1
|
Kireeva TN, Zhigalina DI, Skryabin NA. Cystic fibrosis therapy: from symptoms to the cause of the disease. Vavilovskii Zhurnal Genet Selektsii 2025; 29:279-289. [PMID: 40297296 PMCID: PMC12036567 DOI: 10.18699/vjgb-25-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 04/30/2025] Open
Abstract
Cystic fibrosis (CF) is a disease with a broad clinical and genetic spectrum of manifestations, significantly impacting the quality and duration of life of patients. At present, a diagnosis of CF enables the disease to be identified at the earliest stages of its development. The accelerated advancement of scientific knowledge and contemporary research techniques has transformed the methodology employed in the treatment of CF, encompassing a spectrum of approaches from symptomatic management to pathogenetic therapies. Pathogenetic therapy represents an approach to treatment that aims to identify methods of restoring the function of the CFTR gene. The objective of this review was to analyse and summarize the available scientific data on the pathogenetic therapy of CF. This paper considers various approaches to the pathogenetic therapy of CF that are based on the use of targeted drugs known as CFTR modulators. The article presents studies employing gene therapy techniques for CF, which are based on the targeted delivery of a normal copy of the CFTR gene cDNA to the respiratory tract via viral or non-viral vectors. Some studies have demonstrated the efficacy of RNA therapeutic interventions in restoring splicing, promoting the production of mature RNA, and increasing the functional expression of the CFTR protein. The review also analyzes literature data that consider methods of etiotropic therapy for CF, which consists of targeted correction of the CFTR gene using artificial restriction enzymes, the CRISPR/Cas9 system and a complex of peptide-nucleic acids. In a prospective plan, the use of cell therapy methods in the treatment of lung damage in CF is considered.
Collapse
Affiliation(s)
- T N Kireeva
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - D I Zhigalina
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N A Skryabin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
2
|
Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, K P, Bonam SR, Kurapati R, Zheng J, Chai D. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol 2024; 15:1332939. [PMID: 38361919 PMCID: PMC10867258 DOI: 10.3389/fimmu.2024.1332939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Boyue Yu
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pavithra K
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Jahanshahi S, Ouyang H, Ahmed C, Zahedi Amiri A, Dahal S, Mao YQ, Van Ommen DAJ, Malty R, Duan W, Been T, Hernandez J, Mangos M, Nurtanto J, Babu M, Attisano L, Houry WA, Moraes TJ, Cochrane A. Broad spectrum post-entry inhibitors of coronavirus replication: Cardiotonic steroids and monensin. Virology 2024; 589:109915. [PMID: 37931588 DOI: 10.1016/j.virol.2023.109915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Choudhary Ahmed
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ali Zahedi Amiri
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Subha Dahal
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qian Mao
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Ramy Malty
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Terek Been
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Mangos
- Donnelly Center, University of Toronto, Ontario, Canada
| | | | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Liliana Attisano
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Donnelly Center, University of Toronto, Ontario, Canada
| | - Walid A Houry
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Dept. of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan Cochrane
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Allegretta C, Difonzo G, Caponio F, Tamma G, Laselva O. Olive Leaf Extract (OLE) as a Novel Antioxidant That Ameliorates the Inflammatory Response in Cystic Fibrosis. Cells 2023; 12:1764. [PMID: 37443798 PMCID: PMC10340374 DOI: 10.3390/cells12131764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The deletion of phenylalanine at position 508 (F508del) produces a misfolded CFTR protein that is retained in the ER and degraded. The lack of normal CFTR channel activity is associated with chronic infection and inflammation which are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. Moreover, LPS-dependent oxidative stress downregulates CFTR function in airway epithelial cells. Olive leaf extract (OLE) is used in traditional medicine for its effects, including anti-oxidant and anti-inflammatory ones. We found that OLE decreased the intracellular ROS levels in a dose-response manner in CFBE cells. Moreover, OLE attenuates the inflammatory response to LPS or IL-1β/TNFα stimulation, mimicking the infection and inflammatory status of CF patients, in CFBE and primary nasal epithelial (HNE) cells. Furthermore, we demonstrated that OLE restored the LPS-mediated decrease of TrikfaftaTM-dependent F508del-CFTR function in CFBE and HNE cultures. These findings provide strong evidence of OLE to prevent redox imbalance and inflammation that can cause chronic lung damage by enhancing the antioxidant activity and attenuating inflammation in CF airway epithelial cells. Additionally, OLE might be used in combination with CFTR modulators therapy to improve their efficacy in CF patients.
