1
|
Song H, Li Q, Gui X, Fang Z, Zhou W, Wang M, Jiang Y, Geng A, Shen X, Liu Y, Zhang H, Nie Z, Zhang L, Zhu H, Zhang F, Li X, Luo F, Zhang H, Shen W, Sun X. Endothelial protein C receptor promotes retinal neovascularization through heme catabolism. Nat Commun 2025; 16:1603. [PMID: 39948347 PMCID: PMC11825934 DOI: 10.1038/s41467-025-56810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Pathological retinal neovascularization (RNV) is one of the leading causes of blindness worldwide; however, its underlying mechanism remains unclear. Here, we found that the expression of endothelial protein C receptor (Epcr) was increased during RNV, and its ligand was elevated in the serum or vitreous body of patients with proliferative diabetic retinopathy. Deleting endothelial Epcr or using an EPCR-neutralizing antibody ameliorated pathological retinal angiogenesis. EPCR promoted endothelial heme catabolism and carbon monoxide release through heme oxygenase 1 (HO-1). Inhibition of heme catabolism by deleting endothelial Ho-1 or using an HO-1 inhibitor suppressed pathological angiogenesis in retinopathy. Conversely, supplementation with carbon monoxide rescued the angiogenic defects after endothelial Epcr or Ho-1 deletion. Our results identified EPCR-dependent endothelial heme catabolism as an important contributor to pathological angiogenesis, which may serve as a potential target for treating vasoproliferative retinopathy.
Collapse
Affiliation(s)
- Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
- Department of Ophthalmology, Yuanwang Hospital, Wuxi, China
| | - Ziyu Fang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Wen Zhou
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Mengzhu Wang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Yuxin Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Ajun Geng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxuan Liu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Lin Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Huimin Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongjian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China.
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai, China.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| |
Collapse
|
2
|
Sim DS, Shukla M, Mallari CR, Fernández JA, Xu X, Schneider D, Bauzon M, Hermiston TW, Mosnier LO. Divergent modulation of activated protein C pleiotropic functions by antibodies that differ by a single amino acid. Blood Adv 2025; 9:180-191. [PMID: 39471469 PMCID: PMC11788130 DOI: 10.1182/bloodadvances.2024013584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
ABSTRACT Activated protein C (APC) is a pleiotropic plasma protease with diverse functions derived from its anticoagulant, anti-inflammatory, and cytoprotective activities. The selective uncoupling and/or modulation of these APC activities by antibodies may have therapeutic benefit in diseases such as traumatic bleeding, hemophilia, sepsis, and ischemia. TPP-26870 is an antibody that targets a nonactive site of APC for the selective modulation of APC activities. To optimize the potency of TPP-26870, variants with single amino acid mutation in the complementarity-determining regions (CDRs) were screened, and 21 variants with improved affinity constant were identified. Interestingly, the affinity maturation of TPP-26870 did not merely generate a panel of variants with higher potency in functional assays. Functional data demonstrated that the pleiotropic functions of APC were very sensitive to epitope-CDR interactions. Single amino acid mutations within the CDRs of TPP-26870 were sufficient to elicit divergent antagonistic and agonistic effects on the various APC functional activities. These include prolonged in vitro APC plasma half-life, increased inhibition of anticoagulant activity, and agonistic enhancement of histone H3 cleavage, while having less impact on protease-activated receptor 1 cleavage, compared with TPP-26870. This study illustrates that APC is highly sensitive to non-active site targeting that can lead to unpredictable changes in its activity profile of this pleiotropic enzyme. Furthermore, this study demonstrates the ability to modify APC functions to advance the potential development of APC-targeted antibodies as therapeutics for the treatment of diseases including trauma bleeding, hemophilia, ischemia, and sepsis.
