1
|
Wang X, Zhou Q, Yang W, Bi H, Wang H, Wang Y, Du Y, Liu L, Liu Y, Yin L, Yao J, Yu J, Tao W, Zhou Y, Zhou Z. The role of CD83 in the pathogenesis of immune thrombocytopenia. Hematology 2024; 29:2372482. [PMID: 38994874 DOI: 10.1080/16078454.2024.2372482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND CD83 are closely related to the pathogenesis of immune thrombocytopenia (ITP), but the exact mechanism remains unclear. AIM To explore the relationship between CD83 and CD4+ T cell subsets and clarify the role of CD83 in the pathogenesis of ITP. METHODS RT-qPCR and Flow cytometry were used to illustrate CD83 expression. The downregulation and overexpression of DC-CD83 were co-cultured with CD4+ T cells to detect cell proliferation, co-cultured supernatant cytokines and Tregs expression. RESULTS The results indicate that the ITP patients showed higher expression of CD83 than the healthy controls. The proliferation of CD4+ T cells was inhibited by downregulation of DCs-CD83 but promoted by overexpression of DCs-CD83. siRNA-CD83 inhibited proinflammatory IFN-γ and IL-17 secretion while raising TGF-β, IL-10 concentrations. Overexpression of DCs-CD83 promoted Tregs expression. CONCLUSION The Th1/Th2 and Th17/Tregs polarization were reversed via interfering DCs with siRNA-CD83. CD83 plays an important role in ITP pathogenesis, suggesting novel treatment for ITP patients.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Qiyuan Zhou
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Wen Yang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hui Bi
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Honghui Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yacan Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yadong Du
- Department of Hematology, The First Affiliated Hospital of Henan University of Science and Technology, Henan, People's Republic of China
| | - Lin Liu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yuebo Liu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Liefen Yin
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jin Yao
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jingxing Yu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Wei Tao
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yongchun Zhou
- Department of Molecular Diagnostic Center, Kunming Medical University, School of Clinical Oncology: Yunnan Cancer Hospital, Kunming, People's Republic of China
| | - Zeping Zhou
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
2
|
Petito E, Gresele P. Immune attack on megakaryocytes in immune thrombocytopenia. Res Pract Thromb Haemost 2024; 8:102345. [PMID: 38525349 PMCID: PMC10960061 DOI: 10.1016/j.rpth.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/26/2024] Open
Abstract
A State of the Art lecture titled "Immune Attack on Megakaryocytes in ITP: The Role of Megakaryocyte Impairment" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Immune thrombocytopenia (ITP) is an acquired autoimmune disorder caused by autoantibodies against platelet surface glycoproteins that provoke increased clearance of circulating platelets, leading to reduced platelet number. However, there is also evidence of a direct effect of antiplatelet autoantibodies on bone marrow megakaryocytes. Indeed, immunologic cells responsible for autoantibody production reside in the bone marrow; megakaryocytes progressively express during their maturation the same glycoproteins against which ITP autoantibodies are directed, and platelet autoantibodies have been detected in the bone marrow of patients with ITP. In vitro studies using ITP sera or monoclonal antibodies against platelet and megakaryocyte surface glycoproteins have shown an impairment of many steps of megakaryopoiesis and thrombopoiesis, such as megakaryocyte differentiation and maturation, migration from the osteoblastic to the vascular niche, adhesion to extracellular matrix proteins, and proplatelet formation, resulting in impaired and ectopic platelet production in the bone marrow and diminished platelet release in the bloodstream. Moreover, cytotoxic T cells may target bone marrow megakaryocytes, resulting in megakaryocyte destruction. Altogether, these findings suggest that antiplatelet autoantibodies and cellular immunity against bone marrow megakaryocytes may significantly contribute to thrombocytopenia in some patients with ITP. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress. The complete unraveling of the mechanisms of immune attack-induced impairment of megakaryopoiesis and thrombopoiesis may open the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Marín-Quílez A, Di Buduo CA, Díaz-Ajenjo L, Abbonante V, Vuelta E, Soprano PM, Miguel-García C, Santos-Mínguez S, Serramito-Gómez I, Ruiz-Sala P, Peñarrubia MJ, Pardal E, Hernández-Rivas JM, González-Porras JR, García-Tuñón I, Benito R, Rivera J, Balduini A, Bastida JM. Novel variants in GALE cause syndromic macrothrombocytopenia by disrupting glycosylation and thrombopoiesis. Blood 2023; 141:406-421. [PMID: 36395340 PMCID: PMC10644051 DOI: 10.1182/blood.2022016995] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Glycosylation is recognized as a key process for proper megakaryopoiesis and platelet formation. The enzyme uridine diphosphate (UDP)-galactose-4-epimerase, encoded by GALE, is involved in galactose metabolism and protein glycosylation. Here, we studied 3 patients from 2 unrelated families who showed lifelong severe thrombocytopenia, bleeding diathesis, mental retardation, mitral valve prolapse, and jaundice. Whole-exome sequencing revealed 4 variants that affect GALE, 3 of those previously unreported (Pedigree A, p.Lys78ValfsX32 and p.Thr150Met; Pedigree B, p.Val128Met; and p.Leu223Pro). Platelet phenotype analysis showed giant and/or grey platelets, impaired platelet aggregation, and severely reduced alpha and dense granule secretion. Enzymatic activity of the UDP-galactose-4-epimerase enzyme was severely decreased in all patients. Immunoblotting of platelet lysates revealed reduced GALE protein levels, a significant decrease in N-acetyl-lactosamine (LacNAc), showing a hypoglycosylation pattern, reduced surface expression of gylcoprotein Ibα-IX-V (GPIbα-IX-V) complex and mature β1 integrin, and increased apoptosis. In vitro studies performed with patients-derived megakaryocytes showed normal ploidy and maturation but decreased proplatelet formation because of the impaired glycosylation of the GPIbα and β1 integrin, and reduced externalization to megakaryocyte and platelet membranes. Altered distribution of filamin A and actin and delocalization of the von Willebrand factor were also shown. Overall, this study expands our knowledge of GALE-related thrombocytopenia and emphasizes the critical role of GALE in the physiological glycosylation of key proteins involved in platelet production and function.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Lorena Díaz-Ajenjo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elena Vuelta
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Cristina Miguel-García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Sandra Santos-Mínguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Inmaculada Serramito-Gómez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, CIBERER, IdIPAZ, Madrid, Spain
| | - María Jesús Peñarrubia
- Servicio de Hematología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Emilia Pardal
- Servicio de Hematología, Hospital Virgen del Puerto, Plasencia, Spain
| | - Jesús María Hernández-Rivas
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - José Ramón González-Porras
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Rocío Benito
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Murcia, Spain
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - José María Bastida
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
4
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
5
|
Tărniceriu CC, Hurjui LL, Florea ID, Hurjui I, Gradinaru I, Tanase DM, Delianu C, Haisan A, Lozneanu L. Immune Thrombocytopenic Purpura as a Hemorrhagic Versus Thrombotic Disease: An Updated Insight into Pathophysiological Mechanisms. Medicina (B Aires) 2022; 58:medicina58020211. [PMID: 35208534 PMCID: PMC8875804 DOI: 10.3390/medicina58020211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Immune thrombocytopenic purpura (ITP) is a blood disorder characterized by a low platelet count of (less than 100 × 109/L). ITP is an organ-specific autoimmune disease in which the platelets and their precursors become targets of a dysfunctional immune system. This interaction leads to a decrease in platelet number and, subsequently, to a bleeding disorder that can become clinically significant with hemorrhages in skin, on the mucous membrane, or even intracranial hemorrhagic events. If ITP was initially considered a hemorrhagic disease, more recent studies suggest that ITP has an increased risk of thrombosis. In this review, we provide current insights into the primary ITP physiopathology and their consequences, with special consideration on hemorrhagic and thrombotic events. The autoimmune response in ITP involves both the innate and adaptive immune systems, comprising both humoral and cell-mediated immune responses. Thrombosis in ITP is related to the pathophysiology of the disease (young hyperactive platelets, platelets microparticles, rebalanced hemostasis, complement activation, endothelial activation, antiphospholipid antibodies, and inhibition of natural anticoagulants), ITP treatment, and other comorbidities that altogether contribute to the occurrence of thrombosis. Physicians need to be vigilant in the early diagnosis of thrombotic events and then institute proper treatment (antiaggregant, anticoagulant) along with ITP-targeted therapy. In this review, we provide current insights into the primary ITP physiopathology and their consequences, with special consideration on hemorrhagic and thrombotic events. The accumulated evidence has identified multiple pathophysiological mechanisms with specific genetic predispositions, particularly associated with environmental conditions.
