1
|
Haberman M, Kamyshinsky R, Reznik N, Yeshaya N, Khmelnitsky L, Plender EG, Eichler EE, Fass D. MUC5AC filaments illuminate the structural diversification of respiratory and intestinal mucins. Proc Natl Acad Sci U S A 2025; 122:e2419717122. [PMID: 40035770 PMCID: PMC11912381 DOI: 10.1073/pnas.2419717122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Secreted mucins are multimegadalton glycoprotein polymers that share the function of protecting mucosal tissues but diversified for activities in different organs of the body. Structural studies of secreted mucins are complicated by the enormous sizes, flexibility, and complex supramolecular assembly modes of these glycoproteins. The two major respiratory mucins are MUC5AC and MUC5B. Here, we present structures of a large amino-terminal segment of MUC5AC in the form of helical filaments. These filaments differ from filamentous and tubular structures observed previously for the intestinal mucin MUC2 and the partial mucin homolog VWF. Nevertheless, the MUC5AC helical filaments support the proposed mechanism, based on MUC2 and VWF, for how noncovalent interactions between mucin monomers guide disulfide crosslinking to form polymers. The high-resolution MUC5AC structures show how local and limited changes in amino acid sequence can profoundly affect higher-order assembly while preserving the overall folds and polymerization activity of mucin glycoproteins. Differences in supramolecular assembly are likely to be functionally significant considering the divergence of mechanical properties and physiological requirements between respiratory and intestinal mucins. Determining the high-resolution structures of respiratory mucins provides a foundation for understanding the mechanisms by which they clean and protect the lungs. Moreover, the MUC5AC structure enables visualization of the sites of human amino acid sequence variation and disease-associated mutations.
Collapse
Affiliation(s)
- Meital Haberman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Roman Kamyshinsky
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Nava Reznik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Elizabeth G. Plender
- Department of Genome Sciences, University of Washington, School of Medicine, Seattle, WA98195
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
2
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Karampini E, Doherty D, Bürgisser PE, Garre M, Schoen I, Elliott S, Bierings R, O’Donnell JS. O-glycan determinants regulate VWF trafficking to Weibel-Palade bodies. Blood Adv 2024; 8:3254-3266. [PMID: 38640438 PMCID: PMC11226974 DOI: 10.1182/bloodadvances.2023012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT von Willebrand factor (VWF) undergoes complex posttranslational modification within endothelial cells (ECs) before secretion. This includes significant N- and O-linked glycosylation. Previous studies have demonstrated that changes in N-linked glycan structures significantly influence VWF biosynthesis. In contrast, although abnormalities in VWF O-linked glycans (OLGs) have been associated with enhanced VWF clearance, their effect on VWF biosynthesis remains poorly explored. Herein, we report a novel role for OLG determinants in regulating VWF biosynthesis and trafficking within ECs. We demonstrate that alterations in OLGs (notably reduced terminal sialylation) lead to activation of the A1 domain of VWF within EC. In the presence of altered OLG, VWF multimerization is reduced and Weibel-Palade body (WPB) formation significantly impaired. Consistently, the amount of VWF secreted from WPB after EC activation was significantly reduced in the context of O-glycosylation inhibition. Finally, altered OLG on VWF not only reduced the amount of VWF secreted after EC activation but also affected its hemostatic efficacy. Notably, VWF secreted after WPB exocytosis consisted predominantly of low molecular weight multimers, and the length of tethered VWF string formation on the surface of activated ECs was significantly reduced. In conclusion, our data therefore support the hypothesis that alterations in O-glycosylation pathways directly affect VWF trafficking within human EC. These findings are interesting given that previous studies have reported altered OLG on plasma VWF (notably increased T-antigen expression) in patients with von Willebrand disease.