Collapse
Affiliation(s)
- Caterina Allegretta
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
5
|
Terlizzi V, Centrone C, Ferrari B, Castellani C, Gunawardena TNA, Taccetti G, Laselva O. Modulator Therapy in Cystic Fibrosis Patients with cis Variants in F508del Complex Allele: A Short-Term Observational Case Series. J Pers Med 2022; 12:jpm12091421. [PMID: 36143206 PMCID: PMC9504164 DOI: 10.3390/jpm12091421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies reported the influence of cis variants in F508del cystic fibrosis (CF) patients in their responses to CFTR modulators. The current study is a prospective, observational study involving three patients with CF and pancreatic insufficiency, carrying a complex allele including F508del with A238V, I1027T, or L467F. We report clinical data before and after 4 weeks of treatment with tezacaftor (TEZ)/ivacaftor (IVA), elexacaftor (ELX)/TEZ/IVA, and lumacaftor (LUM)/IVA for patients with complex alleles A238V, I1027T, and L467F, respectively. The 50-year-old patient bearing F508del;A238V/D1152H showed a normal sweat test (13 mEq/L) and improvements in forced expiratory volume in the first second (FEV1) (+7 points), body mass index (BMI) (+0.85), and respiratory CF Questionnaire-Revised (CFQ-R) domain (+22.2 points). The 12-year-old patient bearing F508del;I1027T/R709X showed an improvement in a sweat test (−40 mEq/l), FEV1 (+9 points) and the respiratory CFQ-R domain (+16.7 points). No changes in outcomes were observed for the 6-year-old patient F508del;L467F/F508del. Our data highlight that the reported variants do not modify the phenotypic expression of F508del. Searching L467F is crucial in CF patients with F508del nonresponsive to ELX/TEZ/IVA. Further data are needed to evaluate the clinical effect of these variants after a longer follow up.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Paediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital, 50139 Florence, Italy
- Correspondence: (V.T.); (O.L.); Tel.: +39-0881588074 (O.L.)
| | - Claudia Centrone
- Diagnostic Genetics Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Beatrice Ferrari
- Rehabilitation Unit, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Chiara Castellani
- Department of Radiology, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Tarini N. A. Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 8X4, Canada
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 8X4, Canada
| | - Giovanni Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence: (V.T.); (O.L.); Tel.: +39-0881588074 (O.L.)
| |
Collapse
|
6
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
7
|
Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S, Massoud EES, Rahman MH, Cavalu S. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes (Basel) 2022; 13:1370. [PMID: 36011281 PMCID: PMC9407213 DOI: 10.3390/genes13081370] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past few decades, gene therapy has gained immense importance in medical research as a promising treatment strategy for diseases such as cancer, AIDS, Alzheimer's disease, and many genetic disorders. When a gene needs to be delivered to a target cell inside the human body, it has to pass a large number of barriers through the extracellular and intracellular environment. This is why the delivery of naked genes and nucleic acids is highly unfavorable, and gene delivery requires suitable vectors that can carry the gene cargo to the target site and protect it from biological degradation. To date, medical research has come up with two types of gene delivery vectors, which are viral and nonviral vectors. The ability of viruses to protect transgenes from biological degradation and their capability to efficiently cross cellular barriers have allowed gene therapy research to develop new approaches utilizing viruses and their different genomes as vectors for gene delivery. Although viral vectors are very efficient, science has also come up with numerous nonviral systems based on cationic lipids, cationic polymers, and inorganic particles that provide sustainable gene expression without triggering unwanted inflammatory and immune reactions, and that are considered nontoxic. In this review, we discuss in detail the latest data available on all viral and nonviral vectors used in gene delivery. The mechanisms of viral and nonviral vector-based gene delivery are presented, and the advantages and disadvantages of all types of vectors are also given.