Collapse
Affiliation(s)
- Derek S. Sim
- Coagulant Therapeutics Corporation, Berkeley, CA
| | - Meenal Shukla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | | | - José A. Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Xiao Xu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | | | - Maxine Bauzon
- Consultants for Coagulant Therapeutics, Berkeley, CA
| | | | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
3
|
Yang Q, Liu G, Chen G, Chen G, Chen K, Fan L, Tu Y, Chen J, Shi Z, Chen C, Liu S, Deng G, Deng X, Sun C, Li X, Yang S, Zheng S, Chen B. Novel injectable adhesive hydrogel loaded with exosomes for holistic repair of hemophilic articular cartilage defect. Bioact Mater 2024; 42:85-111. [PMID: 39280582 PMCID: PMC11399810 DOI: 10.1016/j.bioactmat.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Hemophilic articular cartilage damage presents a significant challenge for surgeons, characterized by recurrent intraarticular bleeding, a severe inflammatory microenvironment, and limited self-repair capability of cartilage tissue. Currently, there is a lack of tissue engineering-based integrated therapies that address both early hemostasis, anti-inflammation, and long-lasting chondrogenesis for hemophilic articular cartilage defects. Herein, we developed an adhesive hydrogel using oxidized chondroitin sulfate and gelatin, loaded with exosomes derived from bone marrow stem cells (BMSCs) (Hydrogel-Exos). This hydrogel demonstrated favorable injectability, self-healing, biocompatibility, biodegradability, swelling, frictional and mechanical properties, providing a comprehensive approach to treating hemophilic articular cartilage defects. The adhesive hydrogel, featuring dynamic Schiff base bonds and hydrogen bonds, exhibited excellent wet tissue adhesiveness and hemostatic properties. In a pig model, the hydrogel could be smoothly injected into the knee joint cartilage defect site and gelled in situ under fluid-irrigated arthroscopic conditions. Our in vitro and in vivo experiments confirmed that the sustained release of exosomes yielded anti-inflammatory effects by modulating macrophage M2 polarization through the NF-κB pathway. This immunoregulatory effect, coupled with the extracellular matrix components provided by the adhesive hydrogel, enhanced chondrogenesis, promoted the cartilage repair and joint function restoration after hemophilic articular cartilage defects. In conclusion, our results highlight the significant application potential of Hydrogel-Exos for early hemostasis, immunoregulation, and long-term chondrogenesis in hemophilic patients with cartilage injuries. This innovative approach is well-suited for application during arthroscopic procedures, offering a promising solution for addressing the complex challenges associated with hemophilic articular cartilage damage.
Collapse
Affiliation(s)
- Qinfeng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, Guangdong, 516008, China
| | - Guanghao Chen
- Department of Orthopaedics, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Guo Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Keyu Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuesheng Tu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jialan Chen
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuan Chen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shubo Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Geyang Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoqian Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, 510060, China
| | - Chunhan Sun
- Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, Guangdong, 516008, China
| | - Xiaoyang Li
- Department of Vascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shaowei Zheng
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Laboratory of Drug Discovery from Natural Resources and Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
4
|
Levy-Mendelovich S, Avishai E, Samelson-Jones BJ, Dardik R, Brutman-Barazani T, Nisgav Y, Livnat T, Kenet G. A Novel Murine Model Enabling rAAV8-PC Gene Therapy for Severe Protein C Deficiency. Int J Mol Sci 2024; 25:10336. [PMID: 39408666 PMCID: PMC11477312 DOI: 10.3390/ijms251910336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Severe protein C deficiency (SPCD) is a rare inherited thrombotic disease associated with high morbidity and mortality. In the current study, we established a viable murine model of SPCD, enabling preclinical gene therapy studies. By creating SPCD mice with severe hemophilia A (PROC-/-/F8-), the multi-month survival of SPCD mice enabled the exploration of recombinant adeno-associated viral vector-PC (rAAV8-PC) gene therapy (GT). rAAV8- PC (1012 vg/kg of AAV8-PC) was injected via the tail vein into 6-8-week-old PROC-/-/F8- mice. Their plasma PC antigen levels (median of 714 ng/mL, range 166-2488 ng/mL) and activity (303.5 ± 59%) significantly increased to the normal range after GT compared to untreated control animals. PC's presence in the liver after GT was also confirmed by immunofluorescence staining. Our translational research results provide the first proof of concept that an infusion of rAAV8-PC increases PC antigen and activity in mice and may contribute to future GT in SPCD. Further basic research of SPCD mice with prolonged survival due to the rebalancing of this disorder using severe hemophilia A may provide essential data regarding PC's contribution to specific tissues' development, local PC generation, and its regulation in inflammatory conditions.