Collapse
Affiliation(s)
- Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Petra E. Bürgisser
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Massimiliano Garre
- Super-Resolution Imaging Consortium, Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephanie Elliott
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ruben Bierings
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Arce NA, Markham-Lee Z, Liang Q, Najmudin S, Legan ER, Dean G, Su AJ, Wilson MS, Sidonio RF, Lollar P, Emsley J, Li R. Conformational activation and inhibition of von Willebrand factor by targeting its autoinhibitory module. Blood 2024; 143:1992-2004. [PMID: 38290109 PMCID: PMC11103182 DOI: 10.1182/blood.2023022038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT Activation of von Willebrand factor (VWF) is a tightly controlled process governed primarily by local elements around its A1 domain. Recent studies suggest that the O-glycosylated sequences flanking the A1 domain constitute a discontinuous and force-sensitive autoinhibitory module (AIM), although its extent and conformation remains controversial. Here, we used a targeted screening strategy to identify 2 groups of nanobodies. One group, represented by clone 6D12, is conformation insensitive and binds the N-terminal AIM (NAIM) sequence that is distal from A1; 6D12 activates human VWF and induces aggregation of platelet-rich plasma at submicromolar concentrations. The other group, represented by clones Nd4 and Nd6, is conformation sensitive and targets the C-terminal AIM (CAIM). Nd4 and Nd6 inhibit ristocetin-induced platelet aggregation and reduce VWF-mediated platelet adhesion under flow. A crystal structure of Nd6 in complex with AIM-A1 shows a novel conformation of both CAIM and NAIM that are primed to interact, providing a model of steric hindrance stabilized by the AIM as the mechanism for regulating GPIbα binding to VWF. Hydrogen-deuterium exchange mass spectrometry analysis shows that binding of 6D12 induces the exposure of the GPIbα-binding site in the A1 domain, but binding of inhibitory nanobodies reduces it. Overall, these results suggest that the distal portion of NAIM is involved in specific interactions with CAIM, and binding of nanobodies to the AIM could either disrupt its conformation to activate VWF or stabilize its conformation to upkeep VWF autoinhibition. These reported nanobodies could facilitate future studies of VWF functions and related pathologies.
Collapse
Affiliation(s)
- Nicholas A. Arce
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Zoe Markham-Lee
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Qian Liang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shabir Najmudin
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Emily R. Legan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Gabrielle Dean
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ally J. Su
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Moriah S. Wilson
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Robert F. Sidonio
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
5
|
Yeshaya N, Gupta PK, Dym O, Morgenstern D, Major DT, Fass D. VWD domain stabilization by autocatalytic Asp-Pro cleavage. Protein Sci 2024; 33:e4929. [PMID: 38380729 PMCID: PMC10880436 DOI: 10.1002/pro.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Domains known as von Willebrand factor type D (VWD) are found in extracellular and cell-surface proteins including von Willebrand factor, mucins, and various signaling molecules and receptors. Many VWD domains have a glycine-aspartate-proline-histidine (GDPH) amino-acid sequence motif, which is hydrolytically cleaved post-translationally between the aspartate (Asp) and proline (Pro). The Fc IgG binding protein (FCGBP), found in intestinal mucus secretions and other extracellular environments, contains 13 VWD domains, 11 of which have a GDPH cleavage site. In this study, we investigated the structural and biophysical consequences of Asp-Pro peptide cleavage in a representative FCGBP VWD domain. We found that endogenous Asp-Pro cleavage increases the resistance of the domain to exogenous proteolytic degradation. Tertiary structural interactions made by the newly generated chain termini, as revealed by a crystal structure of an FCGBP segment containing the VWD domain, may explain this observation. Notably, the Gly-Asp peptide bond, upstream of the cleavage site, assumed the cis configuration in the structure. In addition to these local features of the cleavage site, a global organizational difference was seen when comparing the FCGBP segment structure with the numerous other structures containing the same set of domains. Together, these data illuminate the outcome of GDPH cleavage and demonstrate the plasticity of proteins with VWD domains, which may contribute to their evolution for function in a dynamic extracellular environment.
Collapse
Affiliation(s)
- Noa Yeshaya
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced MaterialsBar‐Ilan UniversityRamat‐GanIsrael
| | - Orly Dym
- Department of Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced MaterialsBar‐Ilan UniversityRamat‐GanIsrael
| | - Deborah Fass
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Meli A, McCormack A, Conte I, Chen Q, Streetley J, Rose ML, Bierings R, Hannah MJ, Molloy JE, Rosenthal PB, Carter T. Altered Storage and Function of von Willebrand Factor in Human Cardiac Microvascular Endothelial Cells Isolated from Recipient Transplant Hearts. Int J Mol Sci 2023; 24:ijms24054553. [PMID: 36901985 PMCID: PMC10003102 DOI: 10.3390/ijms24054553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.
Collapse
Affiliation(s)
- Athinoula Meli
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ann McCormack
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ianina Conte
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
| | - Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - James Streetley
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marlene L. Rose
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ruben Bierings
- Hematology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Matthew J. Hannah
- High Containment Microbiology, UK Health Security Agency, London NW9 5EQ, UK
| | - Justin E. Molloy
- Single Molecule Enzymology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +44-(208)-7255961
| |
Collapse
|