Collapse
Affiliation(s)
- Muhammad Hammad Butt
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Muhammad Zaman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Abrar Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Rahima Khan
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Sara Hafeez
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
8
|
Veit G, Silva I, Conese M, Laselva O. Editorial: Mechanisms of Novel Drugs and Gene Modifiers in the Treatment of Cystic Fibrosis. Front Mol Biosci 2022; 9:975946. [PMID: 35903150 PMCID: PMC9315944 DOI: 10.3389/fmolb.2022.975946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva,
| |
Collapse
|
9
|
Laselva O, Criscione ML, Allegretta C, Di Gioia S, Liso A, Conese M. Insulin-Like Growth Factor Binding Protein (IGFBP-6) as a Novel Regulator of Inflammatory Response in Cystic Fibrosis Airway Cells. Front Mol Biosci 2022; 9:905468. [PMID: 35903151 PMCID: PMC9322660 DOI: 10.3389/fmolb.2022.905468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic Fibrosis (CF) patients are prone to contracting bacterial lung infections with opportunistic pathogens, especially Pseudomonas aeruginosa. Prolonged P. aeruginosa infections have been linked to chronic inflammation in the CF lung, whose hallmarks are increased levels of cytokines (i.e., TNF-α, IL-1β, IL-6) and neutrophil attraction by chemokines, like IL-8. Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system and was found at higher levels in the sera and synovial tissue of rheumatoid arthritis patients. Moreover, it has been demonstrated that IGFBP-6 has chemoattractant properties towards cells of the innate (neutrophils, monocytes) and adaptive (T cells) immunity. However, it is not known whether IGFBP-6 expression is dysregulated in airway epithelial cells under infection/inflammatory conditions. Therefore, we first measured the basal IGFBP-6 mRNA and protein levels in bronchial epithelial cells lines (Wt and F508del-CFTR CFBE), finding they both are upregulated in F508del-CFTR CFBE cells. Interestingly, LPS and IL-1β+TNFα treatments increased the IGFBP-6 mRNA level, that was reduced after treatment with an anti-inflammatory (Dimethyl Fumarate) in CFBE cell line and in patient-derived nasal epithelial cultures. Lastly, we demonstrated that IGFBP-6 reduced the level of pro-inflammatory cytokines in both CFBE and primary nasal epithelial cells, without affecting rescued CFTR expression and function. The addition of a neutralizing antibody to IGFBP-6 increased pro-inflammatory cytokines expression under challenge with LPS. Together, these data suggest that IGFBP-6 may play a direct role in the CF-associated inflammation.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| | - Maria Laura Criscione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| |
Collapse
|
10
|
Gong J, He G, Wang C, Bartlett C, Panjwani N, Mastromatteo S, Lin F, Keenan K, Avolio J, Halevy A, Shaw M, Esmaeili M, Côté-Maurais G, Adam D, Bégin S, Bjornson C, Chilvers M, Reisman J, Price A, Parkins M, van Wylick R, Berthiaume Y, Bilodeau L, Mateos-Corral D, Hughes D, Smith MJ, Morrison N, Brusky J, Tullis E, Stephenson AL, Quon BS, Wilcox P, Leung WM, Solomon M, Sun L, Brochiero E, Moraes TJ, Gonska T, Ratjen F, Rommens JM, Strug LJ. Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease. NPJ Genom Med 2022; 7:28. [PMID: 35396391 PMCID: PMC8993824 DOI: 10.1038/s41525-022-00299-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Over 400 variants in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) are CF-causing. CFTR modulators target variants to improve lung function, but marked variability in response exists and current therapies do not address all CF-causing variants highlighting unmet needs. Alternative epithelial ion channel/transporters such as SLC26A9 could compensate for CFTR dysfunction, providing therapeutic targets that may benefit all individuals with CF. We investigate the relationship between rs7512462, a marker of SLC26A9 activity, and lung function pre- and post-treatment with CFTR modulators in Canadian and US CF cohorts, in the general population, and in those with chronic obstructive pulmonary disease (COPD). Rs7512462 CC genotype is associated with greater lung function in CF individuals with minimal function variants (for which there are currently no approved therapies; p = 0.008); and for gating (p = 0.033) and p.Phe508del/ p.Phe508del (p = 0.006) genotypes upon treatment with CFTR modulators. In parallel, human nasal epithelia with CC and p.Phe508del/p.Phe508del after Ussing chamber analysis of a combination of approved and experimental modulator treatments show greater CFTR function (p = 0.0022). Beyond CF, rs7512462 is associated with peak expiratory flow in a meta-analysis of the UK Biobank and Spirometa Consortium (p = 2.74 × 10-44) and provides p = 0.0891 in an analysis of COPD case-control status in the UK Biobank defined by spirometry. These findings support SLC26A9 as a therapeutic target to improve lung function for all people with CF and in individuals with other obstructive lung diseases.
