1
|
Ahmed J, Choi Y, Ko T, Lim J, Hajjar J. Use of Immunoglobulin Replacement Therapy in Clinical Practice: A Review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2025; 8:34-46. [PMID: 39811426 PMCID: PMC11728380 DOI: 10.36401/jipo-24-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 01/16/2025]
Abstract
Immunoglobulins (Igs) are produced by B lymphocytes and play a key role in humoral immunity. Igs are classified into five isotypes (IgG, IgA, IgM, IgE, and IgD). Their primary function is to recognize and bind to foreign antigens. When Igs bind to antigens, they facilitate phagocytosis and promote clearance mediated by other immune cells. It is an essential component in protecting the host from outside pathogens. Hypogammaglobulinemia predisposes an individual to severe and recurrent infections. Therefore, replacement therapy is recommended to maintain optimal Ig level. In addition, Igs can modulate immune responses by to neutralizing proteins such as endotoxins or receptor-binding antibodies. They can be used to manage excessive immune reactions and autoimmune-related diseases. In this review, we aimed to summarize the clinical indications for Ig therapy for practicing oncologists.
Collapse
Affiliation(s)
- Jibran Ahmed
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yeonjoo Choi
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Taeyeong Ko
- Department of Medicine, Charleston Area Medical Center, Charleston, WV, USA
| | - JoAnn Lim
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joud Hajjar
- Department of Pediatrics, Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Houston, TX, USA
- The William T. Shearer Center for Immunology at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Ustun C, Chen M, Kim S, Auletta JJ, Batista MV, Battiwalla M, Cerny J, Gowda L, Hill JA, Liu H, Munshi PN, Nathan S, Seftel MD, Wingard JR, Chemaly RF, Dandoy CE, Perales MA, Riches M, Papanicolaou GA. Post-transplantation cyclophosphamide is associated with increased bacterial infections. Bone Marrow Transplant 2024; 59:76-84. [PMID: 37903992 PMCID: PMC11164622 DOI: 10.1038/s41409-023-02131-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
Post-transplant cyclophosphamide (PTCy) is increasingly used to reduce graft-versus-host disease after hematopoietic cell transplantation (HCT); however, it might be associated with more infections. All patients who were ≥2 years old, receiving haploidentical or matched sibling donor (Sib) HCT for acute leukemias or myelodysplastic syndrome, and either calcineurin inhibitor (CNI)- or PTCy-based GVHD prophylaxis [Haploidentical HCT with PTCy (HaploCy), 757; Sibling with PTCy (SibCy), 403; Sibling with CNI-based (SibCNI), 1605] were included. Most bacterial infections occurred within the first 100 days; 953 patients (34.5%) had at least 1 infection and 352 patients (13%) had ≥2 infections. Patients receiving PTCy had a greater incidence of bacterial infections by day 180 [HaploCy 46%; SibCy 48%; SibCNI 35%; p < 0.001]. Compared with the SibCNI without infection cohort, 1.99-fold, 3.33-fold, 2.78-fold, and 2.53-fold increased TRM was seen for the HaploCy cohort without infection and HaploCy, SibCy, and SibCNI cohorts with infection, respectively. Bacterial infections increased mortality [HaploCy (HR1.84, 99% CI: 1.45-2.33, p < 0.0001), SibCy cohort (HR,1.68, 99% CI: 1.30-2.19, p < 0.0001), and SibCNI cohort (HR,1.76, 99% CI: 1.43-2.16, p < 0.0001). PTCy was associated with increased bacterial infections regardless of donor, and bacterial infections were associated with increased mortality irrespective of GVHD prophylaxis. Patients receiving PTCy should be monitored carefully for bacterial infections following PTCy.
