1
|
Chatterjee M, Gupta S, Kumar U, Parashar D, Maitra A, Das K. Extracellular Vesicles in Acute Myeloid Leukemia: The Role in Disease Pathogenesis, Potential Biomarker, and Application in Clinical Settings. Crit Rev Oncol Hematol 2025; 211:104743. [PMID: 40280220 DOI: 10.1016/j.critrevonc.2025.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Acute myeloid leukemia (AML), the most prevalent type of blood cancer, is initiated in the bone marrow and eventually migrates into the blood. It accounts for a 5-year overall survival rate of 29.8%. AML results from the formation of immature white blood cells, also called AML blasts, from hematopoietic stem cells which eventually give rise to abnormal white blood cells, termed AML cells. The interaction of AML cells with their microenvironment appears to be significantly important in the pathogenesis of AML. A growing body of evidence identifies extracellular vesicles (EVs) to be a key component in intercellular communication via the transfer of biomolecules, such as DNA, RNAs, proteins, non-coding RNAs, lipids, metabolites etc. Although the role of EVs in various solid tumors is well-established, EVs' contribution to the pathogenesis of blood cancer, such as AML remains ill-defined. The present review highlights how EVs promote the progression of AML by influencing leukemogenesis, survival, angiogenesis, chemotherapeutic resistance, and immune evasion. A significant number of EVs are found in the biofluids of AML patients which are shown to carry signature cargo molecules, thereby rendering the EVs as predictive biomarkers for AML pathogenesis. EV-based clinical trials are mentioned in the later part of the review. Finally, EV-based therapeutics and their limitations are also briefly discussed in the context of AML.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India.
| | - Umesh Kumar
- IMS Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad-201015, Uttar Pradesh, India.
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
2
|
Chatterjee A, Paul S, Mukherjee T, Gupta S, Parashar D, Sahu B, Kumar U, Das K. Beyond coagulation: Coagulation protease factor VIIa in cytoprotective response. Int Immunopharmacol 2025; 150:114218. [PMID: 39955915 DOI: 10.1016/j.intimp.2025.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Blood coagulation, the tightly regulated biological process prevents bleeding upon injury to the blood vessels. Vessel injury exposes the sub-endothelial tissue factor (TF) to the blood stream, thereby leading to the binding of coagulation protease, factor VII/activated VII with TF, and thus initiating the extrinsic pathway of blood coagulation. Apart from coagulation, FVIIa also promotes intracellular signaling via the activation of a unique class of G-protein-coupled receptor (GPCR) family protein, protease-activated receptor 1 (PAR1), thereby promoting anti-inflammation and endothelial barrier protection. Blood coagulation and inflammation are intrinsically connected, the activation of one process often leads to the activation of the other. The present review highlights the mechanisms by which FVIIa contributes to cytoprotective responses, either by direct action or through the release of extracellular vesicles (EVs) from vascular endothelium. FVIIa, due to its well-known ability to promote coagulation, is also used as a hemostatic agent in the treatment of several hyper bleeding disorders like hemophilia, thrombocytopenia etc. In addition to its hemostatic role, the topics discussed in the present review open a new therapeutic off-label effect of FVIIa, i.e., providing anti-inflammatory and vascular protective responses in several bleeding disorders and beyond.