Collapse
Affiliation(s)
- Claudia Cristina Tărniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Central Clinical Laboratory-Hematology Department, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania;
- Correspondence: authors: (L.L.H.); (I.D.F.)
| | - Irina Daniela Florea
- Department of Morpho-Functional Sciences I, Discipline of Imunology, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania
- Correspondence: authors: (L.L.H.); (I.D.F.)
| | - Ion Hurjui
- Department of Morpho-Functional Sciences II, Discipline of Biophysics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Irina Gradinaru
- Department of Implantology Removable Dentures Technology, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania;
| | - Carmen Delianu
- Central Clinical Laboratory-Hematology Department, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania;
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Haisan
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
- Emergency Department, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I, Discipline of Histology, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
- Department of Pathology, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| |
Collapse
|
6
|
Yang X, Chitalia SV, Matsuura S, Ravid K. Integrins and their role in megakaryocyte development and function. Exp Hematol 2022; 106:31-39. [PMID: 34910941 PMCID: PMC8795491 DOI: 10.1016/j.exphem.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Mature megakaryocytes, the platelet precursors, originate from hematopoietic stem cell progenitors, which, once committed to this lineage, undergo endomitosis leading to polyploidization. The process entails repeated rounds of DNA replication without cell division, yielding polyploid cells. Supporting the cell's developmental process and various cellular functions are integrin receptors, a conduit of communication between the extracellular environment and the cell actin cytoskeleton. Integrins are heterodimers of α and β subunits, where different combinations of the known 18 α and 8 β subunits confer specificity to the receptor. Integrin ligands range from extracellular matrices through soluble ligands, infectious agents, and counterreceptors, to cells. In this review, we describe the different integrins expressed on bone marrow megakaryocytes and their attributed roles in lineage development and cellular functions, including adhesion, spreading, proplatelet formation, and functional interaction with other cells. Pathologies associated with dysregulated megakaryocyte integrin expression are also reviewed.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118
| | - Shlok V. Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118
| | - Shinobu Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118,To whom correspondence should be addressed: Katya Ravid, Boston University School of Medicine, 700 Albany St, W-6, Boston, MA 02118, Tel: (617)358-8042,
| |
Collapse
|
7
|
Butov KR, Osipova EY, Mikhalkin NB, Trubina NM, Panteleev MA, Machlus KR. In vitro megakaryocyte culture from human bone marrow aspirates as a research and diagnostic tool. Platelets 2021; 32:928-935. [PMID: 32936668 PMCID: PMC9295913 DOI: 10.1080/09537104.2020.1817359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Megakaryocytes (MKs) are relatively rare in bone marrow, comprising <0.05% of the nucleated cells, which makes direct isolation from human bone marrow impractical. As such, in vitro expansion of primary MKs from patient samples offers exciting fundamental and clinical opportunities. As most of the developed ex vivo methods require a substantial volume of biomaterial, they are not widely performed on young patients. Here we propose a simple, robust, and adapted method of primary human MK culture from 1 mL of bone marrow aspirate. Our technique uses a small volume of bone marrow per culture, uses straightforward isolation methods, and generates approximately 6 × 105 mature MKs per culture. The relative high cell purity and yield achieved by this technique, combined with efficient use of low volumes of bone marrow, make this approach suitable for diagnostic and basic research of human megakaryopoiesis.
Collapse
Affiliation(s)
- Kirill R Butov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, 109029, Russia
| | - Elena Y Osipova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Nikita B Mikhalkin
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, 109029, Russia
| | - Natalia M Trubina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kellie R Machlus
- Brigham and Women’s Hospital Division of Hematology and Harvard Medical School Department of Medicine, Boston, MA 02115, USA
| |
Collapse
|
8
|
Bussel JB, Soff G, Balduzzi A, Cooper N, Lawrence T, Semple JW. A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug Des Devel Ther 2021; 15:2243-2268. [PMID: 34079225 PMCID: PMC8165097 DOI: 10.2147/dddt.s299591] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombocytopenia results from a variety of conditions, including radiation, chemotherapy, autoimmune disease, bone marrow disorders, pathologic conditions associated with surgical procedures, hematopoietic stem cell transplant (HSCT), and hematologic disorders associated with severe aplastic anemia. Immune thrombocytopenia (ITP) is caused by immune reactions that accelerate destruction and reduce production of platelets. Thrombopoietin (TPO) is a critical component of platelet production pathways, and TPO receptor agonists (TPO-RAs) are important for the management of ITP by increasing platelet production and reducing the need for other treatments. Romiplostim is a TPO-RA approved for use in patients with ITP in the United States, European Union, Australia, and several countries in Africa and Asia, as well as for use in patients with refractory aplastic anemia in Japan and Korea. Romiplostim binds to and activates the TPO receptor on megakaryocyte precursors, thus promoting cell proliferation and viability, resulting in increased platelet production. Through this mechanism, romiplostim reduces the need for other treatments and decreases bleeding events in patients with thrombocytopenia. In addition to its efficacy in ITP, studies have shown that romiplostim is effective in improving platelet counts in various settings, thereby highlighting the versatility of romiplostim. The efficacy of romiplostim in such disorders is currently under investigation. Here, we review the structure, mechanism, pharmacokinetics, and pharmacodynamics of romiplostim. We also summarize the clinical evidence supporting its use in ITP and other disorders that involve thrombocytopenia, including chemotherapy-induced thrombocytopenia, aplastic anemia, acute radiation syndrome, perisurgical thrombocytopenia, post-HSCT thrombocytopenia, and liver disease.
