1
|
Zuraw BL, Bork K, Bouillet L, Christiansen SC, Farkas H, Germenis AE, Grumach AS, Kaplan A, López-Lera A, Magerl M, Riedl MA, Adatia A, Banerji A, Betschel S, Boccon-Gibod I, Bova M, Boysen HB, Caballero T, Cancian M, Castaldo AJ, Cohn DM, Corcoran D, Drouet C, Fukunaga A, Hide M, Katelaris CH, Li PH, Longhurst H, Peter J, Psarros F, Reshef A, Ritchie B, Selva CN, Zanichelli A, Maurer M. Hereditary Angioedema with Normal C1 Inhibitor: an Updated International Consensus Paper on Diagnosis, Pathophysiology, and Treatment. Clin Rev Allergy Immunol 2025; 68:24. [PMID: 40053270 PMCID: PMC11889046 DOI: 10.1007/s12016-025-09027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/10/2025]
Abstract
Hereditary angioedema (HAE) has been recognized for almost 150 years. The newest form of HAE, where C1 inhibitor levels are normal (HAE-nC1INH), was first described in 2000. Over the last two decades, new types of apparent non-mast cell-mediated angioedema with normal quantity and activity of C1INH have been described, in some cases with proven genetic pathogenic variants that co-segregate with angioedema expression within families. Like HAE due to C1INH deficiency, HAE-nC1INH patients are at risk of serious morbidity and mortality. Therefore, proactive management and treatment of HAE-nC1INH patients after an expert physician diagnosis is critically important. The underlying pathophysiology responsible for the angioedema has also been clarified in some of the HAE-nC1INH types. While several clinical guidelines and practice parameters including HAE-nC1INH have been published, we have made substantial progress in our understanding encompassing diagnostic criteria, pathophysiology, and treatment outcomes. HAE International (HAEi) and the US HAE Association (HAEA) convened a symposium of global HAE-nC1INH experts to synthesize our current knowledge in the area. Given the paucity of high-level evidence in HAE-nC1INH, all recommendations are based on expert opinion. This review and expert opinion on the best practice approach to diagnosing and treating HAE-nC1INH will support physicians to better manage patients with HAE-nC1INH.
Collapse
Affiliation(s)
- Bruce L Zuraw
- Department of Medicine, Division of Allergy & Immunology, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA, 92093, USA.
- Medicine Service, San Diego VA Healthcare, San Diego, USA.
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laurence Bouillet
- University Grenoble Alpes, T-RAIG Unit, CNRS, UMR 5525, TIMC, Grenoble, France
- French National Reference Center for Angioedema (CREAK), Internal Medicine Department, Grenoble University Hospital, Grenoble, France
| | - Sandra C Christiansen
- Department of Medicine, Division of Allergy & Immunology, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA, 92093, USA
| | - Henriette Farkas
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Anastasios E Germenis
- Department of Immunology & Histocompatibility, School of Medicine, University of Thessaly, Larissa, Greece
| | - Anete S Grumach
- Angioedema Center of Reference and Excellence (ACARE), Centro Universitario Faculdade de Medicina ABC (CEUFMABC), São Paulo, Brazil
| | - Allen Kaplan
- Medical University of South Carolina, Charleston, SC, USA
| | - Alberto López-Lera
- Hospital La Paz Institute for Health Research (IdiPAZ), CIBERER (U754), Madrid, Spain
| | - Markus Magerl
- Angioedema Center of Reference and Excellence (ACARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marc A Riedl
- Department of Medicine, Division of Allergy & Immunology, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA, 92093, USA
| | - Adil Adatia
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Aleena Banerji
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen Betschel
- Division of Clinical Immunology and Allergy, University of Toronto, Toronto, ON, Canada
| | | | - Maria Bova
- Division of Internal Medicine 2, Department of Medicine and Medical Specialties, A. Cardarelli Hospital, Naples, Italy