Collapse
Affiliation(s)
- Sarina Levy-Mendelovich
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Einat Avishai
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rima Dardik
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tami Brutman-Barazani
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Nisgav
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tami Livnat
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Kenet
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Chen J, Zeng Q, Wang X, Xu R, Wang W, Huang Y, Sun Q, Yuan W, Wang P, Chen D, Tong P, Jin H. Aberrant methylation and expression of TNXB promote chondrocyte apoptosis and extracullar matrix degradation in hemophilic arthropathy via AKT signaling. eLife 2024; 13:RP93087. [PMID: 38819423 PMCID: PMC11142640 DOI: 10.7554/elife.93087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xu Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weidong Wang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuliang Huang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| |
Collapse
|
6
|
Leuci A, Dargaud Y. Blood-Induced Arthropathy: A Major Disabling Complication of Haemophilia. J Clin Med 2023; 13:225. [PMID: 38202232 PMCID: PMC10779541 DOI: 10.3390/jcm13010225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Haemophilic arthropathy (HA) is one of the most serious complications of haemophilia. It starts with joint bleeding, leading to synovitis which, in turn, can cause damage to the cartilage and subchondral bone, eventually inducing degenerative joint disease. Despite significant improvements in haemophilia treatment over the past two decades and recent guidelines from ISTH and WFH recommending FVIII trough levels of at least 3 IU/dL during prophylaxis, patients with haemophilia still develop joint disease. The pathophysiology of HA is complex, involving both inflammatory and degenerative components. Early diagnosis is key for proper management. Imaging can detect joint subclinical changes and influence prophylaxis. Magnetic resonance imagining (MRI) and ultrasound are the most frequently used methods in comprehensive haemophilia care centres. Biomarkers of joint health have been proposed to determine osteochondral joint deterioration, but none of these biomarkers has been validated or used in clinical practice. Early prophylaxis is key in all severe haemophilia patients to prevent arthropathy. Treatment is essentially based on prophylaxis intensification and chronic joint pain management. However, there remain significant gaps in the knowledge of the mechanisms responsible for HA and prognosis-influencing factors. Better understanding in this area could produce more effective interventions likely to ultimately prevent or attenuate the development of HA.
Collapse
Affiliation(s)
- Alexandre Leuci
- UR4609 Hemostasis & Thrombosis Research Unit, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Yesim Dargaud
- UR4609 Hemostasis & Thrombosis Research Unit, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69008 Lyon, France;
- Unité d’Hémostase Clinique—Centre de Référence de l’Hémophilie, Hôpital Louis Pradel Hospices Civils de Lyon, 69002 Lyon, France
| |
Collapse
|
7
|
Sim DS, Shukla M, Mallari CR, Fernández JA, Xu X, Schneider D, Bauzon M, Hermiston TW, Mosnier LO. Selective modulation of activated protein C activities by a nonactive site-targeting nanobody library. Blood Adv 2023; 7:3036-3048. [PMID: 36735416 PMCID: PMC10331410 DOI: 10.1182/bloodadvances.2022008740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Activated protein C (APC) is a pleiotropic coagulation protease with anticoagulant, anti-inflammatory, and cytoprotective activities. Selective modulation of these APC activities contributes to our understanding of the regulation of these physiological mechanisms and permits the development of therapeutics for the pathologies associated with these pathways. An antibody library targeting the nonactive site of APC was generated using llama antibodies (nanobodies). Twenty-one nanobodies were identified that selectively recognize APC compared with the protein C zymogen. Overall, 3 clusters of nanobodies were identified based on the competition for APC in biolayer interferometry studies. APC functional assays for anticoagulant activity, histone H3 cleavage, and protease-activated receptor 1 (PAR1) cleavage were used to understand their diversity. These functional assays revealed 13 novel nanobody-induced APC activity profiles via the selective modulation of APC pleiotropic activities, with the potential to regulate specific mechanisms for therapeutic purposes. Within these, 3 nanobodies (LP2, LP8, and LP17) inhibited all 3 APC functions. Four nanobodies (LP1, LP5, LP16, and LP20) inhibited only 2 of the 3 functions. Monofunction inhibition specific to APC anticoagulation activity was observed only by 2 nanobodies (LP9 and LP11). LP11 was also found to shift the ratio of APC cleavage of PAR1 at R46 relative to R41, which results in APC-mediated biased PAR1 signaling and APC cytoprotective effects. Thus, LP11 has an activity profile that could potentially promote hemostasis and cytoprotection in bleedings associated with hemophilia or coagulopathy by selectively modulating APC anticoagulation and PAR1 cleavage profile.
