1
|
Gong H, Zhang Y, Wu X, Pan Y, Wang M, He X, Liu J, Liu Z, Li L. Development and validation of a disulfidptosis-related genes signature for predicting outcomes and immunotherapy in acute myeloid leukemia. Front Immunol 2025; 16:1513040. [PMID: 40255396 PMCID: PMC12006076 DOI: 10.3389/fimmu.2025.1513040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor outcomes and high recurrence. Disulfidptosis, a novel form of programmed cell death driven by aberrant disulfide bonds and F-actin collapse, provides insights into cancer progression and treatment. Methods We investigated the correlation network and prognostic values of disulfidptosis-related genes (DRGs) in AML. Unsupervised clustering was performed to reveal distinct disulfidptosis-related AML subtypes. We implemented the differential analysis and enrichment analysis to explore the difference of the distinct subtypes in biological processes. Least absolute shrinkage and selection operator (LASSO) Cox model was used to generate a disulfidptosis-related signature. We employed the ESTIMATE, CIBERSORT, and scRNA analyses to assess the tumor microenvironment of AML. Moreover, experiments validated the functions of PTPN6 and CSK in OCI-AML2 cells. Results We identified 10 prognostic DRGs and revealed two disulfidptosis subtypes. DRGs significantly affected immune processes like interferon-gamma response and MHC class II antigen presentation. LASSO algorithm was implemented to established a 6-gene signature (HLA-DRB5, CCDC124, PTPN6, HLA-DMA, CSK, ISG15) that predicted prognosis in two validation cohorts more robustly than other signatures. Disulfidptosis was correlated with tumor microenvironment immune cells, especially monocytes. The two risk subgroups differed significantly in susceptibilities of multiple chemotherapy drugs, indicating disulfidptosis as a potential therapeutic target. Knockdown of PTPN6 and CSK inhibited the proliferation of AML cells and increased apoptosis. Conclusions Our study provides insights into DRG prognoses and immunomodulation, establishing a robust 6-gene risk model for predicting AML outcomes that may enhance precision medicine and treatment strategies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Immunotherapy/methods
- Prognosis
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Transcriptome
- Gene Expression Profiling
- Apoptosis/genetics
- Cell Line, Tumor
- Disulfidptosis
Collapse
Affiliation(s)
- Han Gong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Ying Zhang
- The Institute of Medical Information (IMI) & Library, Chinese Academy of Medical Sciences and Peking Union Medical, Beijing, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Mingwei Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Li
- Department of Blood Transfusion, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Shi Z, Li J, Ding J, Zhang Y, Min W, Zhu Y, Hou Y, Yuan K, Sun C, Wang X, Shen H, Wang L, Liang SQ, Kuang W, Wang X, Yang P. ADAR1 is required for acute myeloid leukemia cell survival by modulating post-transcriptional Wnt signaling through impairing miRNA biogenesis. Leukemia 2025; 39:599-613. [PMID: 39702795 DOI: 10.1038/s41375-024-02500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Recent extensive studies on the genomic and molecular profiles of acute myeloid leukemia (AML) have expanded the treatment options, including, a range of compounds represented by fms-like tyrosine kinase 3 and isocitrate dehydrogenase 1/2 inhibitors. However, despite this progress, further treatments for AML are still required. Adenosine deaminase acting on RNA 1 (ADAR1) has been shown to play an important oncogenic role in many cancers, but its involvement in AML progression remains underexplored. In this study, we demonstrated that ADAR1 was overexpressed in AML and served as a crucial oncogenic target. Loss of ADAR1 inhibited the Wnt signaling pathway, blocked AML cell proliferation, and induced apoptosis. Importantly, we demonstrate that ADAR1, as an RNA-binding protein, interacts with pri-miR-766 independently of its editing function, regulating the maturation of miR-766-3p and enhancing the expression of WNT5B. Genetic inhibition or use of the ADAR1 inhibitor ZYS-1 significantly suppressed AML cell growth both in vitro and in vivo. Overall, these results elucidated the tumorigenic mechanism of ADAR1 and validated it as a potential drug target in AML.
Collapse
Affiliation(s)
- Zhongrui Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiwen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuejiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shun-Qing Liang
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Alizadeh H, Kerachian S, Jabbari K, Soltani BM. Phosphatidic acid as a cofactor of mTORC1 in platinum-based chemoresistance: Mechanisms and therapeutic potential. Eur J Pharmacol 2025; 988:177220. [PMID: 39716566 DOI: 10.1016/j.ejphar.2024.177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Platinum-based chemotherapeutics, such as cisplatin and carboplatin, are widely used to treat various malignancies. However, the development of chemoresistance remains a significant challenge, limiting their efficacy. This review explores the multifaceted mechanisms of platinum-based chemoresistance, with a particular focus on the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which plays a critical role in promoting tumor survival and resistance to platinum compounds. Additionally, we examined the role of phosphatidic acid (PA) and its synthesizing enzymes, phospholipase D (PLD) and lysophosphatidic acid acyltransferase (LPAAT), in the regulation of mTORC1 activity. Given the involvement of mTORC1 in chemoresistance, we evaluated the potential of mTOR inhibitors as a therapeutic strategy to overcome platinum resistance. Finally, we discuss combination therapies targeting the mTOR pathway alongside conventional chemotherapy to improve treatment outcomes. This review highlights the potential of targeting mTORC1 and related pathways to improve therapeutic strategies for chemoresistant cancers.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Sana Kerachian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
4
|
Liu Y, Bollino DR, Bah OM, Strovel ET, Le TV, Zarrabi J, Philip S, Lapidus RG, Baer MR, Niyongere S, Duong VH, Dougherty CC, Beumer JH, Caprinolo KD, Kamangar F, Emadi A. A phase 1 study of the amino acid modulator pegcrisantaspase and venetoclax for relapsed or refractory acute myeloid leukemia. Blood 2025; 145:486-496. [PMID: 39437546 PMCID: PMC11826518 DOI: 10.1182/blood.2024024837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Glutamine dependency has been shown to be a metabolic vulnerability in acute myeloid leukemia (AML). Prior studies using several in vivo AML models showed that depletion of plasma glutamine, induced by long-acting crisantaspase (pegcrisantaspase [PegC]) was synergistic with the B-cell lymphoma-2 (BCL-2) inhibitor venetoclax (Ven), resulting in significantly reduced leukemia burden and enhanced survival. Here, we report a phase 1 study of the combination of Ven and PegC (VenPegC) for treating adult patients with relapsed or refractory AML, including patients who had previously received Ven. The primary end points were the incidence of regimen-limiting toxicities (RLTs) and the maximum tolerated dose (MTD). Twenty-five patients received at least 1 PegC dose with Ven, and 18 efficacy-evaluable patients completed at least 1 VenPegC cycle; 12 (67%) had previously received Ven. Hyperbilirubinemia was the RLT and occurred in 60% of patients treated with VenPegC; 20% had grade ≥3 bilirubin elevations. MTD was determined to be Ven 400 mg daily with biweekly PegC 750 IU/m2. The most common treatment-related adverse events of any grade in 25 patients who received VenPegC included antithrombin III decrease (52%), elevated transaminases (36%-48%), fatigue (28%), and hypofibrinogenemia (24%). No thromboembolic or hemorrhagic adverse events or clinical pancreatitis were observed. The overall complete remission rate in efficacy-evaluable patients was 33%. Response correlated with alterations in proteins involved in messenger RNA translation. In patients with RUNX1 mutations, the composite complete remission rate was 100%. This study was registered at www.ClinicalTrials.gov as #NCT04666649.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Sulfonamides/administration & dosage
- Sulfonamides/adverse effects