Collapse
Affiliation(s)
- James B Bussel
- Department of Pediatrics, Division of Hematology, Weill Cornell Medicine, New York, NY, USA
| | - Gerald Soff
- Department of Medicine, Hematology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Karakas D, Xu M, Ni H. GPIbα is the driving force of hepatic thrombopoietin generation. Res Pract Thromb Haemost 2021; 5:e12506. [PMID: 33977209 PMCID: PMC8105161 DOI: 10.1002/rth2.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Thrombopoietin (TPO), a glycoprotein hormone produced predominantly in the liver, plays important roles in the hematopoietic stem cell (HSC) niche, and is essential for megakaryopoiesis and platelet generation. Long-standing understanding proposes that TPO is constitutively produced by hepatocytes, and levels are fine-tuned through platelet and megakaryocyte internalization/degradation via the c-Mpl receptor. However, in immune thrombocytopenia (ITP) and several other diseases, TPO levels are inconsistent with this theory. Recent studies showed that platelets, besides their TPO clearance, can induce TPO production in the liver. Our group also accidentally discovered that platelet glycoprotein (GP) Ibα is required for platelet-mediated TPO generation, which is underscored in both GPIbα-/- mice and patients with Bernard-Soulier syndrome. This review will introduce platelet versatilities and several new findings in hemostasis and platelet consumption but focus on its roles in TPO regulation. The implications of these new discoveries in hematopoiesis and the HSC niche, particularly in ITP, will be discussed.
Collapse
Affiliation(s)
- Danielle Karakas
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
| | - Miao Xu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Heyu Ni
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
- Canadian Blood Services Centre for InnovationTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
10
|
Singh A, Uzun G, Bakchoul T. Primary Immune Thrombocytopenia: Novel Insights into Pathophysiology and Disease Management. J Clin Med 2021; 10:jcm10040789. [PMID: 33669423 PMCID: PMC7920457 DOI: 10.3390/jcm10040789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder defined by a significantly reduced number of platelets in blood circulation. Due to low levels of platelets, ITP is associated with frequent bruising and bleeding. Current evidence suggests that low platelet counts in ITP are the result of multiple factors, including impaired thrombopoiesis and variations in immune response leading to platelet destruction during pathological conditions. Patient outcomes as well as clinic presentation of the disease have largely been shown to be case-specific, hinting towards ITP rather being a group of clinical conditions sharing common symptoms. The most frequent characteristics include dysfunction in primary haemostasis and loss of immune tolerance towards platelet as well as megakaryocyte antigens. This heterogeneity in patient population and characteristics make it challenging for the clinicians to choose appropriate therapeutic regimen. Therefore, it is vital to understand the pathomechanisms behind the disease and to consider various factors including patient age, platelet count levels, co-morbidities and patient preferences before initiating therapy. This review summarizes recent developments in the pathophysiology of ITP and provides a comprehensive overview of current therapeutic strategies as well as potential future drugs for the management of ITP.
Collapse
Affiliation(s)
- Anurag Singh
- Institute for Clinical and Experimental Transfusion Medicine (IKET), University Hospital of Tuebingen, 72076 Tuebingen, Germany;
| | - Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72076 Tuebingen, Germany;
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine (IKET), University Hospital of Tuebingen, 72076 Tuebingen, Germany;
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72076 Tuebingen, Germany;
- Correspondence: ; Tel.: +49-7071-29-81601
| |
Collapse
|
11
|
Althaus K, Faul C, Bakchoul T. New Developments in the Pathophysiology and Management of Primary Immune Thrombocytopenia. Hamostaseologie 2020; 41:275-282. [PMID: 33348391 DOI: 10.1055/a-1311-8264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease that is characterized by a significant reduction in the number of circulating platelets and frequently associated with bleeding. Although the pathogenesis of ITP is still not completely elucidated, it is largely recognized that the low platelet count observed in ITP patients is due to multiple alterations of the immune system leading to increased platelet destruction as well as impaired thrombopoiesis. The clinical manifestations and patients' response to different treatments are very heterogeneous suggesting that ITP is a group of disorders sharing common characteristics, namely, loss of immune tolerance toward platelet (and megakaryocyte) antigens and dysfunctional primary hemostasis. Management of ITP is challenging and requires intensive communication between patients and caregivers. The decision to initiate treatment should be based on the platelet count level, age of the patient, bleeding manifestation, and other factors that influence the bleeding risk in individual patients. In this review, we present recent data on the mechanisms that lead to platelet destruction in ITP with a particular focus on current findings concerning alterations of thrombopoiesis. In addition, we give an insight into the efficacy and safety of current therapies and management of ITP bleeding emergencies.
Collapse
Affiliation(s)
- Karina Althaus
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany.,Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Christoph Faul
- Internal Medicine II, University Hospital of Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany.,Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit Rev Oncol Hematol 2019; 137:43-56. [DOI: 10.1016/j.critrevonc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
|
13
|
Liu Y, Wang R, Han P, Zhao Y, Li G, Li G, Nie M, Wang L, Chen J, Liu X, Hou M. Effect of recombinant human thrombopoietin on immune thrombocytopenia in pregnancy in a murine model. Int Immunopharmacol 2018; 67:287-293. [PMID: 30572253 DOI: 10.1016/j.intimp.2018.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Primary immune thrombocytopenia (ITP) is a serious medical disorder that has the potential for maternal and fetal mortality. Corticosteroids, intravenous immunoglobulin, or both are the first-line treatments for ITP in pregnancy, but choices are limited if patients fail to respond. Recombinant human thrombopoietin (rhTPO) has been proved effective and safe in management of chronic ITP. However, the efficacy and safety of rhTPO for pregnant ITP patients still need to be explored. Here we developed an ideal murine model that simulated human ITP in pregnancy and evaluated the efficacy and safety of rhTPO in management of ITP in pregnancy. Model mice were subcutaneously administered with 0, 150, 1,500 and 15,000 U/kg rhTPO for 14 days. Significant higher platelet counts were noted in rhTPO-treated groups on Day 7, 10 and 14. On Day 20, half the maternal mice were sacrificed. Frequencies of Tregs in CD4+ T cells in rhTPO-treated groups were statistically higher than control. Significant higher plasma levels of TGF-β1 were observed in rhTPO-treated groups than control. There was no significant abnormality in gross or visceral examination of fetuses. The remaining half maternal mice and their pups were observed for at least three weeks to assess vital signs. No abnormal signs were noted. Furthermore, we investigated the underlying mechanisms. Results showed that Tregs were negative for c-Mpl and rhTPO had no direct effect on Tregs. Additionally, the Treg frequency in splenic CD4+ T cells in LY2109761-treated model mice was statistically lower than control. Thus, rhTPO may be a safe and effective option for treatment of pregnant ITP patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Guijie Li
- Department of Interventional Diagnosis and Treatment, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mu Nie
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Lingjun Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jian Chen
- Department of Hematology, Jining No. 1 People's Hospital, Jining, China
| | - Xuena Liu
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Barcellini W. The relationship between idiopathic cytopenias/dysplasias of uncertain significance (ICUS/IDUS) and autoimmunity. Expert Rev Hematol 2017; 10:649-657. [PMID: 28586251 DOI: 10.1080/17474086.2017.1339597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION This review examines the several lines of evidence that support the relationship between myelodysplasia and autoimmunity, i.e. their epidemiologic association, the existence of common immune-mediated physiopathologic mechanisms, and the response to similar immunosuppressive therapies. The same relationship is reviewed here considering idiopathic cytopenia of uncertain significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), two recently recognized provisional conditions characterized by isolated/unexplained cytopenia and/or dysplasia in <10% bone marrow cells. Areas covered: The review focuses on alterations of cytokine profiles, telomere/telomerase and toll-like receptors, and on increased myelosuppressive mediators and apoptotic markers in both myelodysplasia and autoimmunity. In addition, the presence of an autoimmune reaction directed against marrow precursors is described in refractory/relapsing autoimmune cytopenias (autoimmune hemolytic anemia, immune thrombocytopenia, chronic idiopathic neutropenia), possibly contributing to their evolution to ICUS/IDUS/bone marrow failure syndromes. Expert commentary: The increasing availability of omics methods has fuelled the discussion on the role of somatic mutations in the pathogenesis of IDUS/ICUS, clonal hematopoiesis of indeterminate potential, and clonal cytopenias of undetermined significance, and in their possible evolution. Even more attracting is the involvement of the genetic background/accumulating somatic mutations in cytopenias with autoimmune alterations.