Collapse
Affiliation(s)
- Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bhupender Sahu
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, Jammu and Kashmir, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
3
|
Chatterjee M, Nag S, Gupta S, Mukherjee T, Shankar P, Parashar D, Maitra A, Das K. MicroRNAs in lung cancer: their role in tumor progression, biomarkers, diagnostic, prognostic, and therapeutic relevance. Discov Oncol 2025; 16:293. [PMID: 40067551 PMCID: PMC11896959 DOI: 10.1007/s12672-025-02054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which are associated with post-transcriptional regulation of gene expression. Dysfunction or aberrant expression of miRNAs is predominant in various malignancies including lung cancer. Lung cancer is one of the commonest causes of cancer-related death worldwide, with a five-year survival of only 10-20%. The present review summarizes the current understanding of the role of miRNAs in the development and progression of human lung cancer and their therapeutic potential. Also, we briefly discuss the canonical biogenetic pathway of miRNAs followed by a detailed illustration on how miRNAs regulate human lung cancer progression in various ways. Furthermore, we focus on how miRNAs contribute to the crosstalk between cancer cells and different cells in the tumor microenvironment in the context of lung cancer. Finally, we illustrate how different miRNAs are used as a prognostic and diagnostic biomarker for lung cancer and the ongoing miRNA-associated clinical trials. In conclusion, we discuss how targeting miRNAs can be a potential therapeutic means in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India
| | - Sayoni Nag
- Brainware University, Barasat, 700125, West Bengal, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|
4
|
Escobar MA, Hoffman M, Castaman G, Hermans C, Mahlangu J, Oldenburg J, Percy CL, Reding MT, Shapiro AD, Pipe SW. Recombinant factor VIIa: new insights into the mechanism of action through product innovation. Res Pract Thromb Haemost 2025; 9:102670. [PMID: 39990097 PMCID: PMC11847032 DOI: 10.1016/j.rpth.2024.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Management of bleeding in persons with hemophilia and inhibitors involves treatment with bypassing agents, including recombinant activated factor VII (rFVIIa). Two rFVIIa products are commercially approved for use in the United States and the European Union. Eptacog alfa and eptacog beta share the same amino acid sequence but differ in posttranslational modifications. Although rFVIIa has been used to manage bleeding in persons with hemophilia and inhibitors for over 30 years, its mechanisms of action is still being studied. In vitro and in vivo studies have suggested that rFVIIa could promote hemostasis by (1) increasing tissue factor-dependent activation of factor (F)X (FX); (2) directly activating FX on the surface of activated platelets; and (3) downregulating protein C anticoagulant activity through binding to the endothelial protein C receptor (EPCR). Studies of rFVIIa and rFVIIa variants in murine models demonstrate that platelet-dependent activity is sufficient for hemostatic efficacy. Dosing levels required in clinical practice are most consistent with a platelet-dependent mechanism of action. However, in vivo models also suggest that pathways involving EPCR binding contribute to rFVIIa hemostatic activity. Eptacog beta displays increased platelet- and EPCR-dependent endothelial cell binding compared to eptacog alfa. Thus, the relative contribution of these mechanisms to the overall hemostatic efficacy of eptacog alfa and eptacog beta may differ. Further research is required to assess the clinical relevance of these differences. A better understanding of the mechanisms by which rFVIIa promotes hemostasis in patients will provide insights when evaluating clinical outcomes of safety and efficacy for innovative bypassing therapies.
