1
|
Xu Y, Ying L, Lang JK, Hinz B, Zhao R. Modeling mechanical activation of macrophages during pulmonary fibrogenesis for targeted anti-fibrosis therapy. SCIENCE ADVANCES 2024; 10:eadj9559. [PMID: 38552026 PMCID: PMC10980276 DOI: 10.1126/sciadv.adj9559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMβ2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Linxuan Ying
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jennifer K. Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York; Department of Biomedical Engineering, University at Buffalo, State University of New York; Department of Medicine, University at Buffalo, State University of New York; Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
He M, Yang T, Zhou J, Wang R, Li X. A real-world study of antifibrotic drugs-related adverse events based on the United States food and drug administration adverse event reporting system and VigiAccess databases. Front Pharmacol 2024; 15:1310286. [PMID: 38464722 PMCID: PMC10920264 DOI: 10.3389/fphar.2024.1310286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Objectives: This study aims to investigate adverse events (AEs) and adverse drug reactions (ADRs) associated with pirfenidone and nintedanib, two antifibrotic drugs used to treat idiopathic pulmonary fibrosis (IPF). Methods: Reporting odds ratio (ROR) and proportional reporting ratio (PRR) analyses were conducted to assess the association between these drugs and signals at both the preferred term (PT) and system organ class (SOC) levels. Results: 55,949 reports for pirfenidone and 35,884 reports for nintedanib were obtained from the FAERS database. The VigiAccess database provided 37,187 reports for pirfenidone and 23,134 reports for nintedanib. Male patients and individuals over the age of 65 were more likely to report AEs. Gastrointestinal disorders emerged as the most significant signal at SOC level for both drugs. Furthermore, nausea, diarrhoea, and decreased appetite were observed at the PT level. We further identified notable signals, including hemiplegic migraine for pirfenidone and asthenia, constipation, and flatulence for nintedanib, which were previously unknown or underestimated ADRs. Conclusion: This study has identified AEs and ADRs associated with pirfenidone and nintedanib, confirming that the majority of the corresponding label information indicates relative safety. However, it is essential to take unexpected risk signals seriously, necessitating further research to manage the safety profiles of these drugs.
Collapse
Affiliation(s)
| | | | | | | | - Xuehan Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Shin W, Park MY, Kim J, Kim J, Nam JH, Choi J, Yang A, Yoo H, Lee Y, Kim A. No drug-drug interactions between selective prolyl-tRNA synthetase inhibitor, bersiporocin, and pirfenidone or nintedanib in healthy participants. Clin Transl Sci 2024; 17:e13701. [PMID: 38105420 PMCID: PMC10777433 DOI: 10.1111/cts.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Bersiporocin, a potent and selective prolyl-tRNA synthetase inhibitor, is expected to show a synergistic effect with pirfenidone or nintedanib in patients with idiopathic pulmonary fibrosis. To validate the combination therapy of bersiporocin with pirfenidone or nintedanib, a randomized, open-label, two-part, one-sequence, three-period, three-treatment study was designed to evaluate the effect of drug-drug interactions (DDI) regarding their pharmacokinetics, safety, and tolerability in healthy participants. In addition, the pharmacokinetic profiles of the newly formulated, enteric-coated bersiporocin tablet were evaluated after single and multiple administrations. The potential effects of cytochrome P450 2D6 (CYP2D6) genotyping on bersiporocin pharmacokinetics and DDI were also explored. In Part 1, participants were sequentially administered a single dose of pirfenidone 600 mg, a single dose of bersiporocin 150 mg followed by multiple doses, and bersiporocin in combination with pirfenidone. In Part 2, participants were sequentially administered a single dose of nintedanib 150 mg, multiple doses of bersiporocin 150 mg, and bersiporocin in combination with nintedanib. Forty-six participants completed the study. There was no significant pharmacokinetic DDI between bersiporocin, and pirfenidone or nintedanib. All adverse events (AEs) were mild to moderate and did not include serious AEs, suggesting bersiporocin alone or in combination therapy were well-tolerated. The newly formulated bersiporocin 150 mg tablet showed a moderate accumulation index. There was no significant difference in the pharmacokinetic profiles after administration of bersiporocin alone or in combination therapy between CYP2D6 phenotypes. In conclusion, there are no significant DDI regarding the pharmacokinetics, safety, and tolerability of bersiporocin administration with pirfenidone or nintedanib.