Collapse
Affiliation(s)
- Wilma Barcellini
- a Onco-hematology Unit , IRCCS Ca' Granda - Maggiore Policlinico Hospital Foundation , Milan , Italy
| |
Collapse
|
15
|
Abstract
Rituximab, a monoclonal antibody targeting the B cell marker CD20, was initially approved in 1997 by the United States Food and Drug Administration (FDA) for the treatment of non-Hodgkin lymphoma. Since that time, rituximab has been FDA-approved for rheumatoid arthritis and vasculitides, such as granulomatosis with polyangiitis and microscopic polyangiitis. Additionally, rituximab has been used off-label in the treatment of numerous other autoimmune diseases, with notable success in pemphigus, an autoantibody-mediated skin blistering disease. The efficacy of rituximab therapy in pemphigus has spurred interest in its potential to treat other autoantibody-mediated diseases. This review summarizes the efficacy of rituximab in pemphigus and examines its off-label use in other select autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Nina A Ran
- Department of Dermatology, University of Pennsylvania, 1009 Biomedical Research Building, 421 Curie Boulevard, PA, USA
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, 1009 Biomedical Research Building, 421 Curie Boulevard, PA, USA
| |
Collapse
|
16
|
Zhang Z, Ran Y, Shaw TS, Peng Y. MicroRNAs 10a and 10b Regulate the Expression of Human Platelet Glycoprotein Ibα for Normal Megakaryopoiesis. Int J Mol Sci 2016; 17:ijms17111873. [PMID: 27834869 PMCID: PMC5133873 DOI: 10.3390/ijms17111873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNAs that bind to the three prime untranslated region (3′-UTR) of target mRNAs. They cause a cleavage or an inhibition of the translation of target mRNAs, thus regulating gene expression. Here, we employed three prediction tools to search for potential miRNA target sites in the 3′-UTR of the human platelet glycoprotein (GP) 1BA gene. A luciferase reporter assay shows that miR-10a and -10b sites are functional. When miR-10a or -10b mimics were transfected into the GP Ibβ/GP IX-expressing cells, along with a DNA construct harboring both the coding and 3′-UTR sequences of the human GP1BA gene, we found that they inhibit the transient expression of GP Ibα on the cell surface. When the miR-10a or -10b mimics were introduced into murine progenitor cells, upon megakaryocyte differentiation, we found that GP Ibα mRNA expression was markedly reduced, suggesting that a miRNA-induced mRNA degradation is at work. Thus, our study identifies GP Ibα as a novel target of miR-10a and -10b, suggesting that a drastic reduction in the levels of miR-10a and -10b in the late stage of megakaryopoiesis is required to allow the expression of human GP Ibα and the formation of the GP Ib-IX-V complex.
Collapse
Affiliation(s)
- Zuping Zhang
- School of Basic Medicine, Central South University, Changsha 410013, China.
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yali Ran
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tanner S Shaw
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yuandong Peng
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Lebreton L, Tuffigo M, Pillois X, Fiore M. [New perspectives on the role of αIIbβ3 integrin in defective megakaryopoiesis]. Med Sci (Paris) 2016; 32:290-6. [PMID: 27011248 DOI: 10.1051/medsci/20163203014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the understanding of the molecular mechanisms involved in platelet production (megakaryopoiesis) has extremely increased, thanks to the study of genetic diseases causing inherited thrombocytopenia. Among the wide variety of transmembrane receptors covering the platelet membrane, αIIbβ3 integrin is the major one, allowing platelets to aggregate upon the occurrence of vascular breach. Platelet counts are usually normal in patients with αIIbβ3 deficiency, suggesting that its role for normal platelet production and morphology is very limited. However, recently, new clinical observations of genetic diseases provided evidence against this hypothesis, bringing new data on the role of αIIbβ3 integrin in defective megakaryopoiesis.
Collapse
Affiliation(s)
- Louis Lebreton
- Université Victor Segalen, 146, rue Léo Saignat, 33000, Bordeaux, France
| | - Marie Tuffigo
- Université Victor Segalen, 146, rue Léo Saignat, 33000, Bordeaux, France - Laboratoire d'hématologie, CHU de Bordeaux, avenue Magellan, 33604, Pessac, France
| | - Xavier Pillois
- Centre de référence des pathologies plaquettaires, avenue Magellan, 33604, Pessac, France
| | - Mathieu Fiore
- Laboratoire d'hématologie, CHU de Bordeaux, avenue Magellan, 33604, Pessac, France - Centre de référence des pathologies plaquettaires, avenue Magellan, 33604, Pessac, France
| |
Collapse
|
18
|
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016; 127:1234-41. [PMID: 26787737 DOI: 10.1182/blood-2015-07-607903] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.
Collapse
|
19
|
Abstract
Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.
Collapse
|
20
|
Thon JN, Medvetz DA, Karlsson SM, Italiano JE. Road blocks in making platelets for transfusion. J Thromb Haemost 2015; 13 Suppl 1:S55-62. [PMID: 26149051 PMCID: PMC5565795 DOI: 10.1111/jth.12942] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The production of laboratory-generated human platelets is necessary to meet present and future transfusion needs. This manuscript will identify and define the major roadblocks that must be overcome to make human platelet production possible for clinical use, and propose solutions necessary to accelerate development of laboratory-generated human platelets to market.
Collapse
Affiliation(s)
- J N Thon
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Platelet BioGenesis, Chestnut Hill, MA, USA
| | - D A Medvetz
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - J E Italiano
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Platelet BioGenesis, Chestnut Hill, MA, USA
| |
Collapse
|
21
|
Arnold DM, Nazi I, Toltl LJ, Ross C, Ivetic N, Smith JW, Liu Y, Kelton JG. Antibody binding to megakaryocytes in vivo in patients with immune thrombocytopenia. Eur J Haematol 2015; 95:532-7. [PMID: 25684257 DOI: 10.1111/ejh.12528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder caused by increased platelet destruction and impaired platelet production. Antibody binding to megakaryocytes may occur in ITP, but in vivo evidence of this phenomenon is lacking. METHODS We determined the proportion of megakaryocytes bound with immunoglobulin G (IgG) in bone marrow samples from primary patients with ITP (n = 17), normal controls (n = 13) and thrombocytopenic patients with myelodysplastic syndrome (MDS; n = 10). Serial histological sections from archived bone marrow biopsies were stained for CD61 and IgG. IgG binding and the number of bone marrow megakaryocytes were determined morphologically by a hematopathologist with four assessors after a calibration exercise to ensure consistency. RESULTS The proportion of ITP patients with high IgG binding (>50% of bone marrow megakaryocytes) was increased compared with normal controls [12/17 (71%) vs. 3/13 (23%), P = 0.03]. However, the proportion of ITP patients with high IgG binding was no different than thrombocytopenic patients with MDS [12/17 (71%) vs. 7/10 (70%), P = 1.00]. IgG binding was associated with increased megakaryocyte numbers. Like platelet-associated IgG, megakaryocyte-associated IgG is related to thrombocytopenia but may not be specific for ITP. CONCLUSION Mechanistic studies in ITP should focus on antibody specificity and include thrombocytopenic control patients.
