1
|
Wein AN, Liu CR, Kreisel D. Bronchus-associated lymphoid tissue in lung transplantation: a facilitator of rejection or regulator of tolerance? Front Immunol 2025; 16:1553533. [PMID: 39975555 PMCID: PMC11835794 DOI: 10.3389/fimmu.2025.1553533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
The role of bronchus-associated lymphoid tissue (BALT) in the regulation of immune responses to transplanted lungs remains an area of interest and controversy. Early studies in a rat pulmonary transplant model suggested BALT may accelerate rejection of grafts by inducing a local and systemic inflammatory response. Such observations were corroborated in intrapulmonary tracheal transplant models in the rat. While some human studies have described the presence of BALT in grafts that have been chronically rejected, others did not observe an association between induction of BALT and adverse outcomes. More recent investigations have found that BALT, enriched in immunoregulatory cell populations, is induced in tolerant mouse lung allografts, suggesting that such structures may be protective against rejection. Thus, the role of BALT in lung transplantation biology is complex. Insights gained from studies that focus on the role of BALT in lung transplantation may be harnessed to develop new therapies.
Collapse
Affiliation(s)
- Alexander N. Wein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles R. Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Weingard B, Becker SL, Schneitler S, Trudzinski FC, Bals R, Wilkens H, Langer F. Risk factors for survival after lung transplantation in cystic fibrosis: impact of colonization with multidrug-resistant strains of Pseudomonas aeruginosa. Infection 2025:10.1007/s15010-025-02478-z. [PMID: 39883262 DOI: 10.1007/s15010-025-02478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Lung transplantation is the ultimate treatment option for patients with advanced cystic fibrosis. Chronic colonization of these recipients with multidrug-resistant (MDR) pathogens may constitute a risk factor for an adverse outcome. We sought to analyze whether colonization with MDR pathogens, as outlined in the German classification of multiresistant Gram-negative bacteria (MRGN), was associated with the success of lung transplantation. METHODS We performed a monocentric retrospective analysis of 361 lung transplantations performed in Homburg, Germany, between 1995 and 2020. All recipients with a main diagnosis of cystic fibrosis (n = 69) were stratified into two groups based on colonization with Pseudomonas aeruginosa in view of MRGN before transplantation: no colonization and colonization without (n = 23) or with (n = 46) resistance to three or four antibiotic groups (3MRGN/4MRGN). Multivariable analyses were performed including various clinical parameters (preoperative data, postoperative data). RESULTS CF patients colonized with multidrug-resistant pathogens (Pseudomonas aeruginosa) classified as 3MRGN/4MRGN had poorer survival (median survival 16 years (without MRGN) versus 8 years (with MRGN), P = 0.048). Extracorporeal support (P = 0.014, HR = 2.929), re-transplantation (P = 0.023, HR = 2.303), female sex (P = 0.019, HR = 2.244) and 3MRGN/4MRGN (P = 0.036, HR = 2.376) were predictors of poor outcomes in the multivariate analysis. Co-colonization with the mold Aspergillus fumigatus was further associated with mortality risk in the 3MRGN/4MRGN group (P = 0.037, HR = 2.150). CONCLUSION Patients with cystic fibrosis and MDR colonization (Pseudomonas aeruginosa) are risk candidates for lung transplantation, targeted diagnostics and tailored anti-infective strategies are essential for survival after surgery. MDR colonization as expressed by MRGN may help to identify patients at increased risk to improve the organ allocation process.
Collapse
Affiliation(s)
- Bettina Weingard
- Internal Medicine V, Saarland University, 66421, Homburg/Saar, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg/Saar, Germany
| | - Sophie Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg/Saar, Germany
| | | | - Robert Bals
- Internal Medicine V, Saarland University, 66421, Homburg/Saar, Germany
| | - Heinrike Wilkens
- Internal Medicine V, Saarland University, 66421, Homburg/Saar, Germany
| | - Frank Langer
- Department of Thoracic Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
3
|
Forier B, Schaevers V, Spriet I, Quintens C, Desmet S, Bos S, Bleyenbergh PV, Lorent N, Sadeleer LD, Godinas L, Dupont LJ, Vos R. Outpatient parenteral antibiotic therapy in non-cystic fibrosis lung transplant recipients: characteristics, efficacy and safety. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04921-9. [PMID: 39196488 DOI: 10.1007/s10096-024-04921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Bacterial isolation is associated with worse outcomes after lung transplantation (LTx), and successful bacterial eradication is shown to improve long-term survival and pulmonary function. Outpatient Parenteral Antibiotic Therapy (OPAT) may be an effective therapeutic modality for bacterial eradication post-LTx. METHODS A single-center, retrospective analysis of OPAT characteristics, efficacy, safety, and costs in non-cystic fibrosis LTx recipients. RESULTS A total of 156 OPAT courses (from June 2019 to December 2022) were evaluated in 108 distinct LTx recipients. OPAT mainly consisted of dual antibiotic therapy (69%) for pulmonary bacterial isolation (97%), mostly Pseudomonas aeruginosa (66%). Successful eradication at 3 months post-OPAT was achieved in 71%. Eradication rate was significantly higher in patients treated after the first post-operative year (79%), compared to patients within the first year (61%) (p = 0.017). Eradication rate was similar for multidrug resistance (eradication rate 61%) versus no multidrug resistance (74%) (p = 0.116). Spirometry remained stable at 90 days post-OPAT. A statistically significant, but clinically negligible, increase in serum creatinine at 90 days post-OPAT was observed (1.33 mg/dL vs. 1.39 mg/dL, p < 0.001), yet unrelated to the antibiotic regimen used. OPAT-related hospital admissions occurred in 13% and line-related adverse events in 6%. Median number of hospitalization days saved per OPAT-course was 10 days (range 2-92), accounting for a total of 1841 avoided admission days and an estimated net cost reduction of 47% per treatment course. CONCLUSION OPAT is an effective and safe therapeutic modality for bacterial eradication post-LTx, associated with a significant reduction in hospitalization days and treatment costs.