Collapse
Affiliation(s)
- Wonsuk Shin
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical CenterCHA University School of MedicineSeongnam‐siGyeonggi‐doRepublic of Korea
- CHA Global Clinical Trial Center, CHA Bundang Medical CenterSeongnam‐siGyeonggi‐doRepublic of Korea
| | - Min Young Park
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd.SeoulRepublic of Korea
| | - Jongwoo Kim
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd.SeoulRepublic of Korea
| | - Jihyeon Kim
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd.SeoulRepublic of Korea
| | - Jun Hee Nam
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd.SeoulRepublic of Korea
| | - Jongwon Choi
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd.SeoulRepublic of Korea
| | - A‐Young Yang
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical CenterCHA University School of MedicineSeongnam‐siGyeonggi‐doRepublic of Korea
- CHA Global Clinical Trial Center, CHA Bundang Medical CenterSeongnam‐siGyeonggi‐doRepublic of Korea
| | - Hyounggyoon Yoo
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical CenterCHA University School of MedicineSeongnam‐siGyeonggi‐doRepublic of Korea
- CHA Global Clinical Trial Center, CHA Bundang Medical CenterSeongnam‐siGyeonggi‐doRepublic of Korea
| | - Yil‐Seob Lee
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical CenterCHA University School of MedicineSeongnam‐siGyeonggi‐doRepublic of Korea
- CHA Global Clinical Trial Center, CHA Bundang Medical CenterSeongnam‐siGyeonggi‐doRepublic of Korea
| | - Anhye Kim
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical CenterCHA University School of MedicineSeongnam‐siGyeonggi‐doRepublic of Korea
- CHA Global Clinical Trial Center, CHA Bundang Medical CenterSeongnam‐siGyeonggi‐doRepublic of Korea
- Institute for Biomedical Informatics, CHA University School of Medicine, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| |
Collapse
|
4
|
Bonella F, Spagnolo P, Ryerson C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs 2023; 83:1581-1593. [PMID: 37882943 PMCID: PMC10693523 DOI: 10.1007/s40265-023-01950-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/27/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a disease with poor survival. The pathogenesis is complex and encompasses multiple molecular pathways. The first-generation antifibrotics pirfenidone and nintedanib, approved more than 10 years ago, have been shown to reduce the rate of progression, increase the length of life for patients with IPF, and work for other fibrotic lung diseases. In the last two decades, most clinical trials on IPF have failed to meet the primary endpoint and an urgent unmet need remains to identify agents or treatment strategies that can stop disease progression. The pharmacotherapeutic landscape for IPF is moving forward with a number of new drugs currently in clinical development, mostly in phase I and II trials, while only a few phase III trials are running. Since our understanding of IPF pathogenesis is still limited, we should keep focusing our efforts to deeper understand the mechanisms underlying this complex disease and their reflection on clinical phenotypes. This review discusses the key pathogenetic concepts for the development of new antifibrotic agents, presents the newest data on approved therapies, and summarizes new compounds currently in clinical development. Finally, future directions in antifibrotics development are discussed.
Collapse
Affiliation(s)
- Francesco Bonella
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital, University of Duisburg Essen, Essen, Germany.