| | - Henrik Balle Boysen
- HAE International (HAEi), Fairfax, VA, USA
- US Hereditary Angioedema Association (HAEA), Fairfax, VA, USA
| | - Teresa Caballero
- Hospital La Paz Institute for Health Research (IdiPAZ), CIBERER (U754), Madrid, Spain
- Department of Allergy, La Paz University Hospital, Madrid, Spain
| | - Mauro Cancian
- Department of Systems Medicine, University of Padua, Padua, Italy
| | - Anthony J Castaldo
- HAE International (HAEi), Fairfax, VA, USA
- US Hereditary Angioedema Association (HAEA), Fairfax, VA, USA
| | - Danny M Cohn
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Deborah Corcoran
- HAE International (HAEi), Fairfax, VA, USA
- US Hereditary Angioedema Association (HAEA), Fairfax, VA, USA
| | - Christian Drouet
- Institut Cochin, Université Paris Cité, INSERM U1016, Paris, France
| | - Atsushi Fukunaga
- Department of Dermatology, Division of Medicine for Function and Morphology of Sensory Organs, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki-City, Osaka, Japan
| | - Michihiro Hide
- Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
- Department of Dermatology, Hiroshima University, Hiroshima, Japan
| | - Constance H Katelaris
- Immunology & Allergy Unit, Dept of Medicine, Campbelltown Hospital and Western Sydney University, Sydney, Australia
| | - Philip H Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hilary Longhurst
- Department of Medicine, University of Auckland and Department of Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Jonny Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Fotis Psarros
- Department of Allergy, Athens Naval Hospital, Athens, Greece
| | - Avner Reshef
- Angioedema Research Unit, Barzilai University Medical Center, Ashkelon, Israel
| | - Bruce Ritchie
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Andrea Zanichelli
- Operative Unit of Medicine, Angioedema Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Dipartimento Di Scienze Biomediche Per La Salute, University of Milan, Milan, Italy
| | - Marcus Maurer
- Angioedema Center of Reference and Excellence (ACARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
2
|
Petersen RS, Fijen LM, Levi M, Cohn DM. Hereditary Angioedema: The Clinical Picture of Excessive Contact Activation. Semin Thromb Hemost 2024; 50:978-988. [PMID: 36417927 PMCID: PMC11407848 DOI: 10.1055/s-0042-1758820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hereditary angioedema is a rare, genetic disorder characterized by painful, debilitating and potentially life-threatening angioedema attacks in subcutaneous and submucosal tissue. While usually unpredictable, attacks can be provoked by a variety of triggers including physical injury and certain medication and are often preceded by prodromal symptoms. Hereditary angioedema has a profound influence on the patients' lives. The fundamental cause of hereditary angioedema in almost all patients is a mutation in the SERPING1 gene leading to a deficiency in C1-inhibitor. Subsequently, the contact activation cascade and kallikrein-kinin pathway are insufficiently inhibited, resulting in excessive bradykinin production triggering vascular leakage. While C1-inhibitor is an important regulator of the intrinsic coagulation pathway, fibrinolytic system and complement cascade, patients do not have an increased risk of coagulopathy, autoimmune conditions or immunodeficiency disorders. Hereditary angioedema is diagnosed based on C1-inhibitor level and function. Genetic analysis is only required in rare cases where hereditary angioedema with normal C1-inhibitor is found. In recent years, new, highly specific therapies have greatly improved disease control and angioedema-related quality of life. This article reviews the clinical picture of hereditary angioedema, the underlying pathophysiology, diagnostic process and currently available as well as investigational therapeutic options.