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/adverse effects
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Female
- Male
- Middle Aged
- Aged
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Asparaginase/administration & dosage
- Asparaginase/adverse effects
- Asparaginase/therapeutic use
- Maximum Tolerated Dose
- Aged, 80 and over
- Recurrence
- Young Adult
- Polyethylene Glycols
Collapse
Affiliation(s)
- Yuchen Liu
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Dominique R. Bollino
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Osman M. Bah
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Erin T. Strovel
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Tien V. Le
- Cancer Therapeutics Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Jinoos Zarrabi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Sunita Philip
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Rena G. Lapidus
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Maria R. Baer
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Sandrine Niyongere
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Vu H. Duong
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | | | - Jan H. Beumer
- Cancer Therapeutics Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD
| | - Ashkan Emadi
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| |
Collapse
|
5
|
Li C, Li H, Men X, Wang Y, Kang X, Hu M, Su X, Wang S, Lu D, Shen S, Huang H, Deng X, Liu Y, Zhang L, Cai W, Wu A, Lu Z. NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL. CNS Neurosci Ther 2025; 31:e70140. [PMID: 39853935 PMCID: PMC11760990 DOI: 10.1111/cns.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025] Open
Abstract
AIMS The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function. METHODS We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3R170C) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet. RESULTS CADASIL mouse exhibited both impaired glymphatic influx and efflux, which impedes waste clearance and promotes brain senescence. In accordance, brain atrophy in CADASIL patients is associated with perivascular space enlargement, indicating that glymphatic impairment contributes to advanced brain senescence in CADASIL. The glymphatic malfunction in CADASIL is attributed to diminished AQP4 expression in astrocytic endfeet, which is the core mediator of glymphatic activity. Mechanistically, AQP4 expression is regulated by NOTCH3-RUNX1-CMYB signaling. Reinforcing AQP4 expression in astrocytes by AAV-based therapy resumes the glymphatic functions in CADASIL mice, which further prevents brain senescence. CONCLUSION We propose that to improve glymphatic function by reinforcing AQP4 expression is a promising therapeutic strategy in CADASIL.
Collapse
Affiliation(s)
- Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Cerebrovascular DiseaseThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiChina
| | - Hui Li
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xuejiao Men
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Lei Zhang
- Department of Cerebrovascular DiseaseThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiChina
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Aimin Wu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
6
|
Suo S, Sun S, Nguyen LXT, Qian J, Li F, Zhao D, Yu W, Lou Y, Zhu H, Tong H, Yang M, Huang X, Zhao S, Qiao J, Liang C, Wang H, Zhang Y, Zhang X, Hoang DH, Chen F, Kang H, Valerio M, Sun J, Ghoda L, Li L, Marcucci G, Zhang B, Jin J. Homoharringtonine synergizes with venetoclax in early T cell progenitor acute lymphoblastic leukemia: Bench and bed. MED 2024; 5:1510-1524.e4. [PMID: 39151422 DOI: 10.1016/j.medj.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T-ALL with a poor prognosis. To find a cure, we examined the synergistic effect of homoharringtonine (HHT) in combination with the BCL-2 inhibitor venetoclax (VEN) in ETP-ALL. METHODS Using in vitro cellular assays and ETP-ALL xenograft models, we first investigated the synergistic activity of HHT and VEN in ETP-ALL. Next, to explore the underlying mechanism, we employed single-cell RNA sequencing of primary ETP-ALL cells treated with HHT or VEN alone or in combination and validated the results with western blot assays. Based on the promising preclinical results and given that both drugs have been approved for clinical use, we then assessed this combination in clinical practice. FINDINGS Our results showed that HHT synergizes strongly with VEN both in vitro and in vivo in ETP-ALL. Mechanistic studies demonstrated that the HHT/VEN combination concurrently downregulated key anti-apoptotic proteins, i.e., MCL1, leading to enhanced apoptosis. Importantly, the clinical results were very promising. Six patients with ETP-ALL with either refractory/relapsed (R/R) or newly diagnosed disease were treated with an HHT/VEN-based regimen. All patients achieved complete remission (CR) after only one cycle of treatment. CONCLUSIONS Our findings demonstrate that a combination of HHT/VEN is effective on ETP-ALL and represents the "backbone" of a promising and safe regimen for newly diagnosed and R/R patients with ETP-ALL. FUNDING This work was funded by the National Cancer Institute, Gehr Family Foundation, George Hoag Family Foundation, National Natural Science Foundation of China, and Key Research and Development Program of Zhejiang Province of China.
Collapse
Affiliation(s)
- Shanshan Suo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Shu Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Le Xuan Truong Nguyen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Fenglin Li
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Dandan Zhao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Xin Huang
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shuqi Zhao
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Junjing Qiao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Chen Liang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Dinh Hoa Hoang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Fang Chen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Hyunjun Kang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Melissa Valerio
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Jie Sun
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Lucy Ghoda
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Ling Li
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA.
| | - Bin Zhang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
7
|
Kashima E, Sugimoto Y, Nagaharu K, Ohya E, Ikejiri M, Watanabe Y, Kageyama S, Oka K, Tawara I. Venetoclax is effective for chronic myelomonocytic leukemia blastic transformation with RUNX1 mutation. Hematology 2024; 29:2392908. [PMID: 39163269 DOI: 10.1080/16078454.2024.2392908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
Background: Chronic myelomonocytic leukemia is a clonal hematological disorder with an inherent risk of transformation to acute myeloid leukemia. Recently, there has been exponential discovery of molecular abnormalities in patients with chronic myelomonocytic leukemia. Some of these mutations independently contribute to a higher risk of transformation and result in inferior overall survival. Treatment strategies for patients undergoing blastic transformation in chronic myelomonocytic leukemia, especially after progressing on hypomethylating agents, are currently limited.Case presentation: We present a case of a 70-year-old male patient with chronic myelomonocytic leukemia blastic transformation with RUNX1 mutation following azacitidine monotherapy. Notably, he achieved hematological complete remission after the first course of venetoclax plus azacitidine, leading to the disappearance of RUNX1 mutation. We performed serial assessments of molecular analysis by next generation sequencing throughout his clinical course.Conclusion: The presence of RUNX1 mutation is associated with higher response rates to venetoclax-based combination therapies in chronic myelomonocytic leukemia with blastic transformation. Our findings suggest that even after azacitidine monotherapy, venetoclax plus azacitidine is effective in targeting leukemic clones harboring RUNX1 mutations. Furthermore, we emphasize the significance of molecular analysis, including next-generation sequencing, in providing insights into the detailed dynamics of clonal evolution and guiding treatment decisions.