Collapse
Affiliation(s)
- Miguel A. Escobar
- Gulf States Hemophilia and Thrombophilia Center, Houston, Texas, USA
- Department of Internal Medicine, University of Texas Health Science Center and McGovern Medical School, Houston, Texas, USA
| | - Maureane Hoffman
- Department of Veterans Affairs Medical Center, Pathology and Laboratory Medicine Service, Durham, North Carolina, USA
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giancarlo Castaman
- Department of Oncology, Centre for Bleeding Disorders and Coagulation, Careggi University Hospital, Firenze, Italy
| | - Cedric Hermans
- Division of Hematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Johnny Mahlangu
- Department of Molecular Medicine and Haematology, Hemophilia Comprehensive Care Center, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Johannes Oldenburg
- Department of Experimental Hematology and Transfusion Medicine, Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| | - Charles L. Percy
- Department of Clinical Haematology, West Midlands Adult Comprehensive Care Haemophilia & Thrombosis Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Mark T. Reding
- Department of Medicine, Center for Bleeding and Clotting Disorders, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, Indiana, USA
| | - Steven W. Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Das K, Rao LVM. Coagulation protease-induced extracellular vesicles: their potential effects on coagulation and inflammation. J Thromb Haemost 2024; 22:2976-2990. [PMID: 39127325 PMCID: PMC11726980 DOI: 10.1016/j.jtha.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Coagulation proteases, in addition to playing an essential role in blood coagulation, often influence diverse cellular functions by inducing specific signaling pathways via the activation of protease-activated receptors (PARs). PAR activation-induced cellular effects are known to be cell-specific as PARs are expressed selectively in specific cell types. However, a growing body of evidence indicates that coagulation protease-induced PAR activation in a specific cell type could affect cellular responses in other cell types via communicating through extracellular vesicles (EVs) as coagulation protease-induced PAR signaling could promote the release of EVs in various cell types. EVs are membrane-enclosed nanosized vesicles that facilitate intercellular communication by transferring bioactive molecules, such as proteins, lipids, messenger RNAs, and microRNAs, etc., from donor cells to recipient cells. Our recent findings established that factor (F)VIIa promotes the release of EVs from vascular endothelium via endothelial cell protein C receptor-dependent activation of PAR1-mediated biased signaling. FVIIa-released EVs exhibit procoagulant activity and cytoprotective responses in both in vitro and in vivo model systems. This review discusses how FVIIa and other coagulation proteases trigger the release of EVs. The review specifically discusses how FVIIa-released EVs are enriched with phosphatidylserine and anti-inflammatory microRNAs and the impact of FVIIa-released EVs on hemostasis in therapeutic settings. The review also briefly highlights the therapeutic potential of FVIIa-released EVs in treating bleeding and inflammatory disorders, such as hemophilic arthropathy.
Collapse
Affiliation(s)
- Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas at Tyler School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, Texas, USA.
| |
Collapse
|
6
|
Chatterjee M, Gupta S, Mukherjee T, Parashar D, Kumar U, Maitra A, Das K. The role of extracellular vesicles in the pathogenesis of gynecological cancer. Front Oncol 2024; 14:1477610. [PMID: 39391238 PMCID: PMC11464257 DOI: 10.3389/fonc.2024.1477610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecological cancer, the most common form of cancers in women worldwide, initiates in the reproductive organs of females. More often, the common treatment measures, i.e. surgery, radiation, and medical oncology are found to be unsuccessful in the treatment of gynecological tumors. Emerging evidence indicates that extracellular vesicles (EVs) play a significant role in the pathogenesis of gynecological cancers by distinct mechanisms. The present review highlights how EVs contribute to the progression of different types of gynecological cancers such as cervical cancer, endometrial cancer, ovarian cancer, vaginal cancer, uterine sarcoma, gestational trophoblastic disease (GTD), and vulvar cancer. The primary focus is to understand how EVs' cargo alters the phenotypic response of the recipient cells, thereby contributing to the progression of the disease, thus can be considered as a prognostic and diagnostic biomarker. A brief discussion on the role of EVs in the diagnosis and prognosis of different gynecological cancer types is also highlighted. Targeting the biogenesis of the EVs, their inside cargo, and EVs uptake by the recipient cells could be a potential therapeutic approach in the treatment of gynecological cancer beside conventional therapeutic means.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Saurabh Gupta