Collapse
Affiliation(s)
- Remy S Petersen
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Lauré M Fijen
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marcel Levi
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Danny M Cohn
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Cohn DM, Renné T. Targeting factor XIIa for therapeutic interference with hereditary angioedema. J Intern Med 2024; 296:311-326. [PMID: 39331688 DOI: 10.1111/joim.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Hereditary angioedema (HAE) is a rare, potentially life-threatening genetic disorder characterized by recurrent attacks of swelling. Local vasodilation and vascular leakage are stimulated by the vasoactive peptide bradykinin, which is excessively produced due to dysregulation of the activated factor XII (FXIIa)-driven kallikrein-kinin system. There is a need for novel treatments for HAE that provide greater efficacy, improved quality of life, minimal adverse effects, and reduced treatment burden over current first-line therapies. FXIIa is emerging as an attractive therapeutic target for interference with HAE attacks. In this review, we draw on preclinical, experimental animal, and in vitro studies, providing an overview on targeting FXIIa as the basis for pharmacologic interference in HAE. We highlight that there is a range of FXIIa inhibitors in development for different therapeutic areas. Of these, garadacimab, an FXIIa-targeted inhibitory monoclonal antibody, is the most advanced and has shown potential as a novel long-term prophylactic treatment for patients with HAE in clinical trials. The evidence from these trials is summarized and discussed, and we propose areas for future research where targeting FXIIa may have therapeutic potential beyond HAE.
Collapse
Affiliation(s)
- Danny M Cohn
- University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thomas Renné
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
5
|
Hutten EM, van de Ven AAJM, Mencke R, Pleijhuis RG. Angioedema After Use of Recombinant Tissue-Type Plasminogen Activators in Stroke. Stroke 2024; 55:2193-2197. [PMID: 38939926 DOI: 10.1161/strokeaha.124.047060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Angioedema without concomitant urticaria is a well-known complication of treatment with the recombinant tissue-type plasminogen activator (r-tPA) alteplase and its genetically modified variant tenecteplase. It is potentially lethal when causing airway obstruction and can require intubation. The latest guideline for the early management of patients with acute ischemic stroke from the American Heart Association/American Stroke Association advises to treat this complication initially by interfering with the histamine pathway. This article aims to clarify the pathophysiological mechanism of r-tPA-induced angioedema and provides several arguments that this condition is primarily bradykinin-mediated and hence should be treated initially by intervening with the bradykinin pathway. Second, other-less frequently reported-adverse symptoms after r-tPA therapy and their proposed pathophysiological mechanisms leading to specific treatment are described. This manuscript describes the need for an update of the section "3.5 IV alteplase" from the American Heart Association/American Stroke Association guideline to treat this r-tPA-induced angioedema adequately and prevent potentially fatal outcomes.
Collapse
Affiliation(s)
- Evelien M Hutten
- Department of Allergology (E.M.H., A.A.J.M.v.d.V., R.G.P.), University Medical Center Groningen, University of Groningen, Netherlands
| | - Annick A J M van de Ven
- Department of Allergology (E.M.H., A.A.J.M.v.d.V., R.G.P.), University Medical Center Groningen, University of Groningen, Netherlands
| | - Rik Mencke
- Department of Pathology and Medical Biology, Division of Pathology (R.M.), University Medical Center Groningen, University of Groningen, Netherlands
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Germany (R.M.)
| | - Rick G Pleijhuis
- Department of Allergology (E.M.H., A.A.J.M.v.d.V., R.G.P.), University Medical Center Groningen, University of Groningen, Netherlands
| |
Collapse
|
6
|
Christiansen SC, Zuraw BL. Contact System Activation and Bradykinin Generation in Angioedema: Laboratory Assessment and Biomarker Utilization. Immunol Allergy Clin North Am 2024; 44:543-560. [PMID: 38937015 DOI: 10.1016/j.iac.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The role of contact system activation has been clearly established in the pathogenesis of hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH). C1 inhibitor (C1INH)-protease complexes, levels of functional C1INH, plasma kallikrein activation, and cleavage of high-molecular-weight kininogen have each been associated with disease activity. More recently, HAE with normal levels of C1INH (HAE-nl-C1INH) has been recognized. Six genetic mutations have been identified which are linked to HAE-nl-C1INH phenotypes. The majority of individuals with HAE-nl-C1INH fall into the unknown category. There is substantial evidence that bradykinin generation underlies the recurrent attacks of swelling in some of these cohorts.