Collapse
Affiliation(s)
- Emiko Kashima
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuka Sugimoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Hematology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Eiko Ohya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Hematology, Matsusaka Chuo General Hospital, Matsusaka, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | | | | | - Koji Oka
- Department of Hematology, Suzuka Kaisei Hospital, Suzuka, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
8
|
Sjövall D, Ghosh S, Fernandez-Fuentes N, Velasco-Hernandez T, Hogmalm A, Menendez P, Hansson J, Guibentif C, Jaako P. Defective ribosome assembly impairs leukemia progression in a murine model of acute myeloid leukemia. Cell Rep 2024; 43:114864. [PMID: 39412990 DOI: 10.1016/j.celrep.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Despite an advanced understanding of disease mechanisms, the current therapeutic regimen fails to cure most patients with acute myeloid leukemia (AML). In the present study, we address the role of ribosome assembly in leukemia cell function. We apply patient datasets and murine models to demonstrate that immature leukemia cells in mixed-lineage leukemia-rearranged AML are characterized by relatively high ribosome biogenesis and protein synthesis rates. Using a model with inducible regulation of ribosomal subunit joining, we show that defective ribosome assembly extends survival in mice with AML. Single-cell RNA sequencing and proteomic analyses reveal that leukemia cell adaptation to defective ribosome assembly is associated with an increase in ribosome biogenesis and deregulation of the transcription factor landscape. Finally, we demonstrate that defective ribosome assembly shows antileukemia efficacy in p53-deficient AML. Our study unveils the critical requirement of a high protein synthesis rate for leukemia progression and highlights ribosome assembly as a therapeutic target in AML.
Collapse
Affiliation(s)
- Daniel Sjövall
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Narcis Fernandez-Fuentes
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain
| | - Talia Velasco-Hernandez
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Anna Hogmalm
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pablo Menendez
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Spanish Cancer Research Network (CIBERONC), ISCIII, Barcelona, Spain
| | - Jenny Hansson
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carolina Guibentif
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pekka Jaako
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
9
|
Hong Y, Liu Q, Xin C, Hu H, Zhuang Z, Ge H, Shen Y, Zhao Y, Zhou Y, Ye B, Wu D. Ferroptosis-Related Gene Signature for Prognosis Prediction in Acute Myeloid Leukemia and Potential Therapeutic Options. Int J Gen Med 2024; 17:3837-3853. [PMID: 39246807 PMCID: PMC11380859 DOI: 10.2147/ijgm.s460164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Background Limited data were available to understand the significance of ferroptosis in leukemia prognosis, regardless of the genomic background. Methods RNA-seq data from 151 AML patients were analyzed from The Cancer Genome Atlas (TCGA) database, along with 70 healthy samples from the Genotype-Tissue Expression (GTEx) database. Ferroptosis-related genes (FRGs) features were constructed by multivariate COX regression analysis and risk scores were calculated for each sample and a novel prediction model was identified. The validation was carried out using data from 35 AML patients and 13 healthy controls in our cohort. Drug sensitivity analysis was conducted on various chemotherapeutic drugs. Results A signature of 10 FRGs was identified, as prognostic predictors for AML, and the risk scores were calculated to constructed the prognostic features of FRGs. Significantly lower overall survival was observed in the high-risk group. The predictive ability of these features for AML prognosis was confirmed using Cox regression analysis, ROC curves, and DCA. The prediction model performed well in our clinical practices, and had its potential superiority when comparing to classical NCCN risk stratification. Multiple chemotherapy drugs, including paclitaxel, dactinomycin, cisplatin, etc. had a lower IC50 in FRGs high-risk group than low-risk group. Conclusion The AML prognosis model based on FRGs accurately predicts AML prognosis and drug sensitivity, and the drugs identified worthy further investigation.
Collapse
Affiliation(s)
- Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanao Xin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenchao Zhuang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Zhuang Z, Zhang C, Tan Y, Zhang J, Zhong C. ELF4 was a prognostic biomarker and related to immune infiltrates in glioma. J Cancer 2024; 15:5101-5117. [PMID: 39132148 PMCID: PMC11310870 DOI: 10.7150/jca.96886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
ELF4 (E74-like factor 4) is a transcription factor, dysregulation of which has been associated with carcinogenesis and cancer development. Nevertheless, the precise role of ELF4 in glioma pathology and its impact on clinical outcomes remains to be investigated. In the present research, comprehensive analyses demonstrated that elevated expression of ELF4 in glioma tissues correlates with malignant phenotypes and adverse clinical outcomes. Multivariate Cox regression analysis determined that ELF4 expression could serve as a reliable predictor of glioma outcomes. (CGGA, hazard ratio [HR]: 1.21, 95% confidence interval [CI]: 1.09-1.34, p<0.001; TCGA, HR: 1.19, 95%CI: 1.01-1.41, p=0.043; and Gravendeel, HR: 1.44, 95%CI: 1.15-1.80, p=0.002). Knockdown of ELF4 reduced the cell viability and migration capacity of glioma cells in vitro. In addition to the tumor invasive role, enrichment analysis revealed the overexpressed ELF4 was involved in the immune regulation, characterized by the elevated activity of Il6/Jak/Stat3 signaling, interferon alpha (IFN-α) response, and IL2/Stat5 signaling. Single-cell RNA sequencing (scRNA)-seq and spatial transcriptome (ST)-seq analyses revealed that ELF4 could induce reprogramming of tumor-associated monocytes/macrophages (TAMMs). Molecular docking analysis revealed ELF4 might be targeted by drugs/compounds, including Veliparib (ABT-888), Motesanib (AMG 706), and EHT 1864. Genomic analysis revealed that, in LGG, in the low ELF4 expression subgroup, IDH1 demonstrated a higher mutation rate, and TP53 and ATRX Chromatin Remodeler (ATRX) displayed the lower mutation rates, than the high ELF4 expression group. Conclusion: Our research suggests that ELF4 may contribute to the prognostic assessment of glioma and personalized medicine.