Collapse
Affiliation(s)
- Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gengming He
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Cheng Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Bartlett
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Mastromatteo
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anat Halevy
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Shaw
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Guillaume Côté-Maurais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Bégin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Mark Chilvers
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Joe Reisman
- The Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - April Price
- The Children's Hospital, London Health Science Centre, London, ON, Canada
| | | | | | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lara Bilodeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | | | - Mary J Smith
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nancy Morrison
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Janna Brusky
- Department of Pediatrics, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | - Melinda Solomon
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Tanja Gonska
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Johanna M Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada.
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Anticipating New Treatments for Cystic Fibrosis: A Global Survey of Researchers. J Clin Med 2022; 11:jcm11051283. [PMID: 35268374 PMCID: PMC8911007 DOI: 10.3390/jcm11051283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis is a life-threatening disease that affects at least 100,000 people worldwide. It is caused by a defect in the cystic fibrosis transmembrane regulator (CFTR) gene and presently, 360 CFTR-causing mutations have been identified. Since the discovery of the CFTR gene, the expectation of developing treatments that can substantially increase the quality of life or even cure cystic fibrosis patients is growing. Yet, it is still uncertain today which developing treatments will be successful against cystic fibrosis. This study addresses this gap by assessing the opinions of over 524 cystic fibrosis researchers who participated in a global web-based survey. For most respondents, CFTR modulator therapies are the most likely to succeed in treating cystic fibrosis in the next 15 years, especially through the use of CFTR modulator combinations. Most respondents also believe that fixing or replacing the CFTR gene will lead to a cure for cystic fibrosis within 15 years, with CRISPR-Cas9 being the most likely genetic tool for this purpose.
Collapse
|
12
|
Iazzi M, Astori A, St-Germain J, Raught B, Gupta GD. Proximity Profiling of the CFTR Interaction Landscape in Response to Orkambi. Int J Mol Sci 2022; 23:2442. [PMID: 35269585 PMCID: PMC8910062 DOI: 10.3390/ijms23052442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Audrey Astori
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Jonathan St-Germain
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Gagan D. Gupta
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
13
|
He G, Panjwani N, Avolio J, Ouyang H, Keshavjee S, Rommens JM, Gonska T, Moraes TJ, Strug LJ. Expression of cystic fibrosis lung disease modifier genes in human airway models. J Cyst Fibros 2022; 21:616-622. [DOI: 10.1016/j.jcf.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
14
|
A new platform for high-throughput therapy testing on iPSC-derived lung progenitor cells from cystic fibrosis patients. Stem Cell Reports 2021; 16:2825-2837. [PMID: 34678210 PMCID: PMC8581165 DOI: 10.1016/j.stemcr.2021.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies. A Canadian resource (CFIT) has CF donor-matched iPSCs and nasal epithelial cells Lung progenitor cells (LPCs) differentiated from iPSCs express CFTR LPCs from people with rare CFTR mutations enable high-throughput therapy testing Matching nasal cultures can validate patient-specific drug responses in LPCs
Collapse
|
15
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
16
|
Three-Dimensional Airway Spheroids and Organoids for Cystic Fibrosis Research. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.