Collapse
Affiliation(s)
- Celalettin Ustun
- Division of Hematology/Oncology/Cell Therapy, Rush University, Chicago, IL, USA.
| | - Min Chen
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Soyoung Kim
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffery J Auletta
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
- Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Minoo Battiwalla
- Sarah Cannon Transplant and Cell Therapy Network, Nashville, TN, USA
| | - Jan Cerny
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School and Medical Center, Worcester, MA, USA
| | - Lohith Gowda
- Yale Cancer Center and Yale School of Medicine, New Haven, CT, USA
| | - Joshua A Hill
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Hongtao Liu
- Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Pashna N Munshi
- Stem Cell Transplant and Cellular Immunotherapy Program, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Sunita Nathan
- Division of Hematology/Oncology/Cell Therapy, Rush University, Chicago, IL, USA
| | - Matthew D Seftel
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - John R Wingard
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Roy F Chemaly
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Christopher E Dandoy
- Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marcie Riches
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Genovefa A Papanicolaou
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Neemann KA, Sato AI. Vaccinations in children with hematologic malignancies and those receiving hematopoietic stem cell transplants or cellular therapies. Transpl Infect Dis 2023; 25 Suppl 1:e14100. [PMID: 37436808 DOI: 10.1111/tid.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Children who are immune compromised are uniquely threatened by a higher risk of infections, including vaccine-preventable diseases (VPDs). Children who undergo chemotherapy or cellular therapies may not have preexisting immunity to VPDs at the time of their treatment including not yet receiving their primary vaccine series, and additionally they have higher risk of exposures (e.g., due to family structures, daycare and school setting) with decreased capacity to protect themselves using nonpharmaceutic measures (e.g., masking). In the past, efforts to revaccinate these children have often been delayed or incomplete. Treatment with chemotherapy, stem cell transplants, and/or cellular therapies impair the ability of the immune system to mount a robust vaccine response. Ideally, protection would be provided as soon as both safe and effective, which will vary by vaccine type (e.g., replicating versus nonreplicating; conjugated versus polysaccharide). While a single approach revaccination schedule following these therapies would be convenient for providers, it would not account for patient specific factors that influence the timing of immune reconstitution (IR). Evidence suggests that many of these children would mount a meaningful vaccine response as early as 3 months following completion of treatment. Here within, we provide updated guidance on how to approach vaccination both during and following completion of these therapies.
Collapse
Affiliation(s)
- Kari A Neemann
- Division of Infectious Diseases, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Children's Hospital & Medical Center, Omaha, Nebraska, USA
| | - Alice I Sato
- Division of Infectious Diseases, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Children's Hospital & Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Kim S, Kim JK, Ahn KW. A calibrated Bayesian method for the stratified proportional hazards model with missing covariates. LIFETIME DATA ANALYSIS 2022; 28:169-193. [PMID: 35034213 PMCID: PMC8977246 DOI: 10.1007/s10985-021-09542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Missing covariates are commonly encountered when evaluating covariate effects on survival outcomes. Excluding missing data from the analysis may lead to biased parameter estimation and a misleading conclusion. The inverse probability weighting method is widely used to handle missing covariates. However, obtaining asymptotic variance in frequentist inference is complicated because it involves estimating parameters for propensity scores. In this paper, we propose a new approach based on an approximate Bayesian method without using Taylor expansion to handle missing covariates for survival data. We consider a stratified proportional hazards model so that it can be used for the non-proportional hazards structure. Two cases for missing pattern are studied: a single missing pattern and multiple missing patterns. The proposed estimators are shown to be consistent and asymptotically normal, which matches the frequentist asymptotic properties. Simulation studies show that our proposed estimators are asymptotically unbiased and the credible region obtained from posterior distribution is close to the frequentist confidence interval. The algorithm is straightforward and computationally efficient. We apply the proposed method to a stem cell transplantation data set.
Collapse
Affiliation(s)
- Soyoung Kim
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226-0509, USA.