Collapse
Affiliation(s)
- Zhongwei Zhuang
- Department of Neurosurgery, Shanghai East Hospital, Nanjing Medical University, Nanjing, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Guo M, Li X, Tao W, Teng F, Li C. Vibrio splendidus infection promotes circRNA-FGL1-regulated coelomocyte apoptosis via competitive binding to Myc with the deubiquitinase OTUB1 in Apostichopus japonicus. PLoS Pathog 2024; 20:e1012463. [PMID: 39146353 PMCID: PMC11349225 DOI: 10.1371/journal.ppat.1012463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Circular RNAs (circRNAs) are involved in various physiological and pathological processes in both vertebrates and invertebrates. However, most studies on circRNAs have focused on their roles as endogenous competitive RNAs. Here, we report a novel function of circRNA derived from the Fibrinogen-like protein 1 gene (circ-FGL1) that inhibits coelomocyte apoptosis via competing with the deubiquitinase AjOTUB1 to bind AjMyc in Apostichopus japonicus during Vibrio splendidus infection. The results showed that circ-FGL1 is significantly downregulated in coelomocytes of V. splendidus-induced A. japonicus and negatively regulates coelomocyte apoptosis through the AjBax-AjCyt c pathway. Mechanistically, the deubiquitinase AjOTUB1 and circ-FGL1 could interact with the transcription factor protein AjMyc in the same region with circ-FGL1/AjMyc having greater affinity. Under normal conditions, high levels of circ-FGL1 bind directly to AjMyc, inhibiting the deubiquitylation of AjMyc by AjOTUB1 and leading to the degradation of AjMyc. After V. splendidus infection, AjMyc disassociates from the depressed expression of circ-FGL1, promoting its deubiquitylation by binding to the induced deubiquitinase AjOTUB1 to inhibit its degradation. AjMyc is then transferred to the nucleus and promotes the transcription of AjCyt c and AjBax to induce coelomocyte apoptosis. The new finding will expand our present outstanding on the functional role of circRNAs and suggest new therapeutic targets for the treatment of echinoderms during bacterial invasion.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Teng
- College of Mathematics and Computer, Jilin Normal University, Siping, Jilin, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
13
|
Yin Z, Yao Z, Chen D, Zhang Y, Weng G, Du X, Lin D, Xiao J, Sun Z, Zhang H, Liang X, Guo Z, Zhao W, Xuan L, Jiang X, Shi P, Liu Q, Ping B, Yu G. Homoharringtonine may help improve the outcomes of venetoclax and azacitidine in AML1-ETO positive acute myeloid leukemia. J Cancer Res Clin Oncol 2024; 150:336. [PMID: 38969948 PMCID: PMC11226518 DOI: 10.1007/s00432-024-05861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE T(8;21)(q22;q22.1)/AML1-ETO positive acute myeloid leukemia (AE-AML) is sensitive to conventional chemotherapy with a favorable prognosis. However, recent small case reports suggest the limited effectiveness of venetoclax (VEN) and hypomethylating agents (HMA) in treating AE-AML. The aim of this retrospective study was to evaluate the effectiveness of VEN plus AZA (VA) in AE-AML and explore whether adding homoharringtonine (HHT) to VA (VAH) could improve the response. METHODS Patients who received VEN plus AZA and HHT (VAH) or VEN plus AZA (VA) regimens were included in this retrospective study. The endpoints of this study were to evaluate the rate of composite complete remission (CRc), measurable residual disease (MRD), event-free survival (EFS), overall survival (OS), and relapse between VAH and VA groups. RESULTS A total of 32 AE-AML patients who underwent VA or VAH treatments (newly diagnosed with VA, ND-VA, n = 8; relapsed/refractory with VA, R/R-VA, n = 10; relapsed/refractory with VAH, R/R-VAH, n = 14) were included. The CR (complete remission) /CRi (CR with incomplete count recovery) rate of ND-VA, R/R-VA and R/R-VAH were 25%, 10%, and 64.3%, respectively. Measurable residual disease (MRD) negative was observed in 66.7% of R/R-VAH and none of VA-R/R patients. Co-occurring methylation mutations are associated with poor outcomes with VA but exhibit a more favorable response with VAH treatment. Additionally, patients with c-kit mutation presented inferior outcomes with both VEN-based regimens. All regimens were tolerated well by all patients. CONCLUSION Our data confirmed the poor response of VA in AE-AML, whether used as frontline or salvage therapy. Adding HHT to VA may improve outcomes and enhance the efficacy of VEN in this population.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Dandan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Guangyang Weng
- Department of Hematology, Shenzhen Second People's Hospital, Shenzhen, 518035, P.R. China
| | - Xin Du
- Department of Hematology, Shenzhen Second People's Hospital, Shenzhen, 518035, P.R. China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, P.R. China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P.R. China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, 510086, P.R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, 518036, P.R. China
| | - Xinquan Liang
- Department of Hematology, The First People Hospital of Chenzhou, Chenzhou, 423000, P.R. China
| | - Ziwen Guo
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, 528403, P.R. China
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530027, P.R. China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China
| | - Qifa Liu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangzhou, 510515, P.R. China
| | - Baohong Ping
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China.
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, P.R. China.
| |
Collapse
|
14
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
15
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
16
|
Mill CP, Fiskus WC, DiNardo CD, Reville P, Davis JA, Birdwell CE, Das K, Hou H, Takahashi K, Flores L, Ruan X, Su X, Loghavi S, Khoury JD, Bhalla KN. Efficacy of novel agents against cellular models of familial platelet disorder with myeloid malignancy (FPD-MM). Blood Cancer J 2024; 14:25. [PMID: 38316746 PMCID: PMC10844204 DOI: 10.1038/s41408-024-00981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.
Collapse
Affiliation(s)
- Christopher P Mill
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Warren C Fiskus
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick Reville
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Davis
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Kaberi Das
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hanxi Hou
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koichi Takahashi
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lauren Flores
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinjia Ruan
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoping Su
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanam Loghavi
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph D Khoury
- University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kapil N Bhalla
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Yu X, Zhao P, Luo Q, Wu X, Wang Y, Nan Y, Liu S, Gao W, Li B, Liu Z, Cui Z. RUNX1-IT1 acts as a scaffold of STAT1 and NuRD complex to promote ROS-mediated NF-κB activation and ovarian cancer progression. Oncogene 2024; 43:420-433. [PMID: 38092960 DOI: 10.1038/s41388-023-02910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Yating Wang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyan Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
18
|
Cho HJ, Wang Z, Cong Y, Bekiranov S, Zhang A, Zang C. DARDN: A Deep-Learning Approach for CTCF Binding Sequence Classification and Oncogenic Regulatory Feature Discovery. Genes (Basel) 2024; 15:144. [PMID: 38397134 PMCID: PMC10888155 DOI: 10.3390/genes15020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Characterization of gene regulatory mechanisms in cancer is a key task in cancer genomics. CCCTC-binding factor (CTCF), a DNA binding protein, exhibits specific binding patterns in the genome of cancer cells and has a non-canonical function to facilitate oncogenic transcription programs by cooperating with transcription factors bound at flanking distal regions. Identification of DNA sequence features from a broad genomic region that distinguish cancer-specific CTCF binding sites from regular CTCF binding sites can help find oncogenic transcription factors in a cancer type. However, the presence of long DNA sequences without localization information makes it difficult to perform conventional motif analysis. Here, we present DNAResDualNet (DARDN), a computational method that utilizes convolutional neural networks (CNNs) for predicting cancer-specific CTCF binding sites from long DNA sequences and employs DeepLIFT, a method for interpretability of deep learning models that explains the model's output in terms of the contributions of its input features. The method is used for identifying DNA sequence features associated with cancer-specific CTCF binding. Evaluation on DNA sequences associated with CTCF binding sites in T-cell acute lymphoblastic leukemia (T-ALL) and other cancer types demonstrates DARDN's ability in classifying DNA sequences surrounding cancer-specific CTCF binding from control constitutive CTCF binding and identifying sequence motifs for transcription factors potentially active in each specific cancer type. We identify potential oncogenic transcription factors in T-ALL, acute myeloid leukemia (AML), breast cancer (BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD). Our work demonstrates the power of advanced machine learning and feature discovery approach in finding biologically meaningful information from complex high-throughput sequencing data.
Collapse
Affiliation(s)
- Hyun Jae Cho
- Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA;
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA; (Z.W.); (Y.C.)
| | - Yidan Cong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA; (Z.W.); (Y.C.)
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA;
| | - Aidong Zhang
- Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA;
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA; (Z.W.); (Y.C.)