Collapse
|
17
|
Potential of helper-dependent Adenoviral vectors in CRISPR-cas9-mediated lung gene therapy. Cell Biosci 2021; 11:145. [PMID: 34301308 PMCID: PMC8305863 DOI: 10.1186/s13578-021-00662-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Since CRISPR/Cas9 was harnessed to edit DNA, the field of gene therapy has witnessed great advances in gene editing. New avenues were created for the treatment of diseases such as Cystic Fibrosis (CF). CF is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Despite the success of gene editing with the CRISPR/Cas9 in vitro, challenges still exist when using CRISPR/Cas9 in vivo to cure CF lung disease. The delivery of CRISPR/Cas9 into lungs, as well as the difficulty to achieve the efficiency required for clinical efficacy, has brought forth new challenges. Viral and non-viral vectors have been shown to deliver DNA successfully in vivo, but the sustained expression of CFTR was not adequate. Before the introduction of Helper-Dependent Adenoviral vectors (HD-Ad), clinical trials of treating pulmonary genetic diseases with first-generation viral vectors have shown limited efficacy. With the advantages of larger capacity and lower immunogenicity of HD-Ad, together with the versatility of the CRISPR/Cas9 system, delivering CRISPR/Cas9 to the airway with HD-Ad for lung gene therapy shows great potential. In this review, we discuss the status of the application of CRISPR/Cas9 in CF gene therapy, the existing challenges in the field, as well as new hurdles introduced by the presence of CRISPR/Cas9 in the lungs. Through the analysis of these challenges, we present the potential of CRISPR/Cas9-mediated lung gene therapy using HD-Ad vectors with Cystic Fibrosis lung disease as a model of therapy.
Collapse
|
18
|
Laselva O, Qureshi Z, Zeng ZW, Petrotchenko EV, Ramjeesingh M, Hamilton CM, Huan LJ, Borchers CH, Pomès R, Young R, Bear CE. Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. iScience 2021; 24:102542. [PMID: 34142049 PMCID: PMC8184517 DOI: 10.1016/j.isci.2021.102542] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ivacaftor (VX-770) was the first cystic fibrosis transmembrane conductance regulator (CFTR) modulatory drug approved for the treatment of patients with cystic fibrosis. Electron cryomicroscopy (cryo-EM) studies of detergent-solubilized CFTR indicated that VX-770 bound to a site at the interface between solvent and a hinge region in the CFTR protein conferred by transmembrane (tm) helices: tm4, tm5, and tm8. We re-evaluated VX-770 binding to CFTR in biological membranes using photoactivatable VX-770 probes. One such probe covalently labeled CFTR at two sites as determined following trypsin digestion and analysis by tandem-mass spectrometry. One labeled peptide resides in the cytosolic loop 4 of CFTR and the other is located in tm8, proximal to the site identified by cryo-EM. Complementary data from functional and molecular dynamic simulation studies support a model, where VX-770 mediates potentiation via multiple sites in the CFTR protein.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Zafar Qureshi
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Zhi-Wei Zeng
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Evgeniy V. Petrotchenko
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Mohabir Ramjeesingh
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | | | - Ling-Jun Huan
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Régis Pomès
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Robert Young
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Christine E. Bear
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Laselva O, Bartlett C, Gunawardena TNA, Ouyang H, Eckford PDW, Moraes TJ, Bear CE, Gonska T. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator. Eur Respir J 2021; 57:2002774. [PMID: 33303536 PMCID: PMC8209484 DOI: 10.1183/13993003.02774-2020] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claire Bartlett
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tarini N A Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul D W Eckford
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Physiology, University of Toronto, Toronto, ON, Canada
- Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
21
|
Phenotyping Rare CFTR Mutations Reveal Functional Expression Defects Restored by TRIKAFTA TM. J Pers Med 2021; 11:jpm11040301. [PMID: 33920764 PMCID: PMC8071105 DOI: 10.3390/jpm11040301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
The rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, c.1826A > G (H609R) and c.3067_3072delATAGTG (I1023_V1024del), are associated with severe lung disease. Despite the existence of four CFTR targeted therapies, none have been approved for individuals with these mutations because the associated molecular defects were not known. In this study we examined the consequences of these mutations on protein processing and channel function in HEK293 cells. We found that, similar to F508del, H609R and I1023_V1024del-CFTR exhibited reduced protein processing and altered channel function. Because the I1023_V1024del mutation can be linked with the mutation, I148T, we also examined the protein conferred by transfection of a plasmid bearing both mutations. Interestingly, together with I148T, there was no further reduction in channel function exhibited by I1023-V1024del. Both H609R and I1023_V1024del failed to exhibit significant correction of their functional expression with lumacaftor and ivacaftor. In contrast, the triple modulator combination found in TRIKAFTATM, i.e., tezacaftor, elexacaftor and ivacaftor rescued trafficking and function of both of these mutants. These in-vitro findings suggest that patients harbouring H609R or I1023_V1024del, alone or with I148T, may benefit clinically from treatment with TRIKAFTATM.
