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida, USA
| | - Ayumi Fujimoto
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Javeed Iqbal
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Kwantwi LB, Rosen ST, Querfeld C. The Tumor Microenvironment as a Therapeutic Target in Cutaneous T Cell Lymphoma. Cancers (Basel) 2024; 16:3368. [PMID: 39409988 PMCID: PMC11482616 DOI: 10.3390/cancers16193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of non-Hodgkin lymphomas, with mycosis fungoides and Sézary syndrome being the two common subtypes. Despite the substantial improvement in early-stage diagnosis and treatments, some patients still progress to the advanced stage with an elusive underpinning mechanism. While this unsubstantiated disease mechanism coupled with diverse clinical outcomes poses challenges in disease management, emerging evidence has implicated the tumor microenvironment in the disease process, thus revealing a promising therapeutic potential of targeting the tumor microenvironment. Notably, malignant T cells can shape their microenvironment to dampen antitumor immunity, leading to Th2-dominated responses that promote tumor progression. This is largely orchestrated by alterations in cytokines expression patterns, genetic dysregulations, inhibitory effects of immune checkpoint molecules, and immunosuppressive cells. Herein, the recent insights into the determining factors in the CTCL tumor microenvironment that support their progression have been highlighted. Also, recent advances in strategies to target the CTCL tumor micromovement with the rationale of improving treatment efficacy have been discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
- Beckman Research Institute, Duarte, CA 91010, USA
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Steven T Rosen
- Beckman Research Institute, Duarte, CA 91010, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Christiane Querfeld
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
- Beckman Research Institute, Duarte, CA 91010, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
- Division of Dermatology, City of Hope Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Melchers S, Roemer M, Albrecht JD, Assaf C, von Gugelberg C, Guenova E, Klemke CD, Moritz RKC, Schlaak M, Stadler R, Wehkamp U, Wobser M, Albrecht T, Goerdt S, Schneider S, Nicolay JP. Evaluation of Sézary cell marker expression and cell death behaviour upon in vitro treatment by flow cytometry in Sézary syndrome patients. Exp Dermatol 2024; 33:e15171. [PMID: 39219147 DOI: 10.1111/exd.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The diagnosis of Sézary syndrome (SS) relies on the identification of blood Sézary cells (SC) by different markers via flow cytometry. Treatment of SS is challenging since its pathogenesis is characterized by cell death resistance rather than hyperproliferation. In this study, we establish an integrated approach that considers both the expression of SC markers and sensitivity to cell death both spontaneously and upon in vitro treatment. Peripheral blood mononuclear cells were isolated from 20 SS patients and analysed for the SC markers CD7 and CD26 loss as well as CD158k and PD1 gain. The cells were then treated with different established and experimental therapies in vitro and cell death was measured. Spontaneous and therapeutically induced cell death were measured and correlated to cellular marker profiles. In the marker-positive cells, spontaneous cell death sensitivity was reduced. Different treatments in vitro managed to specifically induce cell death in the putative CTCL cell populations. Interestingly, a repeated analysis after 3 months of treatment revealed the CTCL cell death sensitivity to be restored by therapy. We propose this novel integrated approach comprising the evaluation of SC marker expression and analysis of cell death sensitivity upon treatment that can also enable a better therapy stratification.
Collapse
Affiliation(s)
- S Melchers
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - M Roemer
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - J D Albrecht
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - C Assaf
- Department of Dermatology, HELIOS Klinik Krefeld, Krefeld, Germany
| | - C von Gugelberg
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - E Guenova
- Department of Dermatology, Lausanne University Hospital, Lausanne, Switzerland
| | - C-D Klemke
- Department of Dermatology, Municipal Medical Center Karlsruhe, Teaching Hospital of the University of Freiburg, Freiburg, Germany
| | - R K C Moritz
- Department of Dermatology, University Hospital Halle, Halle, Germany
- Department of Dermatology, Venerology and Allergology, Freie Universität Berlin and Humboldt-Universität zu Berlin, University Medical Centre Berlin, Berlin, Germany
| | - M Schlaak
- Department of Dermatology, University Hospital Munich, Munich, Germany
| | - R Stadler
- Department of Dermatology, Johannes-Wesling-Clinic Minden and University of Bochum, Bochum, Germany
| | - U Wehkamp
- Department of Dermatology, University Hospital Kiel, Kiel, Germany
| | - M Wobser
- Department of Dermatology, University Hospital Wurzburg, Wurzburg, Germany
| | - T Albrecht
- Department of Pathology, Ruprechts-Karls-University of Heidelberg, Heidelberg, Germany
| | - S Goerdt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
| | - S Schneider
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - J P Nicolay
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
De Masson A, Lazaridou I, Moins-Teisserenc H, Ram-Wolff C, Giustiniani J, Bagot M, Battistella M, Bensussan A. Pathophysiology of cutaneous T-cell lymphomas: Perspective from a French referral centre. Immunol Lett 2024; 268:106871. [PMID: 38801999 DOI: 10.1016/j.imlet.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a diverse group of malignant blood disorders characterized by initial skin infiltration, and sometimes, tumor spreading to lymph nodes, blood, and viscera. Mycosis fungoides is the most common form. Sézary syndrome is a distinctive form of CTCL marked by a significant presence of circulating tumor cells in peripheral blood. These diseases are characterized by the plasticity and heterogeneity of the tumor cells in the different tissue compartments, and a difficulty in identifying these tumor cells for diagnostic purposes and therapeutic monitoring. Progress has been made in the understanding of the pathophysiology of these diseases in recent years, and we provide here a review of these advancements.