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA;
| |
Collapse
|
19
|
Peng J, He S, Yang X, Huang L, Wei J. Plasmacytoid dendritic cell expansion in myeloid neoplasms: A novel distinct subset of myeloid neoplasm? Crit Rev Oncol Hematol 2023; 192:104186. [PMID: 37863402 DOI: 10.1016/j.critrevonc.2023.104186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific dendritic cell type stemming from the myeloid lineage. Clinically and pathologically, neoplasms associated with pDCs are classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN), mature plasmacytoid dendritic myeloid neoplasm (MPDMN) and pDC expansion in myeloid neoplasms (MNs). BPDCN was considered a rare and aggressive neoplasm in the 2016 World Health Organization (WHO) classification. MPDMN, known as mature pDC-derived neoplasm, is closely related to MNs and was first recognized in the latest 2022 WHO classification, proposing a new concept that acute myeloid leukemia cases could show clonally expanded pDCs (pDC-AML). With the advances in detection techniques, an increasing number of pDC expansion in MNs have been reported, but whether the pathogenesis is similar to that of MPDMN remains unclear. This review focuses on patient characteristics, diagnosis and treatment of pDC expansion in MNs to gain further insight into this novel and unique provisional subtype.
Collapse
Affiliation(s)
- Juan Peng
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shaolong He
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
| |
Collapse
|
20
|
Senapati J, Fiskus WC, Daver N, Wilson NR, Ravandi F, Garcia-Manero G, Kadia T, DiNardo CD, Jabbour E, Burger J, Short NJ, Alvarado Y, Jain N, Masarova L, Issa GC, Qiao W, Khoury JD, Pierce S, Miller D, Sasaki K, Konopleva M, Bhalla KN, Borthakur G, Pemmaraju N. Phase I Results of Bromodomain and Extra-Terminal Inhibitor PLX51107 in Combination with Azacitidine in Patients with Relapsed/Refractory Myeloid Malignancies. Clin Cancer Res 2023; 29:4352-4360. [PMID: 37585491 DOI: 10.1158/1078-0432.ccr-23-1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE Treatment outcomes in patients with relapsed/refractory (R/R) myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) remains dismal. On the basis of both extensive preclinical data and emerging clinical data, treatment with bromodomain and extra-terminal domain inhibitors (BETi) is a potential approach for patients with high-risk myeloid malignancies. PATIENTS AND METHODS We conducted a phase I trial to study the safety and efficacy of PLX51107 (BETi) and azacitidine combination therapy in patients with R/R AML and high-risk (HR) MDS and studied mechanisms of resistance to the combination therapy. RESULTS Thirty-seven patients with HR R/R MDS (n = 4) and R/R AML (n = 33) were treated. Sixteen patients (43%) had MECOM gene rearrangement and 7 other patients had TP53 mutation. Median prior number of therapies was three (range 1-9); 97% had received prior hypomethylating agent and 84% prior venetoclax. Overall response rate was 8/37 (22%): complete remission with incomplete platelet recovery (n = 1); morphologic leukemia-free state (n = 2); hematologic improvement (n = 5). The most common nonhematologic toxicities were febrile neutropenia and pneumonia in 12 (32%) patients each; 6 patients (17%) had severe hyperbilirubinemia. RNA-sequencing analysis of mononuclear cells harvested on treatment (day 3) versus pretreatment showed significant changes in mRNA expressions in responders: downregulation of MYC, BCL2, IL7R, and CDK6 and upregulation of HEXIM1, CD93, DCXR, and CDKN1A. Immunoblot analyses confirmed reduction in protein levels of c-Myc, CDK6, BCL2, and BCL-xL, and induction of BRD4 and HEXIM1 protein levels in responders. CONCLUSIONS In a heavily pretreated patient cohort with R/R MDS and AML, PLX51107+ azacitidine was well-tolerated and resulted in modest clinical benefit.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Warren C Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathaniel R Wilson
- Department of Internal Medicine, The University of Texas McGovern Medical School, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D Khoury
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Darla Miller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Li M, Zheng S, Gong Q, Zhuang H, Wu Z, Wang P, Zhang X, Xu R. An oral triple pill-based cocktail effectively controls acute myeloid leukemia with high translation. Biomed Pharmacother 2023; 167:115584. [PMID: 37778270 DOI: 10.1016/j.biopha.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy characterized by oncogenic translational addiction that results in over-proliferation and apoptosis evasion of leukemia cells. Various chemo- and targeted therapies aim to reverse this hallmark, but most show only modest efficacy. Here we report a single oral pill containing a low-dose triple small molecule-based cocktail, a highly active anti-cancer therapy (HAACT) with unique mechanisms that can effectively control AML. The cocktail comprises oncogenic translation inhibitor HHT, drug efflux pump P-gpi ENC and anti-apoptotic protein Bcl-2i VEN. Mechanistically, the cocktail can potently kill both leukemia stem cells (LSC) and bulk leukemic cells via co-targeting oncogenic translation, apoptosis machinery, and drug efflux pump, resulting in deep and durable remissions of AML in diverse model systems. We also identified EphB4/Bcl-xL as the cocktail response biomarkers. Collectively, our studies provide proof that a single pill containing a triple combination cocktail might be a promising avenue for AML therapy.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuwen Zheng
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qinyuan Gong
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Zhaoxing Wu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ping Wang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuzhao Zhang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rongzhen Xu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Hematology, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
22
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
23
|
Gsottberger F, Meier C, Ammon A, Parker S, Wendland K, George R, Petkovic S, Mellenthin L, Emmerich C, Lutzny-Geier G, Metzler M, Mackensen A, Chandramohan V, Müller F. Targeted inhibition of protein synthesis renders cancer cells vulnerable to apoptosis by unfolded protein response. Cell Death Dis 2023; 14:561. [PMID: 37626037 PMCID: PMC10457359 DOI: 10.1038/s41419-023-06055-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Cellular stress responses including the unfolded protein response (UPR) decide over the fate of an individual cell to ensure survival of the entire organism. During physiologic UPR counter-regulation, protective proteins are upregulated to prevent cell death. A similar strategy induces resistance to UPR in cancer. Therefore, we hypothesized that blocking protein synthesis following induction of UPR substantially enhances drug-induced apoptosis of malignant cells. In line, upregulation of the chaperone BiP was prevented by simultaneous arrest of protein synthesis in B cell malignancies. Cytotoxicity by immunotoxins-approved inhibitors of protein synthesis-was synergistically enhanced in combination with UPR-inducers in seven distinct hematologic and three solid tumor entities in vitro. Synergistic cell death depended on mitochondrial outer membrane permeabilization via BAK/BAX, which correlated with synergistic, IRE1α-dependent reduction of BID, accompanied by an additive fall of MCL-1. The strong synergy was reproduced in vivo against xenograft mouse models of mantle cell lymphoma, Burkitt's lymphoma, and patient-derived acute lymphoblastic leukemia. In contrast, synergy was absent in blood cells of healthy donors suggesting a tumor-specific vulnerability. Together, these data support clinical evaluation of blocking stress response counter-regulation using inhibitors of protein synthesis as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Franziska Gsottberger
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Christina Meier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Anna Ammon
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Kerstin Wendland
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rebekka George
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Srdjan Petkovic
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Lisa Mellenthin
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Charlotte Emmerich
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Markus Metzler
- Deptartment of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | | | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
24
|