| | - Paolo Spagnolo
- Cardiac, Thoracic and Vascular, Sciences and Public Health, University of Padova School of Medicine and Surgery, Padua, Italy
| | - Chris Ryerson
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
6
|
Nakamura H, Zhou Y, Sakamoto Y, Yamazaki A, Kurumiya E, Yamazaki R, Hayashi K, Kasuya Y, Watanabe K, Kasahara J, Takabatake M, Tatsumi K, Yoshino I, Honda T, Murayama T. N-butyldeoxynojirimycin (miglustat) ameliorates pulmonary fibrosis through inhibition of nuclear translocation of Smad2/3. Biomed Pharmacother 2023; 160:114405. [PMID: 36804125 DOI: 10.1016/j.biopha.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease. The disease involves excessive accumulation of fibroblasts and myofibroblasts, and myofibroblasts differentiated by pro-fibrotic factors promote the deposition of extracellular matrix proteins such as collagen and fibronectin. Transforming growth factor-β1 is a pro-fibrotic factor that promotes fibroblast-to-myofibroblast differentiation (FMD). Therefore, inhibition of FMD may be an effective strategy for IPF treatment. In this study, we screened the anti-FMD effects of various iminosugars and showed that some compounds, including N-butyldeoxynojirimycin (NB-DNJ, miglustat, an inhibitor of glucosylceramide synthase (GCS)), a clinically approved drug for treating Niemann-Pick disease type C and Gaucher disease type 1, inhibited TGF-β1-induced FMD by inhibiting the nuclear translocation of Smad2/3. N-butyldeoxygalactonojirimycin having GCS inhibitory effect did not attenuate the TGF-β1-induced FMD, suggesting that NB-DNJ exerts the anti-FMD effects by GCS inhibitory effect independent manner. N-butyldeoxynojirimycin did not inhibit TGF-β1-induced Smad2/3 phosphorylation. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, intratracheal or oral administration of NB-DNJ at an early fibrotic stage markedly ameliorated lung injury and deterioration of respiratory functions, such as specific airway resistance, tidal volume, and peak expiratory flow. Furthermore, the anti-fibrotic effects of NB-DNJ in the BLM-induced lung injury model were similar to those of pirfenidone and nintedanib, which are clinically approved drugs for the treatment of IPF. These results suggest that NB-DNJ may be effective for IPF treatment.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuan Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuka Sakamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayako Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Eon Kurumiya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Risa Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyota Hayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshitoshi Kasuya
- Deprtment of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Watanabe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junya Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mamoru Takabatake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
7
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, full version]. Rev Mal Respir 2022; 39:e35-e106. [PMID: 35752506 DOI: 10.1016/j.rmr.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et soins intensifs respiratoires, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et oncologie thoracique, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétence de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean-Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges-Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de pneumologie, GHRMSA, hôpital Emile-Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre-Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor-Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis-Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude-Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
8
|
French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis - 2021 update. Full-length version. Respir Med Res 2022; 83:100948. [PMID: 36630775 DOI: 10.1016/j.resmer.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Since the latest 2017 French guidelines, knowledge about idiopathic pulmonary fibrosis has evolved considerably. METHODS Practical guidelines were drafted on the initiative of the Coordinating Reference Center for Rare Pulmonary Diseases, led by the French Language Pulmonology Society (SPLF), by a coordinating group, a writing group, and a review group, with the involvement of the entire OrphaLung network, pulmonologists practicing in various settings, radiologists, pathologists, a general practitioner, a health manager, and a patient association. The method followed the "Clinical Practice Guidelines" process of the French National Authority for Health (HAS), including an online vote using a Likert scale. RESULTS After a literature review, 54 guidelines were formulated, improved, and then validated by the working groups. These guidelines addressed multiple aspects of the disease: epidemiology, diagnostic procedures, quality criteria and interpretation of chest CT scans, lung biopsy indication and procedures, etiological workup, methods and indications for family screening and genetic testing, assessment of the functional impairment and prognosis, indication and use of antifibrotic agents, lung transplantation, management of symptoms, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are intended to guide the diagnosis and practical management of idiopathic pulmonary fibrosis.
Collapse
|
9
|
Zhang R, Li P, Zhou J, Guo P, Liu Y, Shi S. A novel, simple and reliable method for the determination of hydronidone and its metabolites M3 and M4 in human plasma and urine by HPLC-MS/MS and its application to a pharmacokinetic study in health Chinese subjects. Anal Biochem 2022; 655:114842. [DOI: 10.1016/j.ab.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022]
|
10
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
11
|
Serra López-Matencio JM, Gómez M, Vicente-Rabaneda EF, González-Gay MA, Ancochea J, Castañeda S. Pharmacological Interactions of Nintedanib and Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis in Times of COVID-19 Pandemic. Pharmaceuticals (Basel) 2021; 14:ph14080819. [PMID: 34451916 PMCID: PMC8400767 DOI: 10.3390/ph14080819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of antifibrotic agents have resulted in advances in the therapeutic management of idiopathic pulmonary fibrosis (IPF). Currently, nintedanib and pirfenidone have become the basis of IPF therapy based on the results of large randomized clinical trials showing their safety and efficacy in reducing disease advancement. However, the goal of completely halting disease progress has not been reached yet. Administering nintedanib with add-on pirfenidone is supposed to enhance the therapeutic benefit by simultaneously acting on two different pathogenic pathways. All this becomes more important in the context of the ongoing global pandemic of coronavirus disease 2019 (COVID-19) because of the fibrotic consequences following SARS-CoV-2 infection in some patients. However, little information is available about their drug–drug interaction, which is important mainly in polymedicated patients. The aim of this review is to describe the current management of progressive fibrosing interstitial lung diseases (PF-ILDs) in general and of IPF in particular, focusing on the pharmacokinetic drug-drug interactions between these two drugs and their relationship with other medications in patients with IPF.