| | - Jae-Kwang Kim
- Department of Statistics, Iowa State University, 2438 Osborn Dr Ames, Ames, IA, 50011-1090, USA
| | - Kwang Woo Ahn
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226-0509, USA
| |
Collapse
|
5
|
Severe acute graft-versus-host disease increases the incidence of blood stream infection and mortality after allogeneic hematopoietic cell transplantation: Japanese transplant registry study. Bone Marrow Transplant 2021; 56:2125-2136. [PMID: 33875815 DOI: 10.1038/s41409-021-01291-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to clarify the risk factors and prognosis associated with blood stream infection (BSI) in allogeneic hematopoietic cell transplantation (allo-HCT), and the relationship between BSI and acute graft-versus-host disease (aGVHD). This retrospective analysis included 11,098 patients in the Japanese national transplant registry. A total of 2172 patients developed BSI after allo-HCT, with 2332 identified pathogens. The cumulative incidences of BSI were 15.5% at 30 days and 20.9% at 100 days after allo-HCT. In a multivariate analysis, severe (grade III-IV) aGVHD was associated with a higher risk of BSI (vs. grade 0-I aGVHD: hazard ratio [HR] 3.34 [95% confidence interval (CI), 2.85-3.92; P < 0.001]). In a multivariate analysis, severe aGVHD before BSI was associated with a higher risk of overall mortality after BSI (vs. grade 0-I aGVHD: HR 2.61 [95% CI 2.18-3.11; P < 0.001]). In addition, BSI (vs. no-BSI: HR 1.20 [95% CI, 1.12-1.29; P < 0.001]) and severe aGVHD (vs. grade 0-I aGVHD: HR 1.97 [95% CI, 1.83-2.12; P < 0.001]) were independent risk factors for overall mortality after allo-HCT. In the setting of allo-HCT, severe aGVHD was associated with increases in both BSI incidence and post-BSI overall mortality. Furthermore, BSI was an independent risk factor for overall mortality.
Collapse
|
6
|
Gagelmann N, Kröger N. Dose intensity for conditioning in allogeneic hematopoietic cell transplantation: can we recommend "when and for whom" in 2021? Haematologica 2021; 106:1794-1804. [PMID: 33730842 PMCID: PMC8252938 DOI: 10.3324/haematol.2020.268839] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem-cell transplantation is a potentially curative therapy for various hematologic diseases. An essential component of this procedure is the pre-transplant conditioning regimen, which should facilitate engraftment and reduce or eliminate tumor cells. The recognition of the substantial association of a graft-versus- tumor effect and the high toxicity of the commonly used conditioning regimen led to the introduction of more differentiated intensity strategies, with the aim of making hematopoietic stem-cell transplantation less toxic and safer, and thus more applicable to broader populations such as older or unfit patients. In general, prospective and retrospective studies suggest a correlation between increasing intensity and nonrelapse mortality and an inverse correlation with relapse incidence. In this review, we will summarize traditional and updated definitions for conditioning intensity strategies and the landscape of comparative prospective and retrospective studies, which may help to find the balance between the risk of non-relapse mortality and relapse. We will try to underscore the caveats regarding these definitions and analyses, by missing complex differences between intensity and toxicity as well as the broad influences of other factors in the transplantation procedure. We will summarize evidence regarding several confounders which may influence decisions when selecting the intensity of the conditioning regimen for any given patient, according to the individual risk of relapse and non-relapse mortality.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg.
| |
Collapse
|
7
|
Mani S, Aleixo GFP, Rybicki L, Majhail NS, Mossad SB. Secular trends of Blood stream infections in allogeneic hematopoietic cell transplant recipients 72 hours prior to death. Transpl Infect Dis 2021; 23:e13631. [PMID: 33969591 DOI: 10.1111/tid.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Blood stream infections (BSI) frequently cause morbidity and mortality in allogeneic (allo) hematopoietic cell transplant (HCT) recipients. Characteristics of causative organisms shortly before death have not been previously described. Early treatment with antimicrobial agents targeting the recent surge in multidrug-resistant (MDR) pathogens may lead to better outcomes. METHODS This is retrospective study including 529 allo HCT recipients who died between 2000 and 2013. All patients who had BSI that happened 72 hours before death were included. BSI and criteria for antimicrobial resistance were defined according to the Centers for Disease Control and Prevention and the National Healthcare Safety Network surveillance criteria. RESULTS Overall, 104 BSI were identified from 91 patients. Bacterial infections accounted for 87% of the infections which were comprised by 37% gram-negative organisms and 50% gram-positive bacteria. The most common species were Enterococcus (30%), Staphylococcus (16%), and Pseudomonas (16%). Most enterococci were vancomycin resistant (87%), 100% of staphylococci were resistant to methicillin, and 64% of Pseudomonas were MDR. Over time there was a significant increase in vancomycin-resistant enterococcal (P = .01) and gram-negative BSI (P = .01). Blood stream infections were either the primary or secondary cause of death in 53% of patients. CONCLUSIONS In allo HCT recipients, vancomycin-resistant enterococcal infections caused the majority of BSI 72 hours prior to death. Our findings provide information that may guide empiric antibiotic coverage in critically ill HCT recipients.