Chen Y, He Y, Liu S. RUNX1-Regulated Signaling Pathways in Ovarian Cancer. Biomedicines 2023; 11:2357. [PMID: 37760803 PMCID: PMC10525517 DOI: 10.3390/biomedicines11092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is the leading cause of gynecological death worldwide, and its poor prognosis and high mortality seriously affect the life of ovarian cancer patients. Runt-related transcription factor 1 (RUNX1) has been widely studied in hematological diseases and plays an important role in the occurrence and development of hematological diseases. In recent years, studies have reported the roles of RUNX1 in solid tumors, including the significantly increased expression of RUNX1 in ovarian cancer. In ovarian cancer, the dysregulation of the RUNX1 signaling pathway has been implicated in tumor progression, metastasis, and response to therapy. At the same time, the decreased expression of RUNX1 in ovarian cancer can significantly improve the sensitivity of clinical chemotherapy and provide theoretical support for the subsequent diagnosis and treatment target of ovarian cancer, providing prognosis and treatment options to patients with ovarian cancer. However, the role of RUNX1 in ovarian cancer remains unclear. Therefore, this article reviews the relationship between RUNX1 and the occurrence and development of ovarian cancer, as well as the closely regulated signaling pathways, to provide some inspiration and theoretical support for future research on RUNX1 in ovarian cancer and other diseases.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying He
- School of Chemical Science & Technology, Yunnan University, Kunming 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Eriksson A, Engvall M, Mathot L, Österroos A, Rippin M, Cavelier L, Ladenvall C, Baliakas P. Somatic Exonic Deletions in RUNX1 Constitutes a Novel Recurrent Genomic Abnormality in Acute Myeloid Leukemia. Clin Cancer Res 2023; 29:2826-2834. [PMID: 37022349 DOI: 10.1158/1078-0432.ccr-23-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), somatic mutations (commonly missense, nonsense, and frameshift indels) in RUNX1 are associated with a dismal clinical outcome. Inherited RUNX1 mutations cause familial platelet disorder. As approximately 5%-10% of germline RUNX1 mutations are large exonic deletions, we hypothesized that such exonic RUNX1 aberrations may also be acquired during the development of AML. EXPERIMENTAL DESIGN Sixty patients with well-characterized AML were analyzed with multiplex ligation-dependent probe amplification (n = 60), microarray (n = 11), and/or whole-genome sequencing (n = 8). RESULTS In total, 25 (42% of the cohort) RUNX1-aberrant patients (defined by the presence of classical mutations and/or exonic deletions) were identified. Sixteen patients (27%) carried only exonic deletions, 5 (8%) carried classical mutations, and 4 (7%) carried both exonic deletions and mutations. No significant difference was observed between patients with classical RUNX1 mutations and RUNX1 exonic deletions in median overall survival (OS, 53.1 vs. 38.8 months, respectively, P = 0.63). When applying the European Leukemia Net (ELN) classification including the RUNX1-aberrant group, 20% of the patients initially stratified as intermediate-risk (5% of the whole cohort) were reassigned to the high-risk group, which improved the performance of ELN classification regarding OS between intermediate- and high-risk groups (18.9 vs. 9.6 months, P = 0.09). CONCLUSIONS Somatic RUNX1 exonic deletions constitute a novel recurrent aberration in AML. Our findings have important clinical implications regarding AML classification, risk stratification, and treatment decision. Moreover, they argue in favor of further investigating such genomic aberrations not only in RUNX1 but also in other genes implicated in cancer biology and management. See related commentary by Chakraborty and Stengel, p. 2742.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Rippin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
26
|
Guo Z, Liu X, Zhao S, Sun F, Ren W, Ma M. RUNX1 promotes liver fibrosis progression through regulating TGF-β signalling. Int J Exp Pathol 2023; 104:188-198. [PMID: 37070207 PMCID: PMC10349244 DOI: 10.1111/iep.12474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
Liver fibrosis is caused by chronic liver injury. There are limited treatments for it, and the pathogenesis is unclear. Therefore, there is an urgent need to explore the pathogenesis of liver fibrosis, and to try to identify new potential therapeutic targets. For this study we used the carbon tetrachloride abdominal injection induced liver fibrosis animal model in mice. Primary hepatic stellate cell isolation was performed by a density-gradient separation method, and this was followed by immunofluorescence stain analyses. Signal pathway analysis was performed by dual-luciferase reporter assay and western blotting. Our results showed that RUNX1 was upregulated in cirrhotic liver tissues compared with normal liver tissues. Besides, overexpression of RUNX1 caused more severe liver fibrosis lesions than control group under CCl4 -induced conditions. Moreover, α-SMA expression in the RUNX1 overexpression group was significantly higher than in the control group. Interestingly, we found that RUNX1 could promote the activation of TGF-β/Smads in a dual-luciferase reporter assay. Thus we demonstrated that RUNX1 could be considered as a new regulator of hepatic fibrosis by activating TGF-β/Smads signalling. Based on this, we concluded that RUNX1 may be developed as a new therapeutic target in the treatment of liver fibrosis in the future. In addition, this study also provides a new insight about the aetiology of liver fibrosis.
Collapse
Affiliation(s)
- Zhaoyang Guo
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xinxin Liu
- Department of Digestive Endoscopy CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shulei Zhao
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fengkai Sun
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- School of Basic Medical Sciences, Cheeloo Medical CollegeShandong UniversityJinanShandongChina
| | - Wanhua Ren
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
27
|
Oyogoa E, Traer E, Tyner J, Lachowiez C. Building on Foundations: Venetoclax-Based Combinations in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3589. [PMID: 37509251 PMCID: PMC10377106 DOI: 10.3390/cancers15143589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Frontline acute myeloid leukemia (AML) treatment is determined by a combination of patient and genetic factors. This includes patient fitness (i.e., comorbidities that increase the risk of treatment-related mortality) and genetic characteristics, including cytogenetic events and gene mutations. In older unfit patients, the standard of care treatment is typically venetoclax (VEN) combined with hypomethylating agents (HMA). Recently, several drugs have been developed targeting specific genomic subgroups of AML patients, enabling individualized therapy. This has resulted in investigations of doublet and triplet combinations incorporating VEN aimed at overcoming known resistance mechanisms and improving outcomes in older patients with AML. These combinations include isocitrate dehydrogenase-1/2 (IDH1/2) inhibitors (i.e., ivosidenib and enasidenib), fms-like tyrosine kinase 3 (FLT3) inhibitors (i.e., gilteritinib), anti-CD47 antibodies (i.e., magrolimab), mouse double minute-2 (MDM2) inhibitors, and p53 reactivators (i.e., eprenetapopt). This review summarizes ongoing trials aimed at overcoming known VEN resistance mechanisms and improving outcomes beyond that observed with HMA + VEN combinations in the treatment of AML.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey Tyner
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Curtis Lachowiez
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
28
|
Bouligny IM, Maher KR, Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel) 2023; 15:3292. [PMID: 37444402 DOI: 10.3390/cancers15133292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
The characterization of the molecular landscape and the advent of targeted therapies have defined a new era in the prognostication and treatment of acute myeloid leukemia. Recent revisions in the European LeukemiaNet 2022 guidelines have refined the molecular, cytogenetic, and treatment-related boundaries between myelodysplastic neoplasms (MDS) and AML. This review details the molecular mechanisms and cellular pathways of myeloid maturation aberrancies contributing to dysplasia and leukemogenesis, focusing on recent molecular categories introduced in ELN 2022. We provide insights into novel and rational therapeutic combination strategies that exploit mechanisms of leukemogenesis, highlighting the underpinnings of splicing factors, the cohesin complex, and chromatin remodeling. Areas of interest for future research are summarized, and we emphasize approaches designed to advance existing treatment strategies.