Collapse
Affiliation(s)
- Adèle De Masson
- Service de Dermatologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Centre coordinateur national du réseau de cancers rares INCa Lymphomes Cutanés, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France.
| | | | - Hélène Moins-Teisserenc
- Université Paris Cité, Paris, France; INSERM U1160, Institut de Recherche Saint-Louis, Paris, France; Laboratoire d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, France
| | - Caroline Ram-Wolff
- Service de Dermatologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Centre coordinateur national du réseau de cancers rares INCa Lymphomes Cutanés, France
| | | | - Martine Bagot
- Service de Dermatologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Centre coordinateur national du réseau de cancers rares INCa Lymphomes Cutanés, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France
| | - Maxime Battistella
- INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France; Laboratoire de Pathologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, France
| | - Armand Bensussan
- INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France; Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
11
|
Seheult JN, Weybright MJ, Jevremovic D, Shi M, Olteanu H, Horna P. Computational Flow Cytometry Accurately Identifies Sezary Cells Based on Simplified Aberrancy and Clonality Features. J Invest Dermatol 2024; 144:1590-1599.e3. [PMID: 38237727 DOI: 10.1016/j.jid.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 03/09/2024]
Abstract
Flow cytometric identification of circulating neoplastic cells (Sezary cells) in patients with mycosis fungoides and Sezary syndrome is essential for diagnosis, staging, and prognosis. Although recent advances have improved the performance of this laboratory assay, the complex immunophenotype of Sezary cells and overlap with reactive T cells demand a high level of analytic expertise. We utilized machine learning to simplify this analysis using only 2 predefined Sezary cell-gating plots. We studied 114 samples from 59 patients with Sezary syndrome/mycosis fungoides and 66 samples from unique patients with inflammatory dermatoses. A single dimensionality reduction plot highlighted all TCR constant β chain-restricted (clonal) CD3+/CD4+ T cells detected by expert analysis. On receiver operator curve analysis, an aberrancy scale feature computed by comparison with controls (area under the curve = 0.98) outperformed loss of CD2 (0.76), CD3 (0.83), CD7 (0.77), and CD26 (0.82) in discriminating Sezary cells from reactive CD4+ T cells. Our results closely mirrored those obtained by exhaustive expert analysis for event classification (positive percentage agreement = 100%, negative percentage agreement = 99%) and Sezary cell quantitation (regression slope = 1.003, R squared = 0.9996). We demonstrate the potential of machine learning to simplify the accurate identification of Sezary cells.
Collapse
Affiliation(s)
- Jansen N Seheult
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
12
|
Cherfan C, Chebly A, Rezvani HR, Beylot-Barry M, Chevret E. Delving into the Metabolism of Sézary Cells: A Brief Review. Genes (Basel) 2024; 15:635. [PMID: 38790264 PMCID: PMC11121102 DOI: 10.3390/genes15050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Primary cutaneous lymphomas (PCLs) are a heterogeneous group of lymphoproliferative disorders caused by the accumulation of neoplastic T or B lymphocytes in the skin. Sézary syndrome (SS) is an aggressive and rare form of cutaneous T cell lymphoma (CTCL) characterized by an erythroderma and the presence of atypical cerebriform T cells named Sézary cells in skin and blood. Most of the available treatments for SS are not curative, which means there is an urgent need for the development of novel efficient therapies. Recently, targeting cancer metabolism has emerged as a promising strategy for cancer therapy. This is due to the accumulating evidence that metabolic reprogramming highly contributes to tumor progression. Genes play a pivotal role in regulating metabolic processes, and alterations in these genes can disrupt the delicate balance of metabolic pathways, potentially contributing to cancer development. In this review, we discuss the importance of targeting energy metabolism in tumors and the currently available data on the metabolism of Sézary cells, paving the way for potential new therapeutic approaches aiming to improve clinical outcomes for patients suffering from SS.
Collapse
Affiliation(s)
- Carel Cherfan
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
| | - Alain Chebly
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut P.O. Box 17-5208, Lebanon;
| | - Hamid Reza Rezvani
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
| | - Marie Beylot-Barry
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
- Dermatology Department, Centre Hospitalier Universitaire de Bordeaux, 33075 Bordeaux, France
| | - Edith Chevret
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
| |
Collapse
|
13
|
Murphy L, Quigley C, Long A, Barry R, Timoney I, Diong S, O'Gorman S. As serious as Sézary. Clin Exp Dermatol 2024; 49:526-527. [PMID: 38174623 DOI: 10.1093/ced/llae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Sézary syndrome is a rare condition, with a very poor prognosis. This case highlights how important it is for clinicians to be cognizant of the impact that this condition and the various treatment regimens can have on patients’ lives.