- Department of Biotechnology, Ganesh Lal Agarwal (GLA) University, Mathura, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, United States
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies (IMS) Ghaziabad (University Courses Campus), Ghaziabad, Uttar Pradesh, India
| | - Arindam Maitra
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Kaushik Das
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
7
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
8
|
Paul S, Mukherjee T, Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2024; 16:1568. [PMID: 38672649 PMCID: PMC11048528 DOI: 10.3390/cancers16081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India;
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
9
|
Das K, Keshava S, Mukherjee T, Rao LVM. A potential mechanism for the cytoprotective effects of activated protein C-released endothelial extracellular vesicles. Blood 2024; 143:1670-1675. [PMID: 38427750 PMCID: PMC11103092 DOI: 10.1182/blood.2023023518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT Activated protein C (APC) was shown to release extracellular vesicles (EVs). APC bound to the EVs was thought to be responsible for cytoprotection. Our study demonstrates that the cytoprotective effects of APC-released EVs are independent of APC. APC-released EVs carry anti-inflammatory microRNAs in their cargo.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
10
|
Ramadas N, Sparkenbaugh EM. From coagulation to calm: factor VIIa's microRNA magic trick. J Thromb Haemost 2024; 22:359-361. [PMID: 38309811 DOI: 10.1016/j.jtha.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 02/05/2024]
Affiliation(s)
- Nirupama Ramadas
- Division of Hematology, Department of Medicine, Blood Research Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erica M Sparkenbaugh
- Division of Hematology, Department of Medicine, Blood Research Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
Das K, Keshava S, Kolesnick R, Pendurthi UR, Rao LVM. MicroRNA-10a enrichment in factor VIIa-released endothelial extracellular vesicles: potential mechanisms. J Thromb Haemost 2024; 22:441-454. [PMID: 37926194 PMCID: PMC10872460 DOI: 10.1016/j.jtha.2023.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Factor VIIa induces the release of extracellular vesicles (EVs) from endothelial cells (EEVs). Factor VIIa-released EEVs are enriched with microRNA-10a (miR10a) and elicit miR10a-dependent cytoprotective responses. OBJECTIVES To investigate mechanisms by which FVIIa induces miR10a expression in endothelial cells and sorts miR10a into the EVs. METHODS Activation of Elk-1 and TWIST1 expression was analyzed by immunofluorescence microscopy and immunoblot analysis. Small interfering RNA silencing approach was used to knock down the expression of specific genes in endothelial cells. EVs secreted from endothelial cells or released into circulation in mice were isolated by centrifugation and quantified by nanoparticle tracking analysis. Factor VIIa or EVs were injected into mice; mice were challenged with lipopolysaccharides to assess the cytoprotective effects of FVIIa or EVs. RESULTS FVIIa activation of ERK1/2 triggered the activation of Elk-1, which led to the induction of TWIST1, a key transcription factor involved in miR10a expression. Factor VIIa also induced the expression of La, a small RNA-binding protein. Factor VIIa-driven acid sphingomyelinase (ASM) activation and the subsequent activation of the S1P receptor pathway were responsible for the induction of La. Silencing of ASM or La significantly reduced miR10a levels in FVIIa-released EEVs without affecting the cellular expression of miR10a. Factor VIIa-EEVs from ASM knocked-down cells failed to provide cytoprotective responses in cell and murine model systems. Administration of FVIIa protected wild-type but not ASM-/- mice against lipopolysaccharide-induced inflammation and vascular leakage. CONCLUSION Our data suggest that enhanced cellular expression of miR10a coupled with La-dependent sorting of miR10a is responsible for enriching FVIIa-released EVs with miR10a.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, the University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, the University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | | | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, the University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, the University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| |
Collapse
|
12
|