Collapse
Affiliation(s)
- Ian M Bouligny
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Keri R Maher
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Steven Grant
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
29
|
Madaci L, Farnault L, Abbou N, Gabert J, Venton G, Costello R. Impact of Next-Generation Sequencing in Diagnosis, Prognosis and Therapeutic Management of Acute Myeloid Leukemia/Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:3280. [PMID: 37444390 DOI: 10.3390/cancers15133280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
For decades, the diagnosis, prognosis and thus, the treatment of acute myeloblastic leukemias and myelodysplastic neoplasms has been mainly based on morphological aspects, as evidenced by the French-American-British classification. The morphological aspects correspond quite well, in a certain number of particular cases, to particular evolutionary properties, such as acute myelomonoblastic leukemias with eosinophils or acute promyelocytic leukemias. Advances in biology, particularly "classical" cytogenetics (karyotype) and molecular cytogenetics (in situ hybridization), have made it possible to associate certain morphological features with particular molecular abnormalities, such as the pericentric inversion of chromosome 16 and translocation t(15;17) in the two preceding examples. Polymerase chain reaction techniques have made it possible to go further in these analyses by associating these karyotype abnormalities with their molecular causes, CBFbeta fusion with MYH11 and PML-RAR fusion in the previous cases. In these two examples, the molecular abnormality allows us to better define the pathophysiology of leukemia, to adapt certain treatments (all-transretinoic acid, for example), and to follow up the residual disease of strong prognostic value beyond the simple threshold of less than 5% of marrow blasts, signaling the complete remission. However, the new sequencing techniques of the next generation open up broader perspectives by being able to analyze several dozens of molecular abnormalities, improving all levels of management, from diagnosis to prognosis and treatment, even if it means that morphological aspects are increasingly relegated to the background.
Collapse
Affiliation(s)
- Lamia Madaci
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
| | - Laure Farnault
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Norman Abbou
- Molecular Biology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Jean Gabert
- Molecular Biology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Geoffroy Venton
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Régis Costello
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| |
Collapse
|
30
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
31
|
Faille A, Dent KC, Pellegrino S, Jaako P, Warren AJ. The chemical landscape of the human ribosome at 1.67 Å resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530191. [PMID: 36909531 PMCID: PMC10002709 DOI: 10.1101/2023.02.28.530191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ability of ribosomes to translate the genetic code into protein requires a finely tuned ion and solvent ecosystem. However, the lack of high-resolution structures has precluded accurate positioning of all the functional elements of the ribosome and limited our understanding of the specific role of ribosomal RNA chemical modifications in modulating ribosome function in health and disease. Here, using a new sample preparation methodology based on functionalised pristine graphene-coated grids, we solve the cryo-EM structure of the human large ribosomal subunit to a resolution of 1.67 Å. The accurate assignment of water molecules, magnesium and potassium ions in our model highlights the fundamental biological role of ribosomal RNA methylation in harnessing unconventional carbon-oxygen hydrogen bonds to establish chemical interactions with the environment and fine-tune the functional interplay with tRNA. In addition, the structures of three translational inhibitors bound to the human large ribosomal subunit at better than 2 Å resolution provide mechanistic insights into how three key druggable pockets of the ribosome are targeted and illustrate the potential of this methodology to accelerate high-throughput structure-based design of anti-cancer therapeutics.
Collapse
|
32
|
Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S, Liu Z. HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther 2023; 31:552-568. [PMID: 36245126 PMCID: PMC9931552 DOI: 10.1016/j.ymthe.2022.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment.
Collapse
Affiliation(s)
- Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
33
|
Small S, Oh TS, Platanias LC. Role of Biomarkers in the Management of Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:14543. [PMID: 36498870 PMCID: PMC9741257 DOI: 10.3390/ijms232314543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite many recent advances in treatment options, acute myeloid leukemia (AML) still has a high mortality rate. One important issue in optimizing outcomes for AML patients lies in the limited ability to predict response to specific therapies, duration of response, and likelihood of relapse. With evolving genetic characterization and improving molecular definitions, the ability to predict outcomes and long-term prognosis is slowly improving. The majority of the currently used prognostic assessments relate to molecular and chromosomal abnormalities, as well as response to initial therapy. These risk categories, however, do not account for a large amount of the variability in AML. Laboratory techniques now utilized in the clinic extend beyond bone marrow morphology and single gene sequencing, to next-generation sequencing of large gene panels and multiparameter flow cytometry, among others. Other technologic advances, such as gene expression analysis, have yet to demonstrate enough predictive and prognostic power to be employed in clinical medicine outside of clinical trials, but may be incorporated into the clinic in the future. In this review, we discuss the utility of current biomarkers, and present novel biomarker techniques and strategies that are in development for AML patients. Measurable residual disease (MRD) is a powerful prognostic tool that is increasingly being incorporated into clinical practice, and there are some exciting emerging biomarker technologies that have the potential to improve prognostic power in AML. As AML continues to be a difficult-to-treat disease with poor outcomes in many subtypes, advances in biomarkers that lead to better treatment decisions are greatly needed.