Collapse
Affiliation(s)
- Derek S. Sim
- Coagulant Therapeutics Corporation, Berkeley, CA
| | - Meenal Shukla
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | | | | | - Xiao Xu
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | | | - Maxine Bauzon
- Consultants for Coagulant Therapeutics, Berkeley, CA
| | | | | |
Collapse
|
8
|
Luo L, Zheng Q, Chen Z, Huang M, Fu L, Hu J, Shi Q, Chen Y. Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications. Front Immunol 2022; 13:1019275. [PMID: 36569839 PMCID: PMC9774473 DOI: 10.3389/fimmu.2022.1019275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
The development of coagulation factor VIII (FVIII) inhibitory antibodies is a serious complication in hemophilia A (HA) patients after FVIII replacement therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of morbidity and mortality. Immune tolerance induction (ITI) regimens have become the only clinically proven therapy for eradicating these inhibitors. However, this is a lengthy and costly strategy. For HA patients with high titer inhibitors, bypassing or new hemostatic agents must be used in clinical prophylaxis due to the ineffective ITI regimens. Since multiple genetic and environmental factors are involved in the pathogenesis of inhibitor generation, understanding the mechanisms by which inhibitors develop could help identify critical targets that can be exploited to prevent or eradicate inhibitors. In this review, we provide a comprehensive overview of the recent advances related to mechanistic insights into anti-FVIII antibody development and discuss novel therapeutic approaches for HA patients with inhibitors.
Collapse
Affiliation(s)
- Liping Luo
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhenyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Meijuan Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center, Milwaukee, WI, United States
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To provide an overview of the state-of-the-art in protein C (PC) pathway research. RECENT FINDINGS The PC pathway is crucial for maintaining hemostasis to prevent venous thromboembolism. This is evident from genetic mutations that result in impaired PC pathway activity and contribute to increased venous thromboembolism risk in affected individuals. In addition to its anticoagulant role, activated PC (APC) also mediates a complex, pleiotropic role in the maintenance of vascular cell health, which it achieves via anti-inflammatory and antiapoptotic cell signaling on endothelial cells. Emerging data have demonstrated that cell signaling by APC, mediated by multiple receptor interactions on different cell types, also confers cytoprotective and anti-inflammatory benefits. Defects in both arms of the PC pathway are associated with increased susceptibility to thrombo-inflammatory disease in various preclinical thrombotic, proinflammatory and neurological disease models. Moreover, recent studies have identified attenuation of anticoagulant PC pathway activity as an exciting therapeutic opportunity to promote hemostasis in patients with inherited or acquired bleeding disorders. SUMMARY In this review, we provide an overview of some recent developments in our understanding of the PC pathways.
Collapse
Affiliation(s)
- Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin, Dublin 12, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin, Dublin 12, Ireland
| |
Collapse
|
10
|
Blocking hemophilic arthropathy. Blood 2022; 139:2734-2735. [PMID: 35511191 DOI: 10.1182/blood.2022015776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
|