Collapse
Affiliation(s)
| | - Manuel Gómez
- Methodology Unit, Health Research Institute Princesa (IIS-IP), c/Diego de León 62, 28006 Madrid, Spain;
| | | | - Miguel A. González-Gay
- Rheumatology Service, Marqués de Valdecilla Universitary Hospital, University of Cantabria, Av. de Valdecilla 25, 39008 Santander, Spain;
| | - Julio Ancochea
- Pneumology Service, Princesa Hospital, Autonomous University of Madrid (UAM), IIS-Princesa, c/Diego de León 62, 28006 Madrid, Spain;
- Department of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain
| | - Santos Castañeda
- Rheumatology Service, Princesa Hospital, IIS-Princesa, c/Diego de León 62, 28006 Madrid, Spain;
- Department of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain
- Correspondence: or ; Tel.: +34-915-202-473; Fax: +34-914-018-752
| |
Collapse
|
12
|
Hisata S, Bando M, Homma S, Kataoka K, Ogura T, Izumi S, Sakamoto S, Watanabe K, Saito Y, Shimizu Y, Kato M, Nishioka Y, Hara H, Waseda Y, Tanino Y, Yatera K, Hashimoto S, Mukae H, Inase N. Safety and tolerability of combination therapy with pirfenidone and nintedanib for idiopathic pulmonary fibrosis: A multicenter retrospective observational study in Japan. Respir Investig 2021; 59:819-826. [PMID: 33994347 DOI: 10.1016/j.resinv.2021.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Phase IV clinical trials in Western countries have reported that combined therapy with pirfenidone and nintedanib for idiopathic pulmonary fibrosis (IPF) has a manageable safety profile. However, data on the long-term safety and tolerability of this combination treatment in the real-world setting in Japan are limited. METHODS The retrospective data of 46 patients with IPF who received combination therapy with pirfenidone and nintedanib were obtained from 16 institutes in Japan. Adverse events and adverse drug reactions (ADRs) were reported through a retrospective review of medical records. RESULTS Nintedanib and pirfenidone were added to preceding treatment with antifibrotic drugs in 32 (69.6%) and 13 (28.3%) patients, respectively. In one patient (2.1%), the two drugs were concurrently initiated. The mean duration of monotherapy before initiating the combination was 26.3 months. In 26 of 38 patients (68.4%), the Gender-Age-Physiology index stage was II or III. Thirty-three patients (71.7%) had some ADRs, and 14 patients (30.4%) permanently discontinued either drug or both drugs owing to the development of ADRs during the observation period (mean: 59 weeks). The percentage of grade III or IV IPF according to the Japanese Respiratory Society severity classification was higher in patients who permanently discontinued either drug or both drugs than in those who continued both drugs (90.9% [10/11; 3 undetermined grade] vs. 61.1% [11/18; 1 undetermined grade]). Decreased appetite (18/46, 39.1%) and diarrhea (16/46, 34.8%) were frequently observed ADRs. Two patients (4.3%) had serious ADRs (liver toxicity and pneumothorax). CONCLUSIONS Real-world data imply that combination therapy with pirfenidone and nintedanib for IPF has a manageable safety/tolerability profile.