Das K, Keshava S, Mukherjee T, Wang J, Magisetty J, Kolesnick R, Pendurthi UR, Rao LVM. Factor VIIa releases phosphatidylserine-enriched extracellular vesicles from endothelial cells by activating acid sphingomyelinase. J Thromb Haemost 2023; 21:3414-3431. [PMID: 37875382 PMCID: PMC11770839 DOI: 10.1016/j.jtha.2023.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Our recent studies showed that activated factor (F) VII (FVIIa) releases extracellular vesicles (EVs) from the endothelium. FVIIa-released EVs were found to be enriched with phosphatidylserine (PS) and contribute to the hemostatic effect of FVIIa in thrombocytopenia and hemophilia. OBJECTIVE To investigate mechanisms by which FVIIa induces EV biogenesis and enriches EVs with PS. METHODS FVIIa activation of acid sphingomyelinase (aSMase) was evaluated by its translocation to the cell surface. The role of aSMase in the biogenesis of FVIIa-induced EVs and their enrichment with PS was investigated using specific siRNAs and inhibitors of aSMase and its downstream metabolites. Wild-type and aSMase-/- mice were injected with a control vehicle or FVIIa. EVs released into circulation were quantified by nanoparticle tracking analysis. EVs hemostatic potential was assessed in a murine thrombocytopenia model. RESULTS FVIIa activation of aSMase is responsible for both the externalization of PS and the release of EVs in endothelial cells. FVIIa-induced aSMase activation led to ceramide generation and de novo expression of transmembrane protein 16F. Inhibitors of ceramidases, sphingosine kinase, or sphingosine-1-phosphate receptor modulator blocked FVIIa-induced expression of transmembrane protein 16F and PS externalization without interfering with FVIIa release of EVs. In vivo, FVIIa release of EVs was markedly impaired in aSMase-/- mice compared with wild-type mice. Administration of a low dose of FVIIa, sufficient to induce EVs release, corrected bleeding associated with thrombocytopenia in wild-type mice but not in aSMase-/- mice. CONCLUSION Our study identifies a novel mechanism by which FVIIa induces PS externalization and releases PS-enriched EVs.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jue Wang
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
13
|
Das K, Paul S, Ghosh A, Gupta S, Mukherjee T, Shankar P, Sharma A, Keshava S, Chauhan SC, Kashyap VK, Parashar D. Extracellular Vesicles in Triple-Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4879. [PMID: 37835573 PMCID: PMC10571545 DOI: 10.3390/cancers15194879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype accounting for ~10-20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile and limited targeted therapies, TNBC treatment poses significant challenges. Unlike other BC subtypes, TNBC lacks specific molecular targets, rendering endocrine therapies and HER2-targeted treatments ineffective. The chemotherapeutic regimen is the predominant systemic treatment modality for TNBC in current clinical practice. However, the efficacy of chemotherapy in TNBC is variable, with response rates varying between a wide range of patients, and the emerging resistance further adds to the difficulties. Furthermore, TNBC exhibits a higher mutational burden and is acknowledged as the most immunogenic of all BC subtypes. Consequently, the application of immune checkpoint inhibition has been investigated in TNBC, yielding promising outcomes. Recent evidence identified extracellular vesicles (EVs) as an important contributor in the context of TNBC immunotherapy. In view of the extraordinary ability of EVs to transfer bioactive molecules, such as proteins, lipids, DNA, mRNAs, and small miRNAs, between the cells, EVs are considered a promising diagnostic biomarker and novel drug delivery system among the prospects for immunotherapy. The present review provides an in-depth understanding of how EVs influence TNBC progression, its immune regulation, and their contribution as a predictive biomarker for TNBC. The final part of the review focuses on the recent key advances in immunotherapeutic strategies for better understanding the complex interplay between EVs and the immune system in TNBC and further developing EV-based targeted immunotherapies.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA or
| | - Anshul Sharma
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek Kumar Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
14
|
Das K, Paul S, Mukherjee T, Ghosh A, Sharma A, Shankar P, Gupta S, Keshava S, Parashar D. Beyond Macromolecules: Extracellular Vesicles as Regulators of Inflammatory Diseases. Cells 2023; 12:1963. [PMID: 37566042 PMCID: PMC10417494 DOI: 10.3390/cells12151963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammation is the defense mechanism of the immune system against harmful stimuli such as pathogens, toxic compounds, damaged cells, radiation, etc., and is characterized by tissue redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in the recruitment of immune cells at the site of infection, which not only aids in the elimination of the cause, but also initiates the healing process. However, prolonged inflammation often brings about several chronic inflammatory disorders; hence, a balance between the pro- and anti-inflammatory responses is essential in order to eliminate the cause while producing the least damage to the host. A growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell-cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA, RNAs, miRNAs, etc., between the cells. The present review provides a brief classification of the EVs followed by a detailed description of how EVs contribute to the pathogenesis of various inflammation-associated diseases and their implications as a therapeutic measure. The latter part of the review also highlights how EVs act as a bridging entity in blood coagulation disorders and associated inflammation. The findings illustrated in the present review may open a new therapeutic window to target EV-associated inflammatory responses, thereby minimizing the negative outcomes.