Collapse
Affiliation(s)
- Sara Small
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timothy S. Oh
- Division of Hospital Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Pelosi E, Castelli G, Testa U. The Growing Role of the BH3 Mimetic Drug Venetoclax in the Therapy of Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2022; 14:e2022080. [PMID: 36425147 PMCID: PMC9652018 DOI: 10.4084/mjhid.2022.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Despite recent progress, acute myeloid leukemia (AML) remains a disease associated with poor prognosis, particularly in older AML patients unfit to tolerate intensive chemotherapy treatment. The development and introduction in the therapy of Venetoclax (VEN), a potent BH3 mimetic targeting the antiapoptotic protein BCL-2, inducing apoptosis of leukemic cells, has shown to be a promising treatment for newly diagnosed, relapsed, and refractory AML patients ineligible for induction chemotherapy. Combination treatments using Ventoclax and a hypomethylating agent (azacitidine or decitabine) or low-intensity chemotherapy have shown in newly diagnosed patients variable response rates, with highly responsive patients with NPM1, IDH1-IDH2, TET2, and RUNX1 mutations and with scarcely responsive patients with FLT3, TP53 and ASXL1 mutations, complex karyotypes, and secondary AMLs. Patients with refractory/relapsing disease are less responsive to Venetoclax-based regimens. However, in the majority of patients, the responses have only a limited duration, and the development of resistance is frequently observed. Therefore, understanding the resistance mechanisms is crucial for developing new strategies and identifying rational drug combination regimens. In this context, two strategies seem to be promising: (i) triplet therapies based on the combined administration of Venetoclax, a hypomethylating agent (or low-dose chemotherapy), and an agent targeting a specific genetic alteration of leukemic cells (i.e., FLT3 inhibitors in FLT3-mutated AMLs) or an altered signaling pathway; (ii) combination therapies based on the administration of two BH3 mimetics (i.e., BCL-2 +MCL-1 mimetics) and a hypomethylating agent.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanita, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanita, Rome, Italy
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanita, Rome, Italy
| |
Collapse
|
35
|
Castaño-Díez S, López-Guerra M, Bosch-Castañeda C, Bataller A, Charry P, Esteban D, Guijarro F, Jiménez-Vicente C, Castillo-Girón C, Cortes A, Martínez-Roca A, Triguero A, Álamo JR, Beà S, Costa D, Colomer D, Rozman M, Esteve J, Díaz-Beyá M. Real-World Data on Chronic Myelomonocytic Leukemia: Clinical and Molecular Characteristics, Treatment, Emerging Drugs, and Patient Outcomes. Cancers (Basel) 2022; 14:cancers14174107. [PMID: 36077644 PMCID: PMC9455040 DOI: 10.3390/cancers14174107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Despite emerging molecular information on chronic myelomonocytic leukemia (CMML), patient outcome remains unsatisfactory and little is known about the transformation to acute myeloid leukemia (AML). In a single-center cohort of 219 CMML patients, we explored the potential correlation between clinical features, gene mutations, and treatment regimens with overall survival (OS) and clonal evolution into AML. The most commonly detected mutations were TET2, SRSF2, ASXL1, and RUNX1. Median OS was 34 months and varied according to age, cytogenetic risk, FAB, CPSS and CPSS-Mol categories, and number of gene mutations. Hypomethylating agents were administered to 37 patients, 18 of whom responded. Allogeneic stem cell transplantation (alloSCT) was performed in 22 patients. Two-year OS after alloSCT was 60.6%. Six patients received targeted therapy with IDH or FLT3 inhibitors, three of whom attained a long-lasting response. AML transformation occurred in 53 patients and the analysis of paired samples showed changes in gene mutation status. Our real-world data emphasize that the outcome of CMML patients is still unsatisfactory and alloSCT remains the only potentially curative treatment. However, targeted therapies show promise in patients with specific gene mutations. Complete molecular characterization can help to improve risk stratification, understand transformation, and personalize therapy.
Collapse
Affiliation(s)
- Sandra Castaño-Díez
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - Alex Bataller
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
| | - Paola Charry
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Daniel Esteban
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Francesca Guijarro
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Carlos Castillo-Girón
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Albert Cortes
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Hematology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Alexandra Martínez-Roca
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Ana Triguero
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - José Ramón Álamo
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Silvia Beà
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Dolors Costa
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Dolors Colomer
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - María Rozman
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Esteve
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
| | - Marina Díaz-Beyá
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-9-227-54-28
| |
Collapse
|
36
|
Gupta S, Dovey OM, Domingues AF, Cyran OW, Cash CM, Giotopoulos G, Rak J, Cooper J, Gozdecka M, Dijkhuis L, Asby RJ, Al-Jabery N, Hernandez-Hernandez V, Prabakaran S, Huntly BJ, Vassiliou GS, Pina C. Transcriptional variability accelerates preleukemia by cell diversification and perturbation of protein synthesis. SCIENCE ADVANCES 2022; 8:eabn4886. [PMID: 35921412 PMCID: PMC9348803 DOI: 10.1126/sciadv.abn4886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional variability facilitates stochastic cell diversification and can in turn underpin adaptation to stress or injury. We hypothesize that it may analogously facilitate progression of premalignancy to cancer. To investigate this, we initiated preleukemia in mouse cells with enhanced transcriptional variability due to conditional disruption of the histone lysine acetyltransferase gene Kat2a. By combining single-cell RNA sequencing of preleukemia with functional analysis of transformation, we show that Kat2a loss results in global variegation of cell identity and accumulation of preleukemic cells. Leukemia progression is subsequently facilitated by destabilization of ribosome biogenesis and protein synthesis, which confer a transient transformation advantage. The contribution of transcriptional variability to early cancer evolution reflects a generic role in promoting cell fate transitions, which, in the case of well-adapted malignancies, contrastingly differentiates and depletes cancer stem cells. That is, transcriptional variability confers forward momentum to cell fate systems, with differential multistage impact throughout cancer evolution.
Collapse
Affiliation(s)
- Shikha Gupta
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Oliver M. Dovey
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ana Filipa Domingues
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Oliwia W. Cyran
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Caitlin M. Cash
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Cooper
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malgorzata Gozdecka
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Ryan J. Asby
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Noor Al-Jabery
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Victor Hernandez-Hernandez
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge, UB8 3PH, UK
| | | | - Brian J. Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - George S. Vassiliou
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cristina Pina
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
37
|
Roussel X, Garnache Ottou F, Renosi F. Plasmacytoid Dendritic Cells, a Novel Target in Myeloid Neoplasms. Cancers (Basel) 2022; 14:cancers14143545. [PMID: 35884612 PMCID: PMC9317563 DOI: 10.3390/cancers14143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the main type I interferon producing cells in humans and are able to modulate innate and adaptive immune responses. Tumor infiltration by plasmacytoid dendritic cells is already well described and is associated with poor outcomes in cancers due to the tolerogenic activity of pDC. In hematological diseases, Blastic Plasmacytoid Dendritic Cells Neoplasm (BPDCN), aggressive leukemia derived from pDCs, is well described, but little is known about tumor infiltration by mature pDC described in Myeloid Neoplasms (MN). Recently, mature pDC proliferation (MPDCP) has been described as a differential diagnosis of BPDCN associated with acute myeloid leukemia (pDC-AML), myelodysplastic syndrome (pDC-MDS) and chronic myelomonocytic leukemia (pDC-CMML). Tumor cells are myeloid blasts and/or mature myeloid cells from related myeloid disorders and pDC derived from a clonal proliferation. The poor prognosis associated with MPDCP requires a better understanding of pDC biology, MN oncogenesis and immune response. This review provides a comprehensive overview about the biological aspects of pDCs, the description of pDC proliferation in MN, and an insight into putative therapies in pDC-AML regarding personalized medicine.
Collapse
Affiliation(s)
- Xavier Roussel
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Department of Clinical Hematology, University Hospital of Besançon, 25000 Besançon, France
- Correspondence: (X.R.); (F.R.)
| | - Francine Garnache Ottou
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
- Correspondence: (X.R.); (F.R.)
| |
Collapse
|
38
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
39
|
Abstract
Despite FDA approval of nine new drugs for patients with acute myeloid leukemia (AML) in the United States over the last 4 years, AML remains a major area of unmet medical need among hematologic malignancies. In this review, we discuss the development of promising new molecular targeted approaches for AML, including menin inhibition, novel IDH1/2 inhibitors, and preclinical means to target TET2, ASXL1, and RNA splicing factor mutations. In addition, we review progress in immune targeting of AML through anti-CD47, anti-SIRPα, and anti-TIM-3 antibodies; bispecific and trispecific antibodies; and new cellular therapies in development for AML.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|