Collapse
Affiliation(s)
- Shu Hisata
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Masashi Bando
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | - Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Diseases Research, School of Medicine, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Takashi Ogura
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kizuku Watanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuhiko Nishioka
- Graduate School of Biomedical Sciences, Tokushima University, Department of Respiratory Medicine and Rheumatology, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuko Waseda
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Kitakyushu, 807-8555, Japan
| | - Seishu Hashimoto
- Department of Respiratory Medicine, Tenri Hospital, 200, Mishima-cho, Tenri, 632-8552, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Naohiko Inase
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | | |
Collapse
|
13
|
Sgalla G, Comes A, Richeldi L. An updated safety review of the drug treatments for idiopathic pulmonary fibrosis. Expert Opin Drug Saf 2021; 20:1035-1048. [PMID: 33881959 DOI: 10.1080/14740338.2021.1921143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The approval of antifibrotic agents nintedanib and pirfenidone revolutionized the management of idiopathic pulmonary fibrosis (IPF). These treatments showed acceptable tolerability in randomized-clinical trials; however, they have been associated with a spectrum of potential side effects which require careful assessment of risks and benefits in the individual patient before commencing and during antifibrotic therapy. AREAS COVERED The accrued evidence on safety of nintedanib and pirfenidone is summarized, from the first randomized clinical trials to the open-label extension studies and post-marketing clinical experiences which helped clarify the long-term tolerability of these drugs. EXPERT OPINION The data collected over the last years confirmed the comparable tolerability profile of nintedanib and pirfenidone. The physician's assessment of expected side effects may help decide the optimal first-line therapy for the individual patient. Patient's counseling during treatment remains essential to manage emerging adverse events and eventually inform the decision of drug discontinuation.
Collapse
Affiliation(s)
- Giacomo Sgalla
- UOC Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alessia Comes
- Istituto di Medicina Interna, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Luca Richeldi
- UOC Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Medicina Interna, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
14
|
Abstract
Progressive fibrosing interstitial lung diseases (ILDs) involve similar pathophysiological processes, indicating the potential for common approaches to treatment. Nintedanib (Ofev®), an intracellular tyrosine kinase inhibitor (TKI) with antifibrotic properties, was one of the first drugs approved for use in idiopathic pulmonary fibrosis (IPF) and has more recently been approved for use in other chronic fibrosing ILDs with a progressive phenotype and systemic sclerosis-associated ILD (SSc-ILD). In multinational phase III trials, nintedanib significantly reduced the annual rate of decline in forced vital capacity (FVC) in adults with IPF, other progressive fibrosing ILDs and SSc-ILD. Reductions in FVC decline with nintedanib in patients with IPF and severe gas exchange impairment were comparable to those in patients with milder disease. Real-world experience in patients with IPF supports the effectiveness of nintedanib in slowing ILD progression. Nintedanib had a manageable tolerability profile in patients with fibrotic ILDs in clinical trials and real-world studies. No new safety signals have emerged from global pharmacovigilance data. Nintedanib continues to represent an important therapeutic option in patients with IPF and is the first drug to be approved for use in patients with other chronic fibrosing ILDs with a progressive phenotype or SSc-ILD, with these approvals expanding the range of fibrotic ILDs for which nintedanib can be prescribed.
Collapse
Affiliation(s)
- Yvette N Lamb
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
15
|
Wind S, Schmid U, Freiwald M, Marzin K, Lotz R, Ebner T, Stopfer P, Dallinger C. Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin Pharmacokinet 2020; 58:1131-1147. [PMID: 31016670 PMCID: PMC6719436 DOI: 10.1007/s40262-019-00766-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nintedanib is an oral, small-molecule tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis and patients with advanced non-small cell cancer of adenocarcinoma tumour histology. Nintedanib competitively binds to the kinase domains of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF). Studies in healthy volunteers and in patients with advanced cancer have shown that nintedanib has time-independent pharmacokinetic characteristics. Maximum plasma concentrations of nintedanib are reached approximately 2–4 h after oral administration and thereafter decline at least bi-exponentially. Over the investigated dose range of 50–450 mg once daily and 150–300 mg twice daily, nintedanib exposure increases are dose proportional. Nintedanib is metabolised via hydrolytic ester cleavage, resulting in the formation of the free acid moiety that is subsequently glucuronidated and excreted in the faeces. Less than 1% of drug-related radioactivity is eliminated in urine. The terminal elimination half-life of nintedanib is about 10–15 h. Accumulation after repeated twice-daily dosing is negligible. Sex and renal function have no influence on nintedanib pharmacokinetics, while effects of ethnicity, low body weight, older age and smoking are within the inter-patient variability range of nintedanib exposure and no dose adjustments are required. Administration of nintedanib in patients with moderate or severe hepatic impairment is not recommended, and patients with mild hepatic impairment should be monitored closely and the dose adjusted accordingly. Nintedanib has a low potential for drug–drug interactions, especially with drugs metabolised by cytochrome P450 enzymes. Concomitant treatment with potent inhibitors or inducers of the P-glycoprotein transporter can affect the pharmacokinetics of nintedanib. At an investigated dose of 200 mg twice daily, nintedanib does not have proarrhythmic potential.