Collapse
Affiliation(s)
| | | | - Amy Long
- St James' Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
14
|
Chang YT, Prompsy P, Kimeswenger S, Tsai YC, Ignatova D, Pavlova O, Iselin C, French LE, Levesque MP, Kuonen F, Bobrowicz M, Brunner PM, Pascolo S, Hoetzenecker W, Guenova E. MHC-I upregulation safeguards neoplastic T cells in the skin against NK cell-mediated eradication in mycosis fungoides. Nat Commun 2024; 15:752. [PMID: 38272918 PMCID: PMC10810852 DOI: 10.1038/s41467-024-45083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin. In this study, we employ a clonality-supervised deep learning methodology to dissect key pathological features implicated in mycosis fungoides, the most common cutaneous T-cell lymphoma. Our investigations unveil the prominence of the IL-32β-major histocompatibility complex (MHC)-I axis as a critical determinant in tumor T-cell immune evasion within the skin microenvironment. In patients' skin, we find MHC-I to detrimentally impact the functionality of natural killer (NK) cells, diminishing antibody-dependent cellular cytotoxicity and promoting resistance of tumor skin T-cells to cell-surface targeting therapies. Through murine experiments in female mice, we demonstrate that disruption of the MHC-I interaction with NK cell inhibitory Ly49 receptors restores NK cell anti-tumor activity and targeted T-cell lymphoma elimination in vivo. These findings underscore the significance of attenuating the MHC-I-dependent immunosuppressive networks within skin tumors. Overall, our study introduces a strategy to reinvigorate NK cell-mediated anti-tumor responses to overcome treatment resistance to existing cell-surface targeted therapies for skin lymphoma.
Collapse
Affiliation(s)
- Yun-Tsan Chang
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pacôme Prompsy
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Susanne Kimeswenger
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Yi-Chien Tsai
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Olesya Pavlova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christoph Iselin
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lars E French
- Department of Dermatology and Allergology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria.
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, Hospital 12 de Octubre, Medical School, University Complutense, Madrid, Spain.
| |
Collapse
|
15
|
Najidh S, Zoutman WH, Schrader AMR, Willemze R, Tensen CP, Vermeer MH. PD-1 Overexpression in Sézary Syndrome Is Epigenetically Regulated. J Invest Dermatol 2023; 143:2538-2541.e7. [PMID: 37270066 DOI: 10.1016/j.jid.2023.03.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 06/05/2023]
Affiliation(s)
- Safa Najidh
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M R Schrader
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Zhai JW, Lv LL, Wu JJ, Zhang YX, Shen Y, Qu QX, Chen C. Combining local cryoablation with PD-L1 blockade synergistically eradicates established murine lung cancer by modulating mitochondrial in PD-1+CD8+ T cell. Immunol Lett 2023; 263:61-69. [PMID: 37805094 DOI: 10.1016/j.imlet.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Immune checkpoint blockade (ICB) has shown improvement in overall survival for lung cancer in clinical trials. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that combinatorial anti-PD-L1/cryoablation therapy generated a synergistic antitumor activity in the established lung cancer model. Importantly, it was observed that this favorable antitumor immune response comes predominantly from the PD-1+CD8+ T cells generated after the combination therapy, referred as improvement of IFN-γ production and mitochondrial metabolism, which resembled highly functional effectors CD8+ T cells. Notably, the cellular levels of mitochondrial reactive oxygen and mitochondria mass excessively coincided with alteration of IFN-γ secretion in PD-1+CD8+T cell subset. So far, anti-PD-L1/cryoablation therapy selectively derived the improvement of depolarized mitochondria in PD-1+CD8+T cell subset, subsequently rebuild the anti-tumor function of the exhausted CD8+ T cells. Collectively, there is considerable interest in anti-PD-L1 plus cryoablation combination therapy for patients with lung cancer, and defining the underlying mechanisms of the observed synergy.
Collapse
Affiliation(s)
- Jia-Wei Zhai
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Lei-Lei Lv
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Jia-Juan Wu
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China
| | - Yao-Xin Zhang
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Yu Shen
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China
| | - Qiu-Xia Qu
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China.
| | - Cheng Chen
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China.
| |
Collapse
|
17
|
Morgenroth S, Roggo A, Pawlik L, Dummer R, Ramelyte E. What Is New in Cutaneous T Cell Lymphoma? Curr Oncol Rep 2023; 25:1397-1408. [PMID: 37874473 PMCID: PMC10640416 DOI: 10.1007/s11912-023-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE OF REVIEW This review focuses on updates in prognosis, pathogenesis, and treatment of cutaneous T cell lymphoma (CTCL). RECENT FINDINGS Cohort studies indicate imaging may be necessary in early-stage CTCL. Risk factors for progression of CTCL have been identified. Interactions between malignant cells and the tumor microenvironment (TME) and the skin microbiome advance the understanding of pathogenesis and tumor cell dissemination. Studies support a hypothesis of circulating malignant tumor cells. MicroRNA (miR) influence tumor progression and prognosis; the IL22-STAT3-CCL20 cascade may be a novel target. IL-4, IL-5, and IL-31 cytokines are relevant for pruritus and could be targets for therapeutic interventions. Systemic therapies, such as JAK inhibitors, targeted antibodies, and checkpoint inhibitors, show promise in advanced stages. Allogenic hematopoietic stem cell transplantation provides a potential curative option for patients. Further investigations of prognosis and translational research are necessary to improve stratification of patients for treatment.