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Anshul Sharma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Huang J, Cao Y, Chang S. An inhibitor of claudin-5 interactions, M01, alleviates neuroinflammation and vasogenic edema after blood-spinal cord barrier dysfunction. Neuroreport 2023; 34:512-520. [PMID: 37270843 DOI: 10.1097/wnr.0000000000001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular docking modeling has confirmed that M01 (C30H28N4O5) acts as a potent inhibitor of claudin-5. Our prior data indicated that claudin-5 is essential to the structural integrity of the blood-spinal cord barrier (BSCB). The aim of this study was to investigate the effect of M01 on the integrity of the BSCB and its effect on neuroinflammation and vasogenic edema after blood-spinal cord barrier dysfunction in in-vitro and in-vivo models. Transwell chambers were used to construct an in-vitro model of the BSCB. Fluorescein isothiocyanate (FITC)-dextran permeability and leakage assays were performed to validate the reliability of the BSCB model. Semiquantitative analysis of inflammatory factor expression and nuclear factor-κB signaling pathway protein levels was performed using western blotting. The transendothelial electrical resistance of each group was measured, and the expression of a tight junction protein ZO-1 was determined via immunofluorescence confocal microscopy. Rat models of spinal cord injury were established by the modified Allen's weight-drop method. Histological analysis was carried out by hematoxylin and eosin staining. Locomotor activity was evaluated with Footprint analysis and the Basso-Beattie-Bresnahan scoring system. The M01 (10 μM) reduced the release of inflammatory factors and degradation of ZO-1 and improved the integrity of the BSCB by reversing vasogenic edema and leakage. M01 may represent a new strategy for the treatment of diseases related to BSCB destruction.
Collapse
Affiliation(s)
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Guta District, Jinzhou, Liaoning Province, China
| | - Sheng Chang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Guta District, Jinzhou, Liaoning Province, China
| |
Collapse
|
16
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
17
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
18
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
19
|
Das K, Pendurthi UR, Manco-Johnson M, Martin EJ, Brophy DF, Rao LVM. Factor VIIa treatment increases circulating extracellular vesicles in hemophilia patients: Implications for the therapeutic hemostatic effect of FVIIa. J Thromb Haemost 2022; 20:1928-1933. [PMID: 35608928 PMCID: PMC9846311 DOI: 10.1111/jth.15768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | | | - Erika J. Martin
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Donald F. Brophy
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
20
|
Howe KL, Cybulsky M, Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? Front Cardiovasc Med 2022; 9:888390. [PMID: 35498030 PMCID: PMC9051343 DOI: 10.3389/fcvm.2022.888390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke. Cellular communication lies at the core of this process. In this review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel (e.g., extracellular vesicles) modes of endothelial communication with other endothelial cells as well as circulating and vessel wall cells, including monocytes, macrophages, neutrophils, vascular smooth muscle cells and other immune cells, in the context of atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity during atherogenesis suggests that communication strategies are not static. Here, emerging data on transcriptomics in cells during the development of atherosclerosis are considered in the context of how this might inform altered cell-cell communication. Given the unique position of the endothelium as a boundary layer that is activated in regions overlying vascular inflammation and atherosclerotic plaque, there is a potential to exploit the unique features of this group of cells to deliver therapeutics that target the cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but provide discrete messages to each compartment to govern homeostasis and disease. In this light, the potential for endothelial cells to communicate in a directional manner is explored, along with the implications of this concept - from fundamental experimental design to biomarker potential and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|