Collapse
Affiliation(s)
- Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.,Canadian Blood Services, Hamilton, Ontario, Canada
| | - Ishac Nazi
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lisa J Toltl
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Catherine Ross
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nikola Ivetic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - James W Smith
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John G Kelton
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Garzon AM, Mitchell WB. Use of Thrombopoietin Receptor Agonists in Childhood Immune Thrombocytopenia. Front Pediatr 2015; 3:70. [PMID: 26322297 PMCID: PMC4534803 DOI: 10.3389/fped.2015.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
Most children with immune thrombocytopenia (ITP) will have spontaneous remission regardless of therapy, while about 20% will go on to have chronic ITP. In those children with chronic ITP who need treatment, standard therapies for acute ITP may have adverse effects that complicate their long-term use. Thus, alternative treatment options are needed for children with chronic ITP. Thrombopoietin receptor agonists (TPO-RA) have been shown to be safe and efficacious in adults with ITP, and represent a new treatment option for children with chronic ITP. One TPO-RA, eltrombopag, is now approved for children. Clinical trials in children are ongoing and data are emerging on safety and efficacy. This review will focus on the physiology of TPO-RA, their clinical use in children, as well as the long-term safety issues that need to be considered when using these agents.
Collapse
Affiliation(s)
- Angelica Maria Garzon
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - William Beau Mitchell
- Laboratory of Platelet Biology, New York Blood Center , New York, NY , USA ; Division of Pediatric Hematology Oncology, Weill Cornell Medical College , New York, NY , USA
| |
Collapse
|
23
|
Abstract
Macrothrombocytopenias are the most important subgroup of inherited thrombocytopenias. This subgroup is particularly heterogeneous because the affected genes are involved in various functions such as cell signaling, cytoskeleton organization, and gene expression. Herein we describe the clinical and hematological features of a consanguineous family with a severe autosomal recessive macrothrombocytopenia associated with a thrombocytopathy inducing a bleeding tendency in the homozygous mutated patients. Platelet activation and cytoskeleton reorganization were impaired in these homozygous patients. Exome sequencing identified a c.222C>G mutation (missense p.74Ile>Met) in PRKACG, a gene encoding the γ-catalytic subunit of the cyclic adenosine monophosphate-dependent protein kinase, the mutated allele cosegregating with the macrothrombocytopenia. We demonstrate that the p.74Ile>Met PRKACG mutation is associated with a marked defect in proplatelet formation and a low level in filamin A in megakaryocytes (MKs). The defect in proplatelet formation was rescued in vitro by lentiviral vector-mediated overexpression of wild-type PRKACG in patient MKs. We thus conclude that PRKACG is a new central actor in platelet biogenesis and a new gene involved in inherited thrombocytopenia with giant platelets associated with a thrombocytopathy.
Collapse
|
24
|
|
25
|
Lev PR, Grodzielski M, Goette NP, Glembotsky AC, Espasandin YR, Pierdominici MS, Contrufo G, Montero VS, Ferrari L, Molinas FC, Heller PG, Marta RF. Impaired proplatelet formation in immune thrombocytopenia: a novel mechanism contributing to decreased platelet count. Br J Haematol 2014; 165:854-64. [DOI: 10.1111/bjh.12832] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Paola R. Lev
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Matías Grodzielski
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Nora P. Goette
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Ana C. Glembotsky
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Yesica R. Espasandin
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | | | - Geraldine Contrufo
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Verónica S. Montero
- Departamento de Análisis Clínicos; Centro de Educación Médica e Investigación Clínica “Norberto Quirno” (CEMIC); Buenos Aires Argentina
| | - Luciana Ferrari
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Felisa C. Molinas
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Paula G. Heller
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Rosana F. Marta
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
26
|
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disorder with an incidence of 3 to 5 per 100 000 individuals. In children, the disease is self-limited and is most commonly virus related (acute ITP) whereas in adults, the disease is typically chronic. The age distribution of adult ITP displays 2 peaks; the first in younger adults aged 18 to 40 with a female predominance and the second in people aged older than 60 with men and women affected equally. Our approach to ITP has evolved over the past several years: there has been a change in nomenclature and ITP now denotes “immune thrombocytopenia” (the “I” no longer denoting “idiopathic”) and “purpura” no longer features in the name of the disease; new insights into the pathogenesis of ITP have revealed the importance of impaired megakaryocytopoiesis in the condition; underlying mechanisms of secondary ITP have been elucidated and finally novel thrombopoietic agents have been shown to be effective in the treatment of ITP in randomized clinical trials. In this article, we review important recent advances in the pathogenesis and treatment of ITP.
Collapse
Affiliation(s)
- Uri Abadi
- Hematology Institute, Meir Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Yarchovsky-Dolberg
- Hematology Institute, Meir Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Martin H. Ellis
- Hematology Institute, Meir Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Labarque V, Van Geet C. Clinical practice: immune thrombocytopenia in paediatrics. Eur J Pediatr 2014; 173:163-72. [PMID: 24390128 DOI: 10.1007/s00431-013-2254-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/17/2013] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia (ITP) is a disease affecting both children and adults. It is defined as acquired isolated thrombocytopenia caused by the autoimmune production of anti-platelet antibodies. Childhood ITP most frequently occurs in young children who have been previously well, although a viral respiratory tract infection often precedes thrombocytopenia. A benign and self-limiting course is common, but major bleeding complications such as intracranial haemorrhage may occur. Yet one cannot predict which child will have a prolonged course of thrombocytopenia and who will develop an intracranial haemorrhage. In children without atypical characteristics, only minimal diagnostic investigations are needed, and most paediatric ITP patients do not need platelet-enhancing therapy even though various treatment options are available. A "watch and wait" strategy should be considered in paediatric patients with mild disease. Steroids, intravenous immunoglobulin G or anti-D immunoglobulin are the current first-line therapeutic measures for children at risk for severe bleeding. When life-threatening bleeding occurs, a combination of therapies is needed. In this review, we summarise the current knowledge on primary ITP in children and adolescents.
Collapse
Affiliation(s)
- Veerle Labarque
- Department of Paediatric Haemato-Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium,
| | | |
Collapse
|
28
|
Machlus KR, Italiano JE. The incredible journey: From megakaryocyte development to platelet formation. ACTA ACUST UNITED AC 2013; 201:785-96. [PMID: 23751492 PMCID: PMC3678154 DOI: 10.1083/jcb.201304054] [Citation(s) in RCA: 544] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Circulating blood platelets are specialized cells that prevent bleeding and minimize blood vessel injury. Large progenitor cells in the bone marrow called megakaryocytes (MKs) are the source of platelets. MKs release platelets through a series of fascinating cell biological events. During maturation, they become polyploid and accumulate massive amounts of protein and membrane. Then, in a cytoskeletal-driven process, they extend long branching processes, designated proplatelets, into sinusoidal blood vessels where they undergo fission to release platelets. Given the need for platelets in many pathological situations, understanding how this process occurs is an active area of research with important clinical applications.