Collapse
Affiliation(s)
- Sarah Morgenroth
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Roggo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Gosmann J, Bielefeld A, Schmitz FJ, Schaper-Gerhardt K, Gutzmer R, Stadler R. Die Wirkung von Mogamulizumab auf die aberrante T-Zell-Population im peripheren Blut - eine monozentrische retrospektive Analyse. J Dtsch Dermatol Ges 2023; 21:992-1002. [PMID: 37700404 DOI: 10.1111/ddg.15144_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/07/2023] [Indexed: 09/14/2023]
Abstract
ZusammenfassungHintergrundDie Wirkung von Mogamulizumab bei kutanen T‐Zell‐Lymphomen (CTCL) auf die T‐Zellen (TZ) im peripheren Blut und deren potenzielle Rolle bei der Steuerung von Behandlungsintervallen wird noch erforscht.MethodikWir untersuchten in einer retrospektiven monozentrischen Analyse die Wirkung von Mogamulizumab auf die CD3+ TZ und die aberrante T‐Zellpopulation (TZP), CD4+/CD7– und die CD4+/CD26– TZ, die mittels Durchflusszytometrie analysiert wurden.ErgebnisseDreizehn Patienten mit CTCL wurden eingeschlossen. Nach vier Zyklen kam es zu einer durchschnittlichen Reduktion der CD3+ TZ um 57%, der CD4+/CD7− um 72% und der CD4+/CD26− TZ um 75% im Vergleich zum individuellen Ausgangswert eines jeden Patienten. Die Reduktionen der CD4+/CD7+ und CD4+/CD26+ TZ fielen mit durchschnittlich 54% und 41% geringer aus. Ein signifikanter Rückgang der aberranten TZP war bereits nach der ersten Infusion zu beobachten. Ein medianes Plateau der TZP trat bereits während der Induktionsphase ein. Bei 5/13 Patienten kam es zu einem Progress der Erkrankung, ohne dass eine eindeutige Korrelation mit der aberranten TZP bestand.SchlussfolgerungenBereits nach einer Gabe Mogamulizumab reduzierte sich die aberrante TZP und – in geringerem Maße – die normale TZP. Wir konnten keine eindeutige Korrelation der TZP mit der Wirksamkeit von Mogamulizumab beobachten. Es werden weitere Untersuchungen mit einer größeren Anzahl von Patienten benötigt.
Collapse
Affiliation(s)
- Janika Gosmann
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Hauttumorzentrum, Johannes Wesling Klinikum Minden, Ruhr-Universität Bochum, Minden
| | - Annette Bielefeld
- Institut für Laboratoriumsmedizin, Mikrobiologie, Umweltmedizin und Transfusionsmedizin, Johannes Wesling Klinikum Minden, Ruhr-Universität Bochum, Minden
| | - Franz-Josef Schmitz
- Institut für Laboratoriumsmedizin, Mikrobiologie, Umweltmedizin und Transfusionsmedizin, Johannes Wesling Klinikum Minden, Ruhr-Universität Bochum, Minden
| | - Katrin Schaper-Gerhardt
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Hauttumorzentrum, Johannes Wesling Klinikum Minden, Ruhr-Universität Bochum, Minden
- Klinik für Dermatologie, Allergologie und Venerologie, Hauttumorzentrum Hannover (HTZH), Medizinische Hochschule Hannover
| | - Ralf Gutzmer
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Hauttumorzentrum, Johannes Wesling Klinikum Minden, Ruhr-Universität Bochum, Minden
| | - Rudolf Stadler
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Hauttumorzentrum, Johannes Wesling Klinikum Minden, Ruhr-Universität Bochum, Minden
| |
Collapse
|
19
|
Gosmann J, Bielefeld A, Schmitz FJ, Schaper-Gerhardt K, Gutzmer R, Stadler R. The effect of mogamulizumab on the aberrant T cell population in the peripheral blood - A monocentric retrospective analysis. J Dtsch Dermatol Ges 2023; 21:992-1002. [PMID: 37401138 DOI: 10.1111/ddg.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/07/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVES The effect of mogamulizumab in cutaneous T-cell lymphoma (CTCL) on T cells (TC) in the peripheral blood and its potential role to navigate treatment intervals are explored. METHODS We investigated within a retrospective monocentric analysis the effect of mogamulizumab on the CD3+ TC and the aberrant T cell population (TCP), i.e., the CD4+ /CD7- and the CD4+ /CD26- TC, analyzed by flow cytometry. RESULTS Thirteen patients with CTCL were included. After four cycles there was a mean reduction of 57% in CD3+ TC, 72% in the CD4+ /CD7- and 75% in the CD4+ /CD26- TCP compared to the individual baseline of each patient. The reduction in CD4+ /CD7+ and CD4+ /CD26+ TC was lower, averaging 54% and 41%. A significant decrease in aberrant TCP was already evident after the first administration. A median plateau of TCP already occurred during the IP. Progressive disease occurred in 5/13 patients without a clear correlation to aberrant TCP. CONCLUSIONS Already after one dose of mogamulizumab, aberrant TCP and, to a lesser extent, normal TC decrease. We did not observe a clear correlation between TCP and the efficacy of mogamulizumab, but further studies with larger numbers of patients are needed.