Collapse
Affiliation(s)
- Sandra C Christiansen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA 92093, USA
| | - Bruce L Zuraw
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA 92093, USA; Medicine Service, San Diego Veterans Administration Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
7
|
Zuraw BL, Christiansen SC. Classification, Diagnosis, and Pathology of Angioedema Without Hives. Immunol Allergy Clin North Am 2024; 44:529-541. [PMID: 38937014 DOI: 10.1016/j.iac.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A clear disease classification schema coupled with an understanding of the specific mechanisms involved in the different types of angioedema without hives informs the diagnostic assessment. The recommended approach involves several key steps. Foremost is the recognizing of the clinical clues which allow for the differentiation of mast cell-mediated disorders from bradykinin-mediated angioedema. Enhanced vascular permeability related to bradykinin is of critical importance to identify given the implications for disease morbidity and risk of mortality. The ability to efficiently categorize and diagnose all forms of angioedema results in improved patient outcomes.
Collapse
Affiliation(s)
- Bruce L Zuraw
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA 92093, USA; Medicine Service, San Diego Veterans Administration Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | - Sandra C Christiansen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Brito-Robinson T, Ayinuola YA, Ploplis VA, Castellino FJ. Plasminogen missense variants and their involvement in cardiovascular and inflammatory disease. Front Cardiovasc Med 2024; 11:1406953. [PMID: 38984351 PMCID: PMC11231438 DOI: 10.3389/fcvm.2024.1406953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Human plasminogen (PLG), the zymogen of the fibrinolytic protease, plasmin, is a polymorphic protein with two widely distributed codominant alleles, PLG/Asp453 and PLG/Asn453. About 15 other missense or non-synonymous single nucleotide polymorphisms (nsSNPs) of PLG show major, yet different, relative abundances in world populations. Although the existence of these relatively abundant allelic variants is generally acknowledged, they are often overlooked or assumed to be non-pathogenic. In fact, at least half of those major variants are classified as having conflicting pathogenicity, and it is unclear if they contribute to different molecular phenotypes. From those, PLG/K19E and PLG/A601T are examples of two relatively abundant PLG variants that have been associated with PLG deficiencies (PD), but their pathogenic mechanisms are unclear. On the other hand, approximately 50 rare and ultra-rare PLG missense variants have been reported to cause PD as homozygous or compound heterozygous variants, often leading to a debilitating disease known as ligneous conjunctivitis. The true abundance of PD-associated nsSNPs is unknown since they can remain undetected in heterozygous carriers. However, PD variants may also contribute to other diseases. Recently, the ultra-rare autosomal dominant PLG/K311E has been found to be causative of hereditary angioedema (HAE) with normal C1 inhibitor. Two other rare pathogenic PLG missense variants, PLG/R153G and PLG/V709E, appear to affect platelet function and lead to HAE, respectively. Herein, PLG missense variants that are abundant and/or clinically relevant due to association with disease are examined along with their world distribution. Proposed molecular mechanisms are discussed when known or can be reasonably assumed.
Collapse
Affiliation(s)
| | | | | | - Francis J. Castellino
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
9
|
Strickland S, Norris EH. Contactless edema via plasmin. Blood 2024; 143:570-571. [PMID: 38358851 PMCID: PMC10873533 DOI: 10.1182/blood.2023023292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
|
10
|
Dickeson SK, Kumar S, Sun MF, Litvak M, He TZ, Phillips DR, Roberts ET, Feener EP, Law RHP, Gailani D. A mechanism for hereditary angioedema caused by a methionine-379-to-lysine substitution in kininogens. Blood 2024; 143:641-650. [PMID: 37992228 PMCID: PMC10873535 DOI: 10.1182/blood.2023022254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.