Collapse
Affiliation(s)
- Kellie R Machlus
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Chong BH, Choi PYI, Khachigian L, Perdomo J. Drug-induced immune thrombocytopenia. Hematol Oncol Clin North Am 2013; 27:521-40. [PMID: 23714310 DOI: 10.1016/j.hoc.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thrombocytopenia is caused by immune reactions elicited by diverse drugs in clinical practice. The activity of the drug-dependent antibodies produces a marked decrease in blood platelets and a risk of serious bleeding. Understanding of the cellular mechanisms that drive drug-induced thrombocytopenia has advanced recently but there is still a need for improved laboratory tests and treatment options. This article provides an overview of the different types of drug-induced thrombocytopenia, discusses potential pathologic mechanisms, and considers diagnostic methods and treatment options.
Collapse
Affiliation(s)
- Beng H Chong
- Haematology Department, St George Hospital, Kogarah, NSW 2217, Australia.
| | | | | | | |
Collapse
|
30
|
|
31
|
Perdomo J, Yan F, Chong BH. A megakaryocyte with no platelets: Anti-platelet antibodies, apoptosis, and platelet production. Platelets 2012; 24:98-106. [DOI: 10.3109/09537104.2012.669508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Abstract
Platelet (PLT) production represents the final stage of megakaryocyte (MK) development. During differentiation, bone marrow MKs extend and release long, branched proPLTs into sinusoidal blood vessels, which undergo repeated abscissions to yield circulating PLTs. Circular-prePLTs are dynamic intermediate structures in this sequence that have the capacity to reversibly convert into barbell-proPLTs and may be related to "young PLTs" and "large PLTs" of both inherited and acquired macrothrombocytopenias. Conversion is regulated by the diameter and thickness of the peripheral microtubule coil, and PLTs are capable of enlarging in culture to generate barbell-proPLTs that divide to yield 2 smaller PLT products. Because PLT number and size are inversely proportional, this raises the question: do macrothrombocytopenias represent a failure in the intermediate stages of PLT production? This review aims to bring together and contextualize our current understanding of terminal PLT production against the backdrop of human macrothrombocytopenias to establish how "large PLTs" observed in both conditions are similar, how they are different, and what they can teach us about PLT formation. A better understanding of the cytoskeletal mechanisms that regulate PLT formation and determine PLT size offers the promise of improved therapies for clinical disorders of PLT production and an important source of PLTs for infusion.
Collapse
|
33
|
|
34
|
Pan R, Wang J, Nardi MA, Li Z. The inhibition effect of anti-GPIIIa49-66 antibody on megakaryocyte differentiation. Thromb Haemost 2011; 106:484-90. [PMID: 21713325 DOI: 10.1160/th11-03-0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/23/2011] [Indexed: 01/10/2023]
Abstract
We previously reported that patients with early-onset HIV-1 ITP developed a unique anti-platelet integrin GPIIIa antibody against the GPIIIa49-66 epitope. Anti-GPIIIa49-66 antibody-induced platelet fragmentation requires sequential activation of the platelet 12-lipoxygenase (12-LO) and NADPH oxidase to release reactive oxygen species (ROS). 12-LO is upstream of the NADPH oxidase pathway and 12(S)-HETE, the product of 12-LO, induces the same oxidative platelet fragmentation as anti-GPIIIa49-66. Since the megakaryocyte (MK) is the progenitor cell for platelets, we have investigated the effect of anti-GPIIIa49-66 on MK differentiation and, in particular, the potential role of anti-GPIIIa49-66 induced ROS in this process. We first show that polyclonal anti-GPIIIa49-66 antibody isolated from HIV-1 ITP patients inhibits MK proliferation 2.5-fold in in vitro culture of human cord blood CD34+ cells driven by thrombopoietin (TPO). We also observe a three-fold decrease in the number of MK colony-forming units in the presence of a human monoclonal anti-GPIIIa49-66 antibody. However, we could not detect ROS release in DCFH-loaded mouse megakaryoblastic cells L8057 treated with anti-GPIIIa49-66 antibody. In addition, 12(S)-HETE does not inhibit the in vitro differentiation of L8057 cells induced by TPO. In fact, we found a dose dependent increase in the percentage of CD41 positive cells (from 17.1% to 48.7%) in in vitro culture of L8057 cells treated with various concentrations of H2O2 (from 5 to 20 μM). We therefore conclude that the anti-GPIIIa49-66 antibody inhibits MK differentiation through β3 integrin signalling independent of ROS release.
Collapse
Affiliation(s)
- Ruimin Pan
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Strategies aimed at stimulating platelet production are a rational approach to the treatment of patients with primary immune thrombocytopenia, as, for many of them, the low platelet count is a consequence of ineffective megakaryopoiesis. Recently, intense clinical trial activity in immune thrombocytopenia has been reported for second-generation thrombopoietic agents. These novel molecules bear no structural resemblance to thrombopoietin, but still bind and activate the thrombopoietin receptor. One of these agents is eltrombopag (formerly SB497115), an orally available, small organic compound. Randomized trials have shown the short-term efficacy of eltrombopag in elevating the platelet count of most adult patients with immune thrombocytopenia unresponsive to at least one standard treatment. No significant adverse events were observed, but long-term safety data are still lacking. Ongoing studies will reveal the potential of this agent in the management of immune thrombocytopenia for long-term maintenance therapy, as well as its relative benefit compared with standard-of-care treatment.
Collapse
Affiliation(s)
- Roberto Stasi
- Department of Medical Sciences, Regina Apostolorum Hospital, Via S Francesco 50, Albano Laziale, Italy.
| |
Collapse
|
36
|
Quinine-induced thrombocytopenia: drug-dependent GPIb/IX antibodies inhibit megakaryocyte and proplatelet production in vitro. Blood 2011; 117:5975-86. [PMID: 21487107 DOI: 10.1182/blood-2010-10-314310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of immune cytopenias is a well-recognized side effect of many drugs. Quinine- and quinidine-dependent antibodies are classic examples of drug-induced effects that cause severe, life-threatening thrombocytopenia. Whereas the effects of drug-dependent antibodies on platelets have been well documented, their effects on megakaryocyte (Mk) biology are still unclear. We analyzed sera from several quinine-induced thrombocytopenia (QITP) patients on highly pure Mks (98% glycoprotein IIb-positive [GPIIb(+)]; 92% GPIX(+)) derived from human CD34(+) cells cultured with human thrombopoietin. We demonstrate by flow cytometry and confocal microscopy that QITP IgGs bind Mks efficiently in the presence of quinine. Incubation of day-4 Mks with QITP sera or purified IgG resulted in induction of apoptosis, a significant decrease in cell viability, and an increase in cell death. Furthermore, QITP sera preferentially reduced the number of late GPIX(+)/GPIbα(+) Mks and the number of receptors per cell in the surviving population. Ploidy distribution, lobularity, and average cell size of Mks remained unchanged after treatment. In addition, treated Mks showed a marked decrease in their proplatelet production capacity, suggesting that drug-dependent antibodies hinder platelet production. Therefore, QITP antibodies considerably reduce the proplatelet production capabilities of Mks despite undetectable effects on DNA content, morphology, and cell size.