Collapse
Affiliation(s)
- Janika Gosmann
- University Department for Dermatology, Venereology, Allergology and Phlebology, Skin Cancer Center, Johannes Wesling Medical Center Minden, Ruhr University Bochum, Minden, Germany
| | - Annette Bielefeld
- Institute for laboratory medicine, microbiology, environmental medicine and transfusion medicine, Johannes Wesling Medical Center Minden, Ruhr University Bochum, Minden, Germany
| | - Franz-Josef Schmitz
- Institute for laboratory medicine, microbiology, environmental medicine and transfusion medicine, Johannes Wesling Medical Center Minden, Ruhr University Bochum, Minden, Germany
| | - Katrin Schaper-Gerhardt
- University Department for Dermatology, Venereology, Allergology and Phlebology, Skin Cancer Center, Johannes Wesling Medical Center Minden, Ruhr University Bochum, Minden, Germany
- Department of Dermatology, Allergology and Venereology, Hannover Skin Cancer Center (HTZH), Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- University Department for Dermatology, Venereology, Allergology and Phlebology, Skin Cancer Center, Johannes Wesling Medical Center Minden, Ruhr University Bochum, Minden, Germany
| | - Rudolf Stadler
- University Department for Dermatology, Venereology, Allergology and Phlebology, Skin Cancer Center, Johannes Wesling Medical Center Minden, Ruhr University Bochum, Minden, Germany
| |
Collapse
|
20
|
Imbalanced IL-1B and IL-18 Expression in Sézary Syndrome. Int J Mol Sci 2023; 24:ijms24054674. [PMID: 36902104 PMCID: PMC10003479 DOI: 10.3390/ijms24054674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Sézary syndrome (SS) is a rare and aggressive type of cutaneous T-cell lymphoma, with an abnormal inflammatory response in affected skin. The cytokines IL-1B and IL-18, as key signaling molecules in the immune system, are produced in an inactive form and cleave to the active form by inflammasomes. In this study, we assessed the skin, serum, peripheral mononuclear blood cell (PBMC) and lymph-node samples of SS patients and control groups (healthy donors (HDs) and idiopathic erythroderma (IE) nodes) to investigate the inflammatory markers IL-1B and IL-18 at the protein and transcript expression levels, as potential markers of inflammasome activation. Our findings showed increased IL-1B and decreased IL-18 protein expression in the epidermis of SS patients; however, in the dermis layer, we detected increased IL-18 protein expression. In the lymph nodes of SS patients at advanced stages of the disease (N2/N3), we also detected an enhancement of IL-18 and a downregulation of IL-1B at the protein level. Moreover, the transcriptomic analysis of the SS and IE nodes confirmed the decreased expression of IL1B and NLRP3, whereas the pathway analysis indicated a further downregulation of IL1B-associated genes. Overall, the present findings showed compartmentalized expressions of IL-1B and IL-18 and provided the first evidence of their imbalance in patients with Sézary syndrome.
Collapse
|
21
|
Rassek K, Iżykowska K, Żurawek M, Nowicka K, Joks M, Olek-Hrab K, Olszewska B, Sokołowska-Wojdyło M, Biernat W, Nowicki RJ, Przybylski GK. TMEM244 Gene Expression as a Potential Blood Diagnostic Marker Distinguishing Sézary Syndrome from Mycosis Fungoides and Benign Erythroderma. J Invest Dermatol 2023; 143:344-347.e3. [PMID: 36087622 DOI: 10.1016/j.jid.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karina Nowicka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Monika Joks
- Department of Hematology and Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Olek-Hrab
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Berenika Olszewska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
22
|
Peiffer L, Gambichler T, Buus TB, Horny K, Gravemeyer J, Furtmann F, Spassova I, Kubat L, Susok L, Stranzenbach R, Srinivas N, Ødum N, Becker JC. Phenotypic plasticity of malignant T cells in blood and skin of a Sézary syndrome patient revealed by single cell transcriptomics. Front Oncol 2023; 13:1090592. [PMID: 36761972 PMCID: PMC9905421 DOI: 10.3389/fonc.2023.1090592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background Sézary Syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphomas (CTCL). In SS patients, malignant T cells are circulating through the blood and cause erythroderma. Objective To compare the transcriptome of single cells in blood and skin samples from a patient with advanced SS. Methods We utilized combined single cell RNA and T-cell receptor (TCR) sequencing (scRNA-seq). Results We scrutinized the malignant T cells in blood and skin in an unbiased manner without pre-sorting of cells. We observed different phenotypes of the same monoclonal malignant T-cell population, confirmed by TCR sequencing and inferred copy number variation analysis. Malignant T cells present in the circulating blood expressed genes resembling central memory T cells such as CCR7, IL7R and CD27. In the skin, we detected two major malignant T-cell populations: One subpopulation was closely related to the malignant T cells from the blood, while the other subpopulation expressed genes reminiscent of skin resident effector memory T cells including GZMB and NKG7. Pseudotime analysis indicated crucial transcriptomic changes in the transition of malignant T cells between blood and skin. These changes included the differential regulation of TXNIP, a putative tumor suppressor in CTCL, and the adaptation to the hypoxic conditions in the skin. Tumor cell proliferation in the skin was supported by stimulating interactions between myeloid cells and malignant T cells. Conclusions Using scRNA-seq we detected a high degree of functional heterogeneity within the malignant T-cell population in SS and highlighted crucial differences between SS cells in blood and skin.