Collapse
Affiliation(s)
- S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Mao-fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | | | | | | | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
Mohammed BM, Sun MF, Cheng Q, Litvak M, McCrae KR, Emsley J, McCarty OJT, Gailani D. High molecular weight kininogen interactions with the homologs prekallikrein and factor XI: importance to surface-induced coagulation. J Thromb Haemost 2024; 22:225-237. [PMID: 37813198 PMCID: PMC10841474 DOI: 10.1016/j.jtha.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Edward A. Doisy Research Center, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA.
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith R McCrae
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Owen J T McCarty
- Department of Biomedical Engineering, Division of Hematology/Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Lyons JJ, Farkas H, Germenis AE, Rijavec M, Smith TD, Valent P. Genetic Variants Leading to Urticaria and Angioedema and Associated Biomarkers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2286-2301. [PMID: 37263349 PMCID: PMC11854852 DOI: 10.1016/j.jaip.2023.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Advances in next generation sequencing technologies, as well as their expanded accessibility and clinical use over the past 2 decades, have led to an exponential increase in the number of identified single gene disorders. Among these are primary atopic disorders-inborn errors of immunity resulting in severe allergic phenotypes as a primary presenting feature. Two cardinal aspects of type I immediate hypersensitivity allergic reactions are hives and angioedema. Mast cells (MCs) are frequent primary drivers of these symptoms, but other cells have also been implicated. Even where MC degranulation is believed to be the cause, mediator-induced symptoms may greatly vary among individuals. Angioedema-particularly in the absence of hives-may also be caused by hereditary angioedema conditions resulting from aberrant regulation of contact system activation and excessive bradykinin generation or impairment of vascular integrity. In these patients, swelling can affect unpredictable locations and fail to respond to MC-directed therapies. Genetic variants have helped delineate key pathways in the etiology of urticaria and nonatopic angioedema and led to the development of targeted therapies. Herein, we describe the currently known inherited and acquired genetic causes for these conditions, highlight specific features in their clinical presentations, and discuss the benefits and limitations of biomarkers that can help distinguish them.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, School of Medicine, University of Thessaly, Larissa, Greece
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tukisa D Smith
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Shamanaev A, Dickeson SK, Ivanov I, Litvak M, Sun MF, Kumar S, Cheng Q, Srivastava P, He TZ, Gailani D. Mechanisms involved in hereditary angioedema with normal C1-inhibitor activity. Front Physiol 2023; 14:1146834. [PMID: 37288434 PMCID: PMC10242079 DOI: 10.3389/fphys.2023.1146834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Grover SP, Kawano T, Wan J, Tanratana P, Polai Z, Shim YJ, Snir O, Brækkan S, Dhrolia S, Kasthuri RR, Bendapudi PK, McCrae KR, Wolberg AS, Hansen JB, Farkas H, Mackman N. C1 inhibitor deficiency enhances contact pathway-mediated activation of coagulation and venous thrombosis. Blood 2023; 141:2390-2401. [PMID: 36701760 PMCID: PMC10273165 DOI: 10.1182/blood.2022018849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
C1 inhibitor (C1INH) is a multifunctional serine protease inhibitor that functions as a major negative regulator of several biological pathways, including the contact pathway of blood coagulation. In humans, congenital C1INH deficiency results in a rare episodic bradykinin-mediated swelling disorder called hereditary angioedema (HAE). Patients with C1INH deficiency-associated HAE (C1INH-HAE) have increased circulating markers of activation of coagulation. Furthermore, we recently reported that patients with C1INH-HAE had a moderate but significant increased risk of venous thromboembolism. To further investigate the impact of C1INH deficiency on activation of coagulation and thrombosis, we conducted studies using patient samples and mouse models. Plasmas from patients with C1INH-HAE had significantly increased contact pathway-mediated thrombin generation. C1INH-deficient mice, which have been used as a model of C1INH-HAE, had significantly increased baseline circulating levels of prothrombin fragment 1+2 and thrombin-antithrombin complexes. In addition, whole blood from C1INH-deficient mice supported significantly increased contact pathway-mediated thrombin generation. Importantly, C1INH-deficient mice exhibited significantly enhanced venous, but not arterial, thrombus formation. Furthermore, purified human C1INH normalized contact pathway-mediated thrombin generation and venous thrombosis in C1INH-deficient mice. These findings highlight a key role for endogenous C1INH as a negative regulator of contact pathway-mediated coagulation in humans and mice. Further, this work identifies endogenous C1INH as an important negative regulator of venous thrombus formation in mice, complementing the phenotype associated with C1INH-HAE.