Collapse
Affiliation(s)
- Sven Wind
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.
| | - Ulrike Schmid
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Matthias Freiwald
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Kristell Marzin
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Thomas Ebner
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Peter Stopfer
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Claudia Dallinger
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
16
|
Kaner RJ, Bajwa EK, El-Amine M, Gorina E, Gupta R, Lazarus HM, Luckhardt TR, Mouded M, Posada K, Richeldi L, Stauffer J, Tutuncu A, Martinez FJ. Design of Idiopathic Pulmonary Fibrosis Clinical Trials in the Era of Approved Therapies. Am J Respir Crit Care Med 2020; 200:133-139. [PMID: 30985215 DOI: 10.1164/rccm.201903-0592pp] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robert J Kaner
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,2 Department of Genetic Medicine, Weill Cornell Medicine, New York, New York
| | | | | | - Eduard Gorina
- 5 Pliant Therapeutics, Inc., South San Francisco, California
| | - Renu Gupta
- 6 Promedior, Inc., Lexington, Massachusetts
| | - Howard M Lazarus
- 7 Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Tracy R Luckhardt
- 8 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Kaity Posada
- 10 Acceleron Pharma, Inc., Cambridge, Massachusetts
| | - Luca Richeldi
- 11 Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - John Stauffer
- 12 Genentech, Inc., South San Francisco, California; and
| | | | - Fernando J Martinez
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
17
|
Valenzuela C, Torrisi SE, Kahn N, Quaresma M, Stowasser S, Kreuter M. Ongoing challenges in pulmonary fibrosis and insights from the nintedanib clinical programme. Respir Res 2020; 21:7. [PMID: 31906942 PMCID: PMC6945404 DOI: 10.1186/s12931-019-1269-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
The approvals of nintedanib and pirfenidone changed the treatment paradigm in idiopathic pulmonary fibrosis (IPF), and increased our understanding of the underlying disease mechanisms. Nonetheless, many challenges and unmet needs remain in the management of patients with IPF and other progressive fibrosing interstitial lung diseases.This review describes how the nintedanib clinical programme has helped to address some of these challenges. Data from this programme have informed changes to the IPF diagnostic guidelines, the timing of treatment initiation, and the assessment of disease progression. The use of nintedanib to treat patients with advanced lung function impairment, concomitant emphysema, patients awaiting lung transplantation and patients with IPF and lung cancer is discussed. The long-term use of nintedanib and an up-to-date summary of nintedanib in clinical practice are discussed. Directions for future research, namely emerging therapeutic options, precision medicine and other progressive fibrosing interstitial lung diseases, are described.Further developments in these areas should continue to improve patient outcomes.
Collapse
Affiliation(s)
- Claudia Valenzuela
- Hospital Universitario de La Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sebastiano Emanuele Torrisi
- University Hospital Policlinico-Vittorio Emanuele, Catania, Italy
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Manuel Quaresma
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center, Member of the German Center for Lung Research, Heidelberg, Germany.
| |
Collapse
|
18
|
Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The therapy of idiopathic pulmonary fibrosis: what is next? Eur Respir Rev 2019; 28:190021. [PMID: 31484664 PMCID: PMC9488691 DOI: 10.1183/16000617.0021-2019] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease, characterised by progressive scarring of the lung and associated with a high burden of disease and early death. The pathophysiological understanding, clinical diagnostics and therapy of IPF have significantly evolved in recent years. While the recent introduction of the two antifibrotic drugs pirfenidone and nintedanib led to a significant reduction in lung function decline, there is still no cure for IPF; thus, new therapeutic approaches are needed. Currently, several clinical phase I-III trials are focusing on novel therapeutic targets. Furthermore, new approaches in nonpharmacological treatments in palliative care, pulmonary rehabilitation, lung transplantation, management of comorbidities and acute exacerbations aim to improve symptom control and quality of life. Here we summarise new therapeutic attempts and potential future approaches to treat this devastating disease.