Collapse
Affiliation(s)
- Lukas Peiffer
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany,*Correspondence: Thilo Gambichler,
| | - Terkild B. Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Horny
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Frauke Furtmann
- Department of Dermatology, University of Essen, Essen, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Department of Dermatology, University of Essen, Essen, Germany
| | - Linda Kubat
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Department of Dermatology, University of Essen, Essen, Germany
| | - Laura Susok
- Skin Cancer Center, Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany
| | - René Stranzenbach
- Skin Cancer Center, Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany
| | - Nalini Srinivas
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany,Department of Dermatology, University of Essen, Essen, Germany
| |
Collapse
|
23
|
CD39/CD73 dysregulation and adenosine metabolism contribute to T-cell immunosuppression in patients with Sézary syndrome. Blood 2023; 141:111-116. [PMID: 36040496 DOI: 10.1182/blood.2022017259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 01/28/2023] Open
|
24
|
Improved semiautomated detection of TRBC-restricted Sézary cells unveils a spectrum of clonal cluster immunophenotypes. Blood 2022; 140:2852-2856. [PMID: 36037427 DOI: 10.1182/blood.2022017548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023] Open
|
25
|
Single-cell analyses reveal novel molecular signatures and pathogenesis in cutaneous T cell lymphoma. Cell Death Dis 2022; 13:970. [PMID: 36400759 PMCID: PMC9674677 DOI: 10.1038/s41419-022-05323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
Sézary syndrome (SS) is a rare and aggressive type of cutaneous T cell lymphoma (CTCL) with a poor prognosis. Intra-tumoral heterogeneity caused by different disease compartments (e.g., skin, blood) and poor understanding of the pathogenesis has created obstacles to the precise diagnosis and targeted treatment of the disease. Here we performed a comprehensive analysis by integrating single-cell transcriptomic data of 40,333 peripheral blood mononuclear cells (PBMCs) and 41,580 skin cells, as well as single-cell chromatin accessibility data of 11,058 PBMCs from an SS patient and matched healthy controls (HCs). Validation and functional investigation were carried out in an independent cohort consisting of SS patients, mycosis fungoides (MF) patients, psoriatic erythroderma patients, and HCs, as well as multiple cell lines. The analysis revealed that skin-derived Sézary cells (SCs) had a shifting trend to more advanced mature phenotypes compared to blood-derived SCs. A series of specific marker genes (TOX, DNM3, KLHL42, PGM2L1, and SESN3) shared in blood- and skin-derived SCs were identified, facilitating the diagnosis and prognosis of MF/SS. Moreover, luciferase reporter assays and gene knockdown assays were used to verify that KLHL42 was transcriptionally activated by GATA3 in SS. Functional assays indicated that KLHL42 silencing significantly inhibited aggressive CTCL cell proliferation and promoted its apoptosis. Therefore, targeting inhibition KLHL42 might serve as a promising therapeutic approach in CTCL.
Collapse
|
26
|
Stadler R, Hain C. [New insights into the pathogenesis and molecular understanding of cutaneous T-cell lymphomas]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:765-771. [PMID: 35960311 DOI: 10.1007/s00105-022-05047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The pathogenesis of cutaneous T‑cell lymphomas (CTCL) is still an enigma. Therefore, extensive translational research efforts have been undertaken in recent years to gain further clinical and molecular insights. There is increasing evidence that the different clinical appearance of the CTCL subtypes derives from the assumption that they develop from different skin subpopulations of T cells. Detection and quantification of the malignant T‑cell clones is crucial for the diagnosis and prognosis of CTCL. Numerous recurrent mutant cellular signalling pathways have been found in recent years. This includes the JAK-STAT, NFκB, T‑cell receptor and MAP kinase signalling pathways, as well as cell cycle control and epigenetics. The most recent analyses imply a tumour evolution model with initial copy number variation, like amplification or deletions of specific DNA fragments (CNVs) and only subsequent later single nucleotide variations (SNVs). The crucial question, however, is which CNVs are sufficient to initiate general tumourigenesis? The challenge is to identify possible driver genes. Increasing molecular understanding in CTCL will include new breakthrough therapeutic options in the near future.
Collapse
Affiliation(s)
- Rudolf Stadler
- Universitätsklinik für Dermatologie, Johannes Wesling Klinikum Minden, UK RUB, Hans-Nolte-Str. 1, 32429, Minden, Deutschland.
| | - Carsten Hain
- Zentrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Deutschland
| |
Collapse
|
27
|
Su T, Duran GE, Kwang AC, Ramchurren N, Fling SP, Kim YH, Khodadoust MS. Single-cell RNA-sequencing reveals predictive features of response to pembrolizumab in Sézary syndrome. Oncoimmunology 2022; 11:2115197. [PMID: 36046812 PMCID: PMC9423847 DOI: 10.1080/2162402x.2022.2115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022] Open
Abstract
The PD-1 inhibitor pembrolizumab is effective in treating Sézary syndrome, a leukemic variant of cutaneous T-cell lymphoma. Our purpose was to investigate the effects of pembrolizumab on healthy and malignant T cells in Sézary syndrome and to discover characteristics that predict pembrolizumab response. Samples were analyzed before and after 3 weeks of pembrolizumab treatment using single-cell RNA-sequencing of 118,961 peripheral blood T cells isolated from six Sézary syndrome patients. T-cell receptor clonotyping, bulk RNA-seq signatures, and whole-exome data were integrated to classify malignant T-cells and their underlying subclonal heterogeneity. We found that responses to pembrolizumab were associated with lower KIR3DL2 expression within Sézary T cells. Pembrolizumab modulated Sézary cell gene expression of T-cell activation associated genes. The CD8 effector populations included clonally expanded populations with a strong cytotoxic profile. Expansions of CD8 terminal effector and CD8 effector memory T-cell populations were observed in responding patients after treatment. We observed intrapatient Sézary cell heterogeneity including subclonal segregation of a coding mutation and copy number variation. Our study reveals differential effects of pembrolizumab in both malignant and healthy T cells. These data support further study of KIR3DL2 expression and CD8 immune populations as predictive biomarkers of pembrolizumab response in Sézary syndrome.