Collapse
Affiliation(s)
- Steven P. Grover
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tomohiro Kawano
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jun Wan
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pansakorn Tanratana
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zsofia Polai
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Young J. Shim
- Taussig Cancer Institute and Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Omri Snir
- Department of Clinical Medicine, Thrombosis Research Center, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Sigrid Brækkan
- Department of Clinical Medicine, Thrombosis Research Center, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Sophia Dhrolia
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rohan R. Kasthuri
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Keith R. McCrae
- Taussig Cancer Institute and Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Alisa S. Wolberg
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - John-Bjarne Hansen
- Department of Clinical Medicine, Thrombosis Research Center, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Nigel Mackman
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
15
|
Miyata T, Horiuchi T. Biochemistry, molecular genetics, and clinical aspects of hereditary angioedema with and without C1 inhibitor deficiency. Allergol Int 2023:S1323-8930(23)00042-4. [PMID: 37169642 DOI: 10.1016/j.alit.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare disorder characterized by cutaneous and submucosal swelling caused mostly by excessive local bradykinin production. Bradykinin is a vasoactive peptide generated by the limited proteolysis of high molecular weight kininogen (HMWK) by plasma kallikrein via the contact activation system. The contact activation system occurs not only in solution but also on the cell surface. Factor XII (FXII), prekallikrein, and HMWK are assembled on the endothelial cell surface via several proteins, including a trimer of a receptor for globular C1q domain in a Zn2+-dependent manner, and the reciprocal activation on the cell surface is believed to be physiologically important in vivo. Thus, the contact activation system leads to the activation of coagulation, complement, inflammation, and fibrinolysis. C1-inhibitor (C1-INH) is a plasma protease inhibitor that is a member of the serpin family. It mainly inhibits activated FXII (FXIIa), plasma kallikrein, and C1s. C1-INH hereditary deficiency induces HAE (HAE-C1-INH) due to excessive bradykinin production via the incomplete inhibition of plasma kallikrein and FXIIa through the low C1-INH level. HAE is also observed in patients with normal C1-INH (HAEnCI) who carry pathogenic variants in genes of factor XII, plasminogen, angiopoietin 1, kininogen, myoferlin, and heparan sulfate 3-O-sulfotransferase 6, which are associated with bradykinin production and/or vascular permeability. HAE-causing pathways triggered by pathogenic variants in patients with HAE-C1-INH and HAEnCI are reviewed and discussed.
Collapse
Affiliation(s)
- Toshiyuki Miyata
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan; Center for Research, Education, and Treatment of AngioEdema, A Specified Non-profit Corporation, Fukuoka, Japan.
| |
Collapse
|
16
|
Litvak M, Shamanaev A, Zalawadiya S, Matafonov A, Kobrin A, Feener EP, Wallisch M, Tucker EI, McCarty OJT, Gailani D. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost 2023; 21:1200-1213. [PMID: 36696212 PMCID: PMC10621279 DOI: 10.1016/j.jtha.2022.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.