Collapse
|
37
|
Balduini A, Malara A, Balduini CL, Noris P. Megakaryocytes derived from patients with the classical form of Bernard-Soulier syndrome show no ability to extend proplatelets in vitro. Platelets 2011; 22:308-11. [PMID: 21322749 DOI: 10.3109/09537104.2010.547960] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Toltl LJ, Arnold DM. Pathophysiology and management of chronic immune thrombocytopenia: focusing on what matters. Br J Haematol 2010; 152:52-60. [PMID: 21083652 DOI: 10.1111/j.1365-2141.2010.08412.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia (ITP) is a common autoimmune disease characterized by low platelet counts and an increased risk of bleeding. Antibody-mediated platelet destruction has been the prevailing hypothesis to explain ITP pathogenesis, supported by the efficacy of B-cell depletion therapy; however, the recent success of thrombopoietin receptor agonists lends support to the notion that platelet production is also insufficient. Best practice for the management of chronic ITP has not yet been established because data from comparative trials are lacking. Despite renewed interest in novel drugs capable of increasing platelet counts, ultimate treatment goals for ITP patients must be kept in mind: to improve patients' health and well-being. In this article, the pathophysiology of ITP is reviewed and key remaining questions about mechanism are explored. A rational approach to the management of ITP in adults is outlined, acknowledging evidence and evidence gaps, and highlighting the need for clinically important endpoints in future clinical trials.
Collapse
Affiliation(s)
- Lisa J Toltl
- Department of Medicine, Michael DeGroote School of Medicine, McMaster University Canadian Blood Services, 1200 Main Street West, Hamilton, Ontario, Canada
| | | |
Collapse
|
39
|
Wang WJ. Acurhagin-C, an ECD disintegrin, inhibits integrin alphavbeta3-mediated human endothelial cell functions by inducing apoptosis via caspase-3 activation. Br J Pharmacol 2010; 160:1338-51. [PMID: 20590625 DOI: 10.1111/j.1476-5381.2010.00781.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Acurhagin, a member of versatile metalloproteinase disintegrins from Agkistrodon acutus venom, has been identified as a platelet aggregation inhibitor, previously. Here, acurhagin-C, the C-terminal Glu-Cys-Asp (ECD)-containing fragment of acurhagin, was evaluated for its biological activities and potential applications in anti-angiogenic therapy. EXPERIMENTAL APPROACH Human umbilical vein endothelial cells (HUVECs) were treated with acurhagin-C to assay effects on viability, apoptosis, adhesion, migration, invasion, proliferation and angiogenesis. The recognition site and signalling involved for the interactions of acurhagin-C with HUVEC were determined using flow cytometric, electrophoresis and immunoblotting analyses. KEY RESULTS Acurhagin-C decreased viability and induced apoptosis in HUVEC. It also dose-dependently inhibited HUVEC adhesion to immobilized extracellular matrices fibronectin, collagen I and vitronectin with respective IC(50) values of approximately 0.6, 0.3 and 0.1 microM. Acurhagin-C prevented migration and invasion of HUVEC through vitronectin- and Matrigel-coated barriers respectively. Furthermore, acurhagin-C attenuated fibroblast growth factor-2-primed angiogenesis both in vitro and in vivo, and specifically blocked the binding of anti-alphavbeta3 monoclonal antibody 23C6 to HUVEC in an ECD-dependent manner. However, purified alphavbeta3 also dose-dependently bound to immobilized acurhagin and acurhagin-C with a saturable pattern. Interference with integrin alphavbeta3-mediated functions and promotion of caspase-3 activation by acurhagin-C affected morphology of HUVEC and induced apoptosis. CONCLUSIONS AND IMPLICATIONS Acurhagin-C elicited endothelial anoikis via disruption of alphavbeta3/focal adhesion kinase/phosphatidylinositol 3-kinase/Akt survival cascade and subsequent initiation of the procaspase-3 apoptotic signalling pathway.
Collapse
Affiliation(s)
- Wen-Jeng Wang
- Department of Nutrition and Health Sciences, Chang-Gung Institute of Technology, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
40
|
Blanchette V, Bolton-Maggs P. Childhood Immune Thrombocytopenic Purpura: Diagnosis and Management. Hematol Oncol Clin North Am 2010; 24:249-73. [DOI: 10.1016/j.hoc.2009.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Abstract
Platelets originate from megakaryocytes (MKs) by cytoplasmic elongation into proplatelets. Direct platelet release is not seen in bone marrow hematopoietic islands. It was suggested that proplatelet fragmentation into platelets can occur intravascularly, yet evidence of its dependence on hydrodynamic forces is missing. Therefore, we investigated whether platelet production from MKs could be up-regulated by circulatory forces. Human mature MKs were perfused at a high shear rate on von Willebrand factor. Cells were observed in real time by videomicroscopy, and by confocal and electron microscopy after fixation. Dramatic cellular modifications followed exposure to high shear rates: 30% to 45% adherent MKs were converted into proplatelets and released platelets within 20 minutes, contrary to static conditions that required several hours, often without platelet release. Tubulin was present in elongated proplatelets and platelets, thus ruling out membrane tethers. By using inhibitors, we demonstrated the fundamental roles of microtubule assembly and MK receptor GPIb. Secretory granules were present along the proplatelet shafts and in shed platelets, as shown by P-selectin labeling. Platelets generated in vitro were functional since they responded to thrombin by P-selectin expression and cytoskeletal reorganization. In conclusion, MK exposure to high shear rates promotes platelet production via GPIb, depending on microtubule assembly and elongation.
Collapse
|
42
|
Balduini A, Malara A, Pecci A, Badalucco S, Bozzi V, Pallotta I, Noris P, Torti M, Balduini CL. Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano. J Thromb Haemost 2009; 7:478-84. [PMID: 19067792 DOI: 10.1111/j.1538-7836.2008.03255.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although mutations of GPIb alpha are among the most frequent causes of inherited platelet disorders, the mechanisms for the onset of thrombocytopenia and platelet macrocytosis are still poorly defined. OBJECTIVE In this work we analyzed in vitro megakaryocyte differentiation and proplatelet formation in six subjects heterozygous for the Ala156Val mutation in the GPIb alpha (Bolzano mutation). METHODS Human megakaryocytes were obtained by differentiation of patient cord blood-derived CD34(+) cells and peripheral blood-derived CD45(+) cells. Proplatelet formation was evaluated by phase contrast and fluorescence microscopy. RESULTS Megakaryocyte differentiation from both cord blood (one patient) and peripheral blood (five patients) was comparable to controls. However, proplatelet formation was reduced by about 50% with respect to controls. An identical defect of proplatelet formation was observed when megakaryocytes were plated on fibrinogen, von Willebrand factor or grown in suspension. Morphological evaluation of proplatelet formation revealed an increased size of proplatelet tips, which was consistent with the increased diameters of patients' blood platelets. Moreover, alpha-tubulin distribution within proplatelets was severely deranged. CONCLUSIONS Megakaryocytes from patients carrying a Bolzano allele of GPIb alpha display both quantitative and qualitative abnormalities of proplatelet formation in vitro. These results suggest that a defect of platelet formation contributes to macrothrombocytopenia associated to the Bolzano mutation, and indicate a key role for GPIb alpha in proplatelet formation.
