1
|
Zhu X, Lu H, Li W, Niu S, Xue J, Sun H, Zhang J, Zhang Z. Ferroptosis Induces gut microbiota and metabolic dysbiosis in Collagen-Induced arthritis mice via PAD4 enzyme. Gene 2025; 936:149106. [PMID: 39561902 DOI: 10.1016/j.gene.2024.149106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation and joint destruction, with emerging evidence implicating gut microbiota dysbiosis in its pathogenesis. The current study explores the role of ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation, in modulating gut microbiota and metabolic dysregulation through the enzyme peptidyl arginine deiminase 4 (PAD4) in collagen-induced arthritis (CIA) mouse model. Our findings demonstrate that ferroptosis exacerbates RA-related inflammatory responses and joint damage by upregulating PAD4 expression, which, in turn, influences the gut microbial composition and associated metabolite profiles. Erastin, a known ferroptosis agonist, significantly increased the relative abundance of pro-inflammatory bacteria such as Proteobacteria while reducing beneficial taxa like Firmicutes and Bacteroidetes. This microbial shift was associated with heightened oxidative stress and an imbalance in key metabolites, such as lysophosphatidyl ethanolamine 14:0 (LysoPE 14:0), further exacerbated by ferroptosis. Co-treatment with GSK484, a PAD4 inhibitor, reversed these effects, restoring microbial homeostasis and reducing joint inflammation. This study suggests that ferroptosis-mediated PAD4 activity contributes to RA pathogenesis by disrupting the gut-joint axis, providing novel insights into potential therapeutic targets for RA. Our results highlight the intricate interplay between immune-mediated cell death, gut microbiota, and systemic inflammation, emphasizing the importance of ferroptosis as a therapeutic target in mitigating RA progression.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hanya Lu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wenjing Li
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Sijia Niu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiawei Xue
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Haoyuan Sun
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
2
|
Li X, Cui J, Ding Z, Tian Z, Kong Y, Li L, Liu Y, Zhao W, Chen X, Guo H, Cui Z, Li X, Yuan J, Zhang H. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Cell Commun Signal 2025; 23:21. [PMID: 39800699 PMCID: PMC11726972 DOI: 10.1186/s12964-024-02002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells. Endothelial dysfunction is an important early event in the pathogenesis of hypertension, yet the impact of K.pn-secreted EVs (K.pn EVs) on endothelial function remains unclear. This study aimed to investigate the effects of K.pn EVs on endothelial function and to elucidate the underlying mechanisms. METHODS K.pn EVs were purified from the bacterial suspension using ultracentrifugation and characterized by transmission electron microscopy nanoparticle tracking analysis, and EV marker expression. Endothelium-dependent relaxation was measured using a wire myograph after in vivo or ex vivo treatment with K.pn EVs. Superoxide anion production was measured by confocal microscopy and HUVEC senescence was assessed by SA-β-gal activity. SIRT1 overexpression or activator was utilized to investigate the underlying mechanisms. RESULTS Our data showed that K.pn significantly impaired acetylcholine-induced endothelium-dependent relaxation and increased superoxide anion production in endothelial cells in vivo. Similarly, in vivo and ex vivo studies showed that K.pn EVs caused significant endothelial dysfunction, endothelial provocation, and increased blood pressure. Further examination revealed that K.pn EVs reduced the levels of SIRT1 and p-eNOS and increased the levels of NOX2, COX-2, ET-1, and p53 in endothelial cells. Notably, overexpression or activation of SIRT1 attenuated the adverse effects and protein changes induced by K.pn EVs on endothelial cells. CONCLUSION This study reveals a novel role of K.pn EVs in endothelial dysfunction and dissects the relevant mechanism involved in this process, which will help to establish a comprehensive understanding of K.pn EVs in endothelial dysfunction and hypertension from a new scope.
Collapse
Affiliation(s)
- Xinxin Li
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jinghua Cui
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Zanbo Ding
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Ziyan Tian
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yiming Kong
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yang Liu
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Wen Zhao
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Xueying Chen
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Han Guo
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Zhengshuo Cui
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Xinwei Li
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jing Yuan
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| |
Collapse
|
3
|
Conceição M, Shteinberg M, Goeminne P, Altenburg J, Chalmers JD. Eradication treatment for Pseudomonas aeruginosa infection in adults with bronchiectasis: a systematic review and meta-analysis. Eur Respir Rev 2024; 33:230178. [PMID: 38296344 PMCID: PMC10828832 DOI: 10.1183/16000617.0178-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/24/2023] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Pseudomonas aeruginosa is the most commonly isolated pathogen in bronchiectasis and is associated with worse outcomes. Eradication treatment is recommended by guidelines, but the evidence base is limited. The expected success rate of eradication in clinical practice is not known. METHODS We conducted a systematic review and meta-analysis according to Meta-Analysis of Observational Studies in Epidemiology guidelines. PubMed, Embase, the Cochrane Database of Systematic Reviews and Clinicaltrials.gov were searched for studies investigating P. aeruginosa eradication treatment using antibiotics (systemic or inhaled) in patients with bronchiectasis. The primary outcome was the percentage of patients negative for P. aeruginosa at 12 months after eradication treatment. Cystic fibrosis was excluded. RESULTS Six observational studies including 289 patients were included in the meta-analysis. Our meta-analysis found a 12-month P. aeruginosa eradication rate of 40% (95% CI 34-45%; p<0.00001), with no significant heterogeneity (I2=0%). Combined systemic and inhaled antibiotic treatment was associated with a higher eradication rate (48%, 95% CI 41-55%) than systemic antibiotics alone (27%, 13-45%). CONCLUSION Eradication treatment in bronchiectasis results in eradication of P. aeruginosa from sputum in ∼40% of cases at 12 months. Combined systemic and inhaled antibiotics achieve higher eradication rates than systemic antibiotics alone.
Collapse
Affiliation(s)
- Mariana Conceição
- Pulmonology Department, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
| | - Pieter Goeminne
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Josje Altenburg
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
4
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|