Collapse
Affiliation(s)
- Vivien Somogyi
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Nazia Chaudhuri
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - Sebastiano Emanuele Torrisi
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Regional Referral Centre for Rare Lung Diseases, University Hospital "Policlinico", Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Veronika Müller
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
19
|
Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF). J Thorac Dis 2019; 11:S1740-S1754. [PMID: 31632751 PMCID: PMC6783717 DOI: 10.21037/jtd.2019.04.62] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an advancing and fatal lung disease with increasing incidence and prevalence. Nintedanib and pirfenidone were approved by the FDA for the treatment of IPF in 2014 based on positive phase 3 trials, and both of these antifibrotic drugs are conditionally recommended in the 2015 ATS/ERS/JRS/ALAT Clinical Practice Guideline. Although an improvement over previously suggested therapies, their capacity to reduce, but not completely arrest or improve, lung function over time presents an opportunity for novel or add-on pharmacologic agents. The purpose of this review is to deliver a brief overview of the results of phase 3/4 IPF trials with pirfenidone and nintedanib, as well as highlight encouraging results of phase 1/2 trials with novel therapies. Long-term studies indicate that pirfenidone and nintedanib are effective IPF treatments, with acceptable safety and tolerability. The combination of pirfenidone and nintedanib appear safe. Promising results have recently been made public for several phase 2 trials with novel targets, including the autotaxin-lysophosphatidic acid (ATX/LPA) pathway, connective tissue growth factor (CTGF), pentraxin-2, G protein-coupled receptor agonists/antagonists, αvβ6 integrin, and galectin-3. Results of treatments directed at gastro-esophageal reflux in patients with IPF have also been published. Currently, monotherapy with pirfenidone or nintedanib is the mainstay of pharmacological treatment for IPF. Innovative therapies along with combinations of pharmacological agents hold great promise for the future.
Collapse
Affiliation(s)
| | | | | | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | | |
Collapse
|
20
|
Abstract
Objective: Provide information for pharmacists on idiopathic pulmonary fibrosis (IPF) and its treatment. Study Selection and Data Extraction: All articles with data from randomized controlled trials of nintedanib or pirfenidone were reviewed. Data Synthesis: IPF is a progressive and ultimately fatal interstitial lung disease characterized by decline in lung function and worsening dyspnea. It is uncommon and mainly occurs in individuals aged >60 years, particularly men with a history of smoking. Nintedanib and pirfenidone were approved in the United States for the treatment of IPF in 2014 and received conditional recommendations in the 2015 American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association treatment guidelines. These drugs slow the progression of IPF by reducing the rate of decline in lung function. Their adverse event profile is characterized mainly by gastrointestinal events, which can be managed through dose adjustment and symptom management. Management of IPF should also include smoking cessation, vaccinations, and supportive care such as patient education, pulmonary rehabilitation, and the use of supplemental oxygen as well as optimizing the management of comorbidities. Relevance to Patient Care and Clinical Practice: This review provides clinical pharmacists with information on the course of IPF, what can be expected of current treatments, and how to help patients manage their drug therapy. Conclusions: IPF is a progressive disease, but treatments are available that can slow the progression of the disease. Clinical pharmacists can play an important role in the care of patients with IPF through patient education, monitoring medication compliance and safety, ensuring drugs for comorbidities are optimized, and preventive strategies such as immunizations.
Collapse
Affiliation(s)
- Roy Pleasants
- The University of North Carolina at Chapel Hill, NC, USA.,Durham Veterans Administration Medical Center, Durham, NC, USA
| | | |
Collapse
|
21
|
Richeldi L, Baldi F, Pasciuto G, Macagno F, Panico L. Current and Future Idiopathic Pulmonary Fibrosis Therapy. Am J Med Sci 2019; 357:370-373. [DOI: 10.1016/j.amjms.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
|