Collapse
Affiliation(s)
- A Balduini
- Department of Biochemistry, University of Pavia - IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Balduini A, Pallotta I, Malara A, Lova P, Pecci A, Viarengo G, Balduini CL, Torti M. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes. J Thromb Haemost 2008; 6:1900-7. [PMID: 18752571 DOI: 10.1111/j.1538-7836.2008.03132.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Megakaryocytes release platelets from the tips of cytoplasmic extensions, called proplatelets. In humans, the regulation of this process is still poorly characterized. OBJECTIVE To analyse the regulation of proplatelet formation by megakaryocyte adhesion to extracellular adhesive proteins through different membrane receptors. METHODS Human megakaryocytes were obtained by differentiation of cord blood-derived CD34(+) cells, and proplatelet formation was evaluated by phase contrast and fluorescence microscopy. RESULTS We found that human megakaryocytes extended proplatelets in a time-dependent manner. Adhesion to fibrinogen, fibronectin or von Willebrand factor (VWF) anticipated the development of proplatelets, but dramatically limited both amplitude and duration of the process. Type I, but not type III or type IV, collagen totally suppressed proplatelet extension, and this effect was overcome by the myosin IIA antagonist blebbistatin. Integrin alphaIIbbeta3 was essential for megakaryocyte spreading on fibrinogen or VWF, but was not required for proplatelet formation. In contrast, proplatelet formation was prevented by blockade of GPIb-IX-V, or upon cleavage of GPIbalpha by the metalloproteinase mocarhagin. Membrane-associated VWF was detected exclusively on proplatelet-forming megakaryocytes, but not on round mature cells that do not extend proplatelets. CONCLUSIONS Our findings show that proplatelet formation in human megakaryocytes undergoes a complex spatio-temporal regulation orchestrated by adhesive proteins, GPIb-IX-V and myosin IIA.
Collapse
Affiliation(s)
- A Balduini
- Department of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, Gibbins JM. Future innovations in anti-platelet therapies. Br J Pharmacol 2008; 154:918-39. [PMID: 18587441 PMCID: PMC2451055 DOI: 10.1038/bjp.2008.151] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 12/15/2022] Open
Abstract
Platelets have long been recognized to be of central importance in haemostasis, but their participation in pathological conditions such as thrombosis, atherosclerosis and inflammation is now also well established. The platelet has therefore become a key target in therapies to combat cardiovascular disease. Anti-platelet therapies are used widely, but current approaches lack efficacy in a proportion of patients, and are associated with side effects including problem bleeding. In the last decade, substantial progress has been made in understanding the regulation of platelet function, including the characterization of new ligands, platelet-specific receptors and cell signalling pathways. It is anticipated this progress will impact positively on the future innovations towards more effective and safer anti-platelet agents. In this review, the mechanisms of platelet regulation and current anti-platelet therapies are introduced, and strong, and some more speculative, potential candidate target molecules for future anti-platelet drug development are discussed.
Collapse
Affiliation(s)
- N E Barrett
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - L Holbrook
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - S Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - W J Kaiser
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - L A Moraes
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - R Rana
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - T Sage
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - R G Stanley
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - K L Tucker
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - B Wright
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - J M Gibbins
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| |
Collapse
|
45
|
Wang WJ. Agglucetin, a tetrameric C-type lectin-like venom protein, regulates endothelial cell survival and promotes angiogenesis by activating integrin αvβ3 signaling. Biochem Biophys Res Commun 2008; 369:753-60. [DOI: 10.1016/j.bbrc.2008.02.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/21/2008] [Indexed: 11/15/2022]
|
46
|
Blanchette V, Bolton-Maggs P. Childhood immune thrombocytopenic purpura: diagnosis and management. Pediatr Clin North Am 2008; 55:393-420, ix. [PMID: 18381093 DOI: 10.1016/j.pcl.2008.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder characterized by a low circulating platelet count caused by destruction of antibody-sensitized platelets in the reticuloendothelial system. ITP can be classified as childhood versus adult, acute versus chronic, and primary versus secondary. Persistence of thrombocytopenia defines the chronic form of the disorder. Secondary causes of ITP include collagen vascular disorders, immune deficiencies, and some chronic infections. This review focuses on the diagnosis and management of children who have acute and chronic ITP. Emphasis is placed on areas of controversy and new therapies.
Collapse
Affiliation(s)
- Victor Blanchette
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | | |
Collapse
|
47
|
Wang L, Li Y, Hou M. Idiopathic thrombocytopenic purpura and dysmegakaryocytopoiesis. Crit Rev Oncol Hematol 2007; 64:83-9. [PMID: 17900920 DOI: 10.1016/j.critrevonc.2007.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 10/22/2022] Open
Abstract
Idiopathic thrombocytopenic purpura (ITP) is an autoimmune disorder characterized with thrombocytopenia, primarily caused by platelet destruction. However, the studies of platelet kinetics show platelet turn over are normal or decreased, suggesting that reduced platelet production may lead to severity of ITP. We review recent research progress on abnormal cell events involved in megakaryocytopoiesis contributing to thrombocytopenia.
Collapse
Affiliation(s)
- Lin Wang
- Hematology Oncology Center, Qilu Hospital, Shandong University, 107 West Wenhua Rd, Jinan, Shandong 250012, PR China
| | | | | |
Collapse
|
48
|
Larson MK, Watson SP. A product of their environment: do megakaryocytes rely on extracellular cues for proplatelet formation? Platelets 2007; 17:435-40. [PMID: 17074718 DOI: 10.1080/09537100600772637] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Megakaryocytes have long been observed to form abundant filamentous extensions called proplatelets. A strong body of evidence strongly suggests these proplatelets are the mechanism by which platelets are released into the vasculature. Despite the recent advances in understanding proplatelet architecture, surprisingly little attention has been paid to identifying the ways in which the bone marrow environment regulates proplatelet formation. This review summarises this field and how these findings suggest a spatial and temporal regulation to ensure that platelets are produced in the correct location.
Collapse
Affiliation(s)
- Mark K Larson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK B15 2TT, UK.
| | | |
Collapse
|
49
|
|
50
|
Gaedicke G, Schulze H. Some unsettled questions in childhood thrombocytopenia caused by immunologic platelet destruction (acute and chronic ITP). Pediatr Blood Cancer 2006; 47:668-70. [PMID: 16933247 DOI: 10.1002/pbc.20997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cause of idiopathic thrombocytopenia (ITP) is largely unknown, although the underlying pathophysology is an autoimmune process. Anti-idiotypic antibodies and their role on regulatory T-cells might play an important role in the switch from acute to chronic ITP. The exact interaction remains to be elucidated. The effects of the dysregulated immune system and of the autoimmune process on thrombocytopoiesis and megakaryopiesis are ill defined. Therapy of acute and chronic ITP is directed to the risk of bleeding.
Collapse
Affiliation(s)
- Gerhard Gaedicke
- Department of Pediatrics and Laboratory for Pediatric Molecular Biology, Otto-Heubner-Centre for Pediatrics and Adolescent Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|