Collapse
Affiliation(s)
- Tianying Su
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George E. Duran
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa C. Kwang
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nirasha Ramchurren
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven P. Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Youn H. Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S. Khodadoust
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
28
|
Roediger B, Schlapbach C. T cells in the skin: lymphoma and inflammatory skin disease. J Allergy Clin Immunol 2022; 149:1172-1184. [PMID: 35247433 DOI: 10.1016/j.jaci.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
T cells are established contributors to the pathogenesis of atopic dermatitis (AD) and psoriasis, yet whether they are the key drivers or simply unwitting participants remains incompletely understood. Conversely, malignant T cells are the undisputed culprits of cutaneous T cell lymphoma (CTCL), a group of diseases that share key clinical, histopathological and molecular features with inflammatory skin disease (ISD). Here, we compare the pathogenesis of ISD and CTCL and discuss the resulting insights. Recurrent, skin-limited disease implicates skin-resident T cells (TRM) in both ISD and CTCL. In CTCL, malignant T cells recruit benign T cells into inflammatory skin lesions, a disease-amplifying function also proposed for pathogenic T cells in ISD. Mechanistically, cytokines produced by malignant T cells in CTCL and by pathogenic T cells in ISD, respectively, are likely both necessary and sufficient to drive skin inflammation and pruritus, which in turn promotes skin barrier dysfunction and dysbiosis. Therapies for ISD target T cell effector functions but do not address the chronicity of disease while treatments for CTCL target malignant T cells but not primarily the symptoms of the disease. By integrating our understanding of ISD and CTCL, important insights into pathogenesis and therapy can be made which may improve the lives of sufferers of both disease groups.
Collapse
Affiliation(s)
- Ben Roediger
- Autoimmunity, Transplantation and Inflammation (ATI), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
CD38 Expression by Circulating and Skin-Infiltrating Lymphocytes from Sezary Syndrome Patients: A Flow Cytometry and Immunohistochemistry Study. DISEASE MARKERS 2022; 2022:3424413. [PMID: 35251370 PMCID: PMC8896155 DOI: 10.1155/2022/3424413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Background Reports on the expression of CD38 in Sézary syndrome (SS), erythrodermic primary cutaneous T cell lymphoma with leukemic involvement, are limited. The aim of the present study is the analysis of the expression of CD38 by skin-infiltrating mononuclear cells and circulating T lymphocytes in a cohort of SS patients. Methods SS patients diagnosed since 1985 in our clinic were retrospectively analyzed for CD38 expression in biopsy and blood samples by immunohistochemistry and flow cytometry, respectively. Results SS patients show a predominant CD38-negative phenotype on both skin and blood. A subgroup of patients was found expressing CD38 (12 cases) in either the skin (>25% cell infiltrate) or blood (CD4+CD38+ >50%), among whom 4 in the blood, 7 in the skin, and 1 in both blood and skin. Conclusion The implications of these observations may be twofold: the relevance in basic science is related to a potential role in immune defense regulation, whilst in perspective CD38 may become a target for antibody therapy, considering the availability of different anti-CD38 monoclonal antibodies.
Collapse
|
30
|
Vermeer MH, Moins-Teisserenc H, Bagot M, Quaglino P, Whittaker S. Flow cytometry for the assessment of blood tumour burden in cutaneous T-cell lymphoma: towards a standardised approach. Br J Dermatol 2022; 187:21-28. [PMID: 35157307 PMCID: PMC9541328 DOI: 10.1111/bjd.21053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the best-studied subtypes of cutaneous T-cell lymphoma, a rare non-Hodgkin lymphoma that primarily presents in the skin but can also involve blood, lymph nodes, and viscera. The role of blood involvement in the assessment and staging of MF and SS has evolved in recent years from being classed as simply 'present' or 'absent', with no impact on staging, to full analysis of abnormal peripheral-blood T cells using flow cytometry (FC) to detect and quantify aberrant T-cell phenotypes and polymerase chain reaction (PCR) to characterise T-cell receptor gene rearrangements. These sensitive peripheral-blood assessments are replacing manual Sézary cell counts and have become an important part of clinical work-up in MF and SS, providing the potential for more accurate prognostication and appropriate management. However, although international recommendations now include guidelines for FC analysis of peripheral-blood markers for staging purposes, many clinics only perform these analyses in advanced-stage patients, if at all, and there is still a need for standardised use of validated markers. Standardisation of a single effective multiparameter FC panel would allow for accurate identification and quantification of blood tumour burden for diagnosis, staging, assessment of therapeutic response, and monitoring of disease progression at all stages of disease. Once defined, validation of an MF/SS biomarker FC panel will enable uptake into clinical settings along with associated standardisation of protocols and reagents. This review discusses the evolution of the role of FC in evaluating blood involvement in MF and SS, considers recently published international guidelines, and identifies evidence gaps for future research that will allow for standardisation of FC in MF and SS.