Collapse
Affiliation(s)
- Shylaja Mani
- Department of Hematology Oncology, Adena Cancer Center, Chillicothe, OH, USA
| | | | - Lisa Rybicki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Navneet S Majhail
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Sherif B Mossad
- Department of Infectious Diseases, Respiratory Institute Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Sahitya DSK, Jandiyal A, Jain A, Senapati J, Nanda S, Aggarwal M, Kumar P, Mohapatra S, Ray P, Malhotra P, Mahapatra M, Dhawan R. Prevention and management of carbapenem-resistant Enterobacteriaceae in haematopoietic cell transplantation. Ther Adv Infect Dis 2021; 8:20499361211053480. [PMID: 34733507 PMCID: PMC8558808 DOI: 10.1177/20499361211053480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) infections are associated with high morbidity and mortality rates in haematopoietic cell transplantation (HCT) recipients. Factors like mucositis, neutropenia, prolonged hospital stay, and frequent use of prophylactic antimicrobials make HCT recipients especially susceptible to CRE infections. Low culture positivity rates, delay in microbiological diagnosis, and resistance to empirical antimicrobial therapy for febrile neutropenia are responsible for high mortality rates in HCT recipients infected with CRE. In this review we discuss the epidemiology, diagnosis, and management of CRE infections with particular emphasis on patients undergoing HCT. We emphasise the need for preventive strategies like multidisciplinary antimicrobial stewardship, and pre-emptive screening for CRE colonisation in prospective HCT patients as measures to mitigate the adverse impact of CRE on HCT outcomes. Newer diagnostic tests like polymerase chain reaction and matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) assay that enable earlier and better identification of CRE isolates are discussed. Antimicrobial agents available against CRE, including newer agents like ceftazidime-avibactam and meropenem-vaborbactam, have been reviewed. We also discuss the data on promising experimental treatments against CRE: phage therapy and healthy donor faecal microbiota transplant. Finally, this review puts forth recommendations as per existing literature on diagnosis and management of CRE infections in blood and marrow transplant (BMT) unit.
Collapse
Affiliation(s)
| | - Aditya Jandiyal
- Postgraduate Institute of Medical Education & Research, Chandigarh, Chandigarh, India
| | - Arihant Jain
- Postgraduate Institute of Medical Education & Research, Chandigarh, Chandigarh, India
| | - Jayastu Senapati
- All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Saumya Nanda
- Lady Hardinge Medical College, New Delhi, New Delhi, India
| | - Mukul Aggarwal
- All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Pradeep Kumar
- All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Sarita Mohapatra
- All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Pallab Ray
- Postgraduate Institute of Medical Education & Research, Chandigarh, Chandigarh, India
| | - Pankaj Malhotra
- Postgraduate Institute of Medical Education & Research, Chandigarh, Chandigarh, India
| | | | - Rishi Dhawan
- All India Institute of Medical Sciences, New Delhi, New Delhi 110029, India
| |
Collapse
|
9
|
Akhmedov M. Infectious complications in allogeneic hematopoietic cell transplant recipients: Review of transplant-related risk factors and current state of prophylaxis. Clin Transplant 2020; 35:e14172. [PMID: 33247497 DOI: 10.1111/ctr.14172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
Allogeneic hematopoietic cell transplantation is a complex procedure that carries a significant risk of complications. Infections are among the most common of them. Several direct factors such as neutropenia, hypogammaglobulinemia, lymphopenia, mucosal barrier injury, and graft-versus-host disease have been shown to be associated with increased infectious risk post-transplant. Apart from direct factors, there are also indirect transplant-related factors that are the primary trigger to the formers' development. The most important of them are type of preparative regimen, graft source, donor type, graft-versus-host disease prophylaxis, and graft manipulation techniques. In this review, an attempt has been made to summarize the role of the transplant-related factors in the development of infectious complications and provide evidence underlying the current concept of infectious disease prophylaxis in patients after allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Mobil Akhmedov
- Department of Bone Marrow Transplantation, National Hematology Research Center, Moscow, Russian Federation
| |
Collapse
|
10
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|