Collapse
Affiliation(s)
- Maxim Litvak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandr Shamanaev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandip Zalawadiya
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Matafonov
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Kobrin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward P Feener
- KalVista Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Michael Wallisch
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Erik I Tucker
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Hintze S, Möhl BS, Beyerl J, Wulff K, Wieser A, Bork K, Meinke P. Mutant plasminogen in hereditary angioedema is bypassing FXII/kallikrein to generate bradykinin. Front Physiol 2023; 13:1090732. [PMID: 36685169 PMCID: PMC9849239 DOI: 10.3389/fphys.2022.1090732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Hereditary angioedema (HAE) is characterized by recurrent localized edema in various organs, which can be potentially fatal. There are different types of hereditary angioedema, which include genetic deficiency of C1 inhibitor (C1-INH) and hereditary angioedema with normal C1-INH (HAEnCI). In HAEnCI patients mutations have been identified in the F12, PLG, KNG1, ANGPT1, MYOF, and HS3ST6 genes. The release of bradykinin from kininogen via the kallikrein-kinin system (KKS) has been shown to be the main mediator in HAE-FXII, but for HAE-PLG there are only first indications how the PLG mutations can result in bradykinin release. Here we identified in a multi-generation HAE-PLG family an additional F12 mutation, resulting in the loss of one F12 allele. There were no differences in the clinical presentation between HAE-PLG patients with and without the additional F12 mutation, thus we concluded that the kallikrein-kinin system is bypassed in HAE-PLG. Structural modeling and in vitro assays using purified proteins confirmed the PLG mutation c.988A>G; p.K330E to be a gain of function mutation resulting in an increased bradykinin release by direct cleavage of high molecular weight kininogen (HMWK). Thus, we can provide clinical and experimental evidence that mutant plasminogen in HAE-PLG is bypassing FXII/kallikrein to generate bradykinin.
Collapse
Affiliation(s)
- Stefan Hintze
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Britta S. Möhl
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Jessica Beyerl
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany,Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karin Wulff
- University Medicine, University of Greifswald, Greifswald, Germany
| | - Andreas Wieser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany,Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany,DZIF: German Centre for infection research (DZIF), Partner Site Munich, Munich, Germany
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Peter Meinke,
| |
Collapse
|
18
|
Jones D, Zafra H, Anderson J. Managing Diagnosis, Treatment, and Burden of Disease in Hereditary Angioedema Patients with Normal C1-Esterase Inhibitor. J Asthma Allergy 2023; 16:447-460. [PMID: 37124440 PMCID: PMC10132308 DOI: 10.2147/jaa.s398333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 05/02/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare, chronic, and debilitating genetic disorder characterized by recurrent and unpredictable swelling episodes that primarily affect the subcutaneous and/or submucosal tissues of the extremities, larynx, face, abdomen, and genitals. Most cases of HAE are caused by mutations in the serpin family G member 1 gene (SERPING1), which encodes C1-esterase inhibitor (C1-INH) protein. Mutations in SERPING1 lead to deficient (type I HAE-C1-INH) or dysfunctional (type II HAE-C1-INH) C1-INH protein and subsequent dysregulation of the kallikrein-bradykinin cascade. However, some patients present with a third type of HAE (HAE-nI-C1-INH), which was first described in the year 2000 and is characterized by an absence of mutations in SERPING1. Although mutations in the coagulation factor XII, angiopoietin-1, plasminogen, kininogen-1, myoferlin, and heparan sulfate-glucosamine 3-O-sulfotransferase-6 genes have been identified in some patients with HAE-nI-C1-INH, genetic cause is still unknown in many cases, hindering full elucidation of the pathology of this HAE subtype. Diagnosis of HAE-nI-C1-INH is also further complicated by the fact that patients typically demonstrate normal plasma levels of C1-INH and complement component 4 protein and normal C1-INH functionality during laboratory analysis. Therefore, we review the challenges associated with diagnosing, treating, and living with HAE-nI-C1-INH. We conclude that raising awareness of the presenting features of HAE-nI-C1-INH within the clinical setting and among the general public is critical to aid earlier suspicion and diagnosis of the disease. Furthermore, adopting an individualized approach to HAE-nI-C1-INH treatment is essential to help address the current and significant unmet needs in this patient population.