Collapse
Affiliation(s)
- Maarten H Vermeer
- Dermatology Department, Leiden University Medical Center, Leiden, the Netherlands
| | - Helene Moins-Teisserenc
- Université de Paris, Institut de Recherche Saint Louis, INSERM UMR1160, Paris, France.,Hematology Laboratory, AP-, HP, Hôpital Saint Louis, Paris, France
| | - Martine Bagot
- Université de Paris, Institut de Recherche Saint Louis, INSERM UMRS976, Onco-Dermatology and Therapies, Paris, France.,Département de Dermatologie, AP-, HP, Hôpital Saint Louis, Paris, France
| | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin Medical School, Turin, Italy
| | - Sean Whittaker
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
31
|
Involvement of the CD39/CD73/adenosine pathway on T cell proliferation and NK cell-mediated ADCC in Sézary syndrome. Blood 2022; 139:2712-2716. [PMID: 35051270 DOI: 10.1182/blood.2021014782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
|
32
|
Roelens M, de Masson A, Andrillon A, Ram-Wolff C, Biard L, Boisson M, Mourah S, Battistella M, Toubert A, Bagot M, Moins-Teisserenc H. Mogamulizumab induces long term immune restoration and reshapes tumor heterogeneity in Sézary syndrome. Br J Dermatol 2022; 186:1010-1025. [PMID: 35041763 DOI: 10.1111/bjd.21018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mogamulizumab, an anti-CCR4 monoclonal antibody, has been shown to increase progression-free survival in cutaneous T-cell lymphoma. OBJECTIVES We hypothesized that besides the targeted depletion of Sézary cells (SCs), mogamulizumab may reshape the immune tumor microenvironment. METHODS Both malignant and benign compartments from 26 Sézary patients with B2 stage before mogamulizumab initiation were prospectively analyzed using KIR3DL2 and TCR-Vβ markers, serological markers and molecular assessments of clonality. RESULTS Prior to mogamulizumab, the benign subset of CD4+ T-cells displayed exhausted phenotypes, with an increased gradient in PD1/TIGIT/DNAM/CD27/CD28 and CD70 expression from age- matched controls to patient benign CD4+T cells and to SCs. All patients presented SCs with heterogeneous phenotypes and differential expression of individual markers were found within distinct malignant subsets. Early complete blood response was observed in 17/26 patients and was associated to a higher baseline CCR4 expression. A drastic decrease in benign T cells and activated Treg counts was observed during the first 4 weeks. Long-term follow-up revealed the emergence of an immune restoration involving CD8+, naive and stem-memory CD4+T cells, with almost complete disappearance of exhausted lymphocytes. Development of resistance/tumor escape to mogamulizumab was associated to the emergence of CCR4- SCs in blood and skin, displaying significant changes in their heterogeneity patterns, and not univocally explained by mutations within CCR4 coding regions. CONCLUSIONS Mogamulizumab is likely contributing to the restoration of an efficient immunity and reshapes not only the malignant lymphocyte subset but also the benign subset. These results have potential implications for optimal therapeutic sequences and/or combinations.
Collapse
Affiliation(s)
- Marie Roelens
- INSERM UMR 1160, Institut de Recherche Saint-Louis, Paris, France.,Université de Paris, Paris, France
| | - Adèle de Masson
- Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Paris, France.,Dermatology Department, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Anais Andrillon
- Université de Paris, Paris, France.,INSERM, UMR 1153, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Lucie Biard
- Université de Paris, Paris, France.,INSERM, UMR 1153, Hôpital Saint-Louis, AP-HP, Paris, France.,Department of Biostatistics and Medical Information, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Marie Boisson
- Tumor Genomics and Pharmacology Department, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Samia Mourah
- Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Paris, France.,Tumor Genomics and Pharmacology Department, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Maxime Battistella
- Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Paris, France.,Pathology Department, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Antoine Toubert
- INSERM UMR 1160, Institut de Recherche Saint-Louis, Paris, France.,Université de Paris, Paris, France.,Immunology Laboratory, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Martine Bagot
- Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Paris, France.,Dermatology Department, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Helene Moins-Teisserenc
- INSERM UMR 1160, Institut de Recherche Saint-Louis, Paris, France.,Université de Paris, Paris, France.,Hematology Laboratory, Hôpital Saint-Louis, AP-HP, Paris, France
| |
Collapse
|
33
|
Malignant and Benign T Cells Constituting Cutaneous T-Cell Lymphoma. Int J Mol Sci 2021; 22:ijms222312933. [PMID: 34884736 PMCID: PMC8657644 DOI: 10.3390/ijms222312933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphoma, including various clinical manifestations, such as mycosis fungoides (MF) and Sézary syndrome (SS). CTCL mostly develops from CD4 T cells with the skin-tropic memory phenotype. Malignant T cells in MF lesions show the phenotype of skin resident memory T cells (TRM), which reside in the peripheral tissues for long periods and do not recirculate. On the other hand, malignant T cells in SS represent the phenotype of central memory T cells (TCM), which are characterized by recirculation to and from the blood and lymphoid tissues. The kinetics and the functional characteristics of malignant cells in CTCL are still unclear due, in part, to the fact that both the malignant cells and the T cells exerting anti-tumor activity possess the same characteristics as T cells. Capturing the features of both the malignant and the benign T cells is necessary for understanding the pathogenesis of CTCL and would lead to new therapeutic strategies specifically targeting the skin malignant T cells or benign T cells.
Collapse
|
34
|
Dobos G, Assaf C. Transcriptomic changes during stage progression of mycosis fungoides: from translational analyses to their potential clinical implications. Br J Dermatol 2021; 186:387-388. [PMID: 34841514 DOI: 10.1111/bjd.20895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023]
Affiliation(s)
- G Dobos
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - C Assaf
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Dermatology and Venerology, HELIOS Klinikum Krefeld, Krefeld, Germany
| |
Collapse
|