Collapse
|
22
|
Nguyen QPH, Liu Z, Albulescu A, Ouyang H, Zlock L, Coyaud E, Laurent E, Finkbeiner W, Moraes TJ, Raught B, Mennella V. Comparative Super-Resolution Mapping of Basal Feet Reveals a Modular but Distinct Architecture in Primary and Motile Cilia. Dev Cell 2020; 55:209-223.e7. [PMID: 33038334 DOI: 10.1016/j.devcel.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/18/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
In situ molecular architecture analysis of organelles and protein assemblies is essential to understanding the role of individual components and their cellular function, and to engineering new molecular functionalities. Through a super-resolution-driven approach, here we characterize the organization of the ciliary basal foot, an appendage of basal bodies whose main role is to provide a point of anchoring to the microtubule cytoskeleton. Quantitative image analysis shows that the basal foot is organized into three main regions linked by elongated coiled-coil proteins, revealing a conserved modular architecture in primary and motile cilia, but showing distinct features reflecting its specialized functions. Using domain-specific BioID proximity labeling and super-resolution imaging, we identify CEP112 as a basal foot protein and other candidate components of this assembly, aiding future investigations on the role of basal foot across different cilia systems.
Collapse
Affiliation(s)
- Quynh P H Nguyen
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Zhen Liu
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Alexandra Albulescu
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Hong Ouyang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L8, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L8, Canada
| | - Walter Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Theo J Moraes
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Brian Raught
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L8, Canada
| | - Vito Mennella
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; NIHR Southampton Biomedical Research Center, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
23
|
Laselva O, Bartlett C, Popa A, Ouyang H, Gunawardena TNA, Gonska T, Moraes TJ, Bear CE. Emerging preclinical modulators developed for F508del-CFTR have the potential to be effective for ORKAMBI resistant processing mutants. J Cyst Fibros 2020; 20:106-119. [PMID: 32741662 DOI: 10.1016/j.jcf.2020.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND F508del is prototypical of Class 2 CFTR mutations associated with protein misprocessing and reduced function. Corrector compounds like lumacaftor partially rescue the processing defect of F508del-CFTR whereas potentiators like ivacaftor, enhance its channel activity once trafficked to the cell surface. We asked if emerging modulators developed for F508del-CFTR can rescue Class 2 mutations previously shown to be poorly responsive to lumacaftor and ivacaftor. METHODS Rescue of mutant CFTRs by the correctors: AC1, AC2-1 or AC2-2 and the potentiator, AP2, was studied in HEK-293 cells and in primary human nasal epithelial (HNE) cultures, using a membrane potential assay and Ussing chamber, respectively. RESULTS In HEK-293 cells, we found that a particular combination of corrector molecules (AC1 plus AC2-1) and a potentiator (AP2) was effective in rescuing both the misprocessing and reduced function of M1101K and G85E respectively. These findings were recapitulated in patient-derived nasal cultures, although another corrector combination, AC1 plus AC2-2 also improved misprocessing in these primary tissues. Interestingly, while this corrector combination only led to a modest increase in the abundance of mature N1303K-CFTR it did enable its functional expression in the presence of the potentiator, AP2, in part, because the nominal corrector, AC2-2 also exhibits potentiator activity. CONCLUSIONS Strategic combinations of novel modulators can potentially rescue Class 2 mutants thought to be relatively unresponsive to lumacaftor and ivacaftor.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Claire Bartlett
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Alec Popa
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | | | - Tanja Gonska
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|