Collapse
Affiliation(s)
- Douglas Jones
- Rocky Mountain Allergy, Tanner Clinic, Layton, UT, USA
- Correspondence: Douglas Jones, Rocky Mountain Allergy, Tanner Clinic, 2121 North 1700 West, Layton, UT, 84041, USA, Tel +1 801 773 4840, Fax +1 801 525 8179, Email
| | - Heidi Zafra
- Division of Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Factor XII (FXII), the precursor of the protease FXIIa, contributes to pathologic processes including angioedema and thrombosis. Here, we review recent work on structure-function relationships for FXII based on studies using recombinant FXII variants. RECENT FINDINGS FXII is a homolog of pro-hepatocyte growth factor activator (Pro-HGFA). We prepared FXII in which domains are replaced by corresponding parts of Pro-HGA, and tested them in FXII activation and activity assays. In solution, FXII and prekallikrein undergo reciprocal activation to FXIIa and kallikrein. The rate of this process is restricted by the FXII fibronectin type-2 and kringle domains. Pro-HGA replacements for these domains accelerate FXII and prekallikrein activation. When FXII and prekallikrein bind to negatively charged surfaces, reciprocal activation is enhanced. The FXII EGF1 domain is required for surface binding. SUMMARY We propose a model in which FXII is normally maintained in a closed conformation resistant to activation by intramolecular interactions involving the fibronectin type-2 and kringle domains. These interactions are disrupted when FXII binds to a surface through EGF1, enhancing FXII activation and prekallikrein activation by FXIIa. These observations have important implications for understanding the contributions of FXII to disease, and for developing therapies to treat thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
20
|
Kaplan AP, Joseph K, Ghebrehiwet B. The complex role of kininogens in hereditary angioedema. FRONTIERS IN ALLERGY 2022; 3:952753. [PMID: 35991308 PMCID: PMC9382879 DOI: 10.3389/falgy.2022.952753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Human high molecular weight kininogen (HK) is the substrate from which bradykinin is released as a result of activation of the plasma "contact" system, a cascade that includes the intrinsic coagulation pathway, and a fibrinolytic pathway leading to the conversion of plasminogen to plasmin. Its distinction from low molecular weight kininogen (LK) was first made clear in studies of bovine plasma. While early studies did suggest two kininogens in human plasma also, their distinction became clear when plasma deficient in HK or both HK and LK were discovered. The light chain of HK is distinct and has the site of interaction with negatively charged surfaces (domain 5) plus a 6th domain that binds either prekallikrein or factor XI. HK is a cofactor for multiple enzymatic reactions that relate to the light chain binding properties. It augments the rate of conversion of prekallikrein to kallikrein and is essential for the activation of factor XI. It indirectly augments the "feedback" activation of factor XII by plasma kallikrein. Thus, HK deficiency has abnormalities of intrinsic coagulation and fibrinolysis akin to that of factor XII deficiency in addition to the inability to produce bradykinin by factor XII-dependent reactions. The contact cascade binds to vascular endothelial cells and HK is a critical binding factor with binding sites within domains 3 and 5. Prekallikrein (or factor XI) is attached to HK and is brought to the surface. The endothelial cell also secretes proteins that interact with the HK-prekallikrein complex resulting in kallikrein formation. These have been identified to be heat shock protein 90 (HSP 90) and prolylcarboxypeptidase. Cell release of urokinase plasminogen activator stimulates fibrinolysis. There are now 6 types of HAE with normal C1 inhibitors. One of them has a mutated kininogen but the mechanism for overproduction (presumed) of bradykinin has not yet been determined. A second has a mutation involving sulfation of proteoglycans which may lead to augmented bradykinin formation employing the cell surface reactions noted above.
Collapse
Affiliation(s)
- Allen P. Kaplan
- Medicine/Pulmonary and Critical Care, Medical University of South Carolina, Charleston, SC, United States
| | | | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
21
|
Hereditary Angioedema: Diagnosis, Pathogenesis, and Therapy. CURRENT TREATMENT OPTIONS IN ALLERGY 2022. [DOI: 10.1007/s40521-022-00308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Bradykinin formation by mutant plasminogen. Blood 2022; 139:2732-2733. [PMID: 35511189 DOI: 10.1182/blood.2022015610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
|