Collapse
Affiliation(s)
- Bart Forier
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Veronique Schaevers
- Lung Transplant Team, Clinical Nurse Specialist, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Quintens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Saskia Bos
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Pascal Van Bleyenbergh
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Natalie Lorent
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurens De Sadeleer
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium.
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Bogyó LZ, Török K, Illés Z, Szilvási A, Székely B, Bohács A, Pipek O, Madurka I, Megyesfalvi Z, Rényi-Vámos F, Döme B, Bogos K, Gieszer B, Bakos E. Pseudomonas aeruginosa infection correlates with high MFI donor-specific antibody development following lung transplantation with consequential graft loss and shortened CLAD-free survival. Respir Res 2024; 25:262. [PMID: 38951782 PMCID: PMC11218249 DOI: 10.1186/s12931-024-02868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Donor-specific antibodies (DSAs) are common following lung transplantation (LuTx), yet their role in graft damage is inconclusive. Mean fluorescent intensity (MFI) is the main read-out of DSA diagnostics; however its value is often disregarded when analyzing unwanted post-transplant outcomes such as graft loss or chronic lung allograft dysfunction (CLAD). Here we aim to evaluate an MFI stratification method in these outcomes. METHODS A cohort of 87 LuTx recipients has been analyzed, in which a cutoff of 8000 MFI has been determined for high MFI based on clinically relevant data. Accordingly, recipients were divided into DSA-negative, DSA-low and DSA-high subgroups. Both graft survival and CLAD-free survival were evaluated. Among factors that may contribute to DSA development we analyzed Pseudomonas aeruginosa (P. aeruginosa) infection in bronchoalveolar lavage (BAL) specimens. RESULTS High MFI DSAs contributed to clinical antibody-mediated rejection (AMR) and were associated with significantly worse graft (HR: 5.77, p < 0.0001) and CLAD-free survival (HR: 6.47, p = 0.019) compared to low or negative MFI DSA levels. Analysis of BAL specimens revealed a strong correlation between DSA status, P. aeruginosa infection and BAL neutrophilia. DSA-high status and clinical AMR were both independent prognosticators for decreased graft and CLAD-free survival in our multivariate Cox-regression models, whereas BAL neutrophilia was associated with worse graft survival. CONCLUSIONS P. aeruginosa infection rates are elevated in recipients with a strong DSA response. Our results indicate that the simultaneous interpretation of MFI values and BAL neutrophilia is a feasible approach for risk evaluation and may help clinicians when to initiate DSA desensitization therapy, as early intervention could improve prognosis.
Collapse
Affiliation(s)
- Levente Zoltán Bogyó
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Klára Török
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsuzsanna Illés
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Anikó Szilvási
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Bálint Székely
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| | - Anikó Bohács
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- Department of Physics of Complex Systems, Eotvos Loránd University, Budapest, Hungary
| | - Ildikó Madurka
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ferenc Rényi-Vámos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Balázs Döme
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Balázs Gieszer
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary.
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Eszter Bakos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| |
Collapse
|
5
|
Van Herck A, Beeckmans H, Kerckhof P, Sacreas A, Bos S, Kaes J, Vanstapel A, Vanaudenaerde BM, Van Slambrouck J, Orlitová M, Jin X, Ceulemans LJ, Van Raemdonck DE, Neyrinck AP, Godinas L, Dupont LJ, Verleden GM, Dubbeldam A, De Wever W, Vos R. Prognostic Value of Chest CT Findings at BOS Diagnosis in Lung Transplant Recipients. Transplantation 2023; 107:e292-e304. [PMID: 37870882 DOI: 10.1097/tp.0000000000004726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) after lung transplantation is characterized by fibrotic small airway remodeling, recognizable on high-resolution computed tomography (HRCT). We studied the prognostic value of key HRCT features at BOS diagnosis after lung transplantation. METHODS The presence and severity of bronchiectasis, mucous plugging, peribronchial thickening, parenchymal anomalies, and air trapping, summarized in a total severity score, were assessed using a simplified Brody II scoring system on HRCT at BOS diagnosis, in a cohort of 106 bilateral lung transplant recipients transplanted between January 2004 and January 2016. Obtained scores were subsequently evaluated regarding post-BOS graft survival, spirometric parameters, and preceding airway infections. RESULTS A high total Brody II severity score at BOS diagnosis (P = 0.046) and high subscores for mucous plugging (P = 0.0018), peribronchial thickening (P = 0.0004), or parenchymal involvement (P = 0.0121) are related to worse graft survival. A high total Brody II score was associated with a shorter time to BOS onset (P = 0.0058), lower forced expiratory volume in 1 s (P = 0.0006) forced vital capacity (0.0418), more preceding airway infections (P = 0.004), specifically with Pseudomonas aeruginosa (P = 0.002), and increased airway inflammation (P = 0.032). CONCLUSIONS HRCT findings at BOS diagnosis after lung transplantation provide additional information regarding its underlying pathophysiology and for future prognosis of graft survival.
Collapse
Affiliation(s)
- Anke Van Herck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Division of Lung Transplantation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Michaela Orlitová
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Adriana Dubbeldam
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Walter De Wever
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Wijbenga N, de Jong NL, Hoek RA, Mathot BJ, Seghers L, Aerts JG, Bos D, Manintveld OC, Hellemons ME. Detection of Bacterial Colonization in Lung Transplant Recipients Using an Electronic Nose. Transplant Direct 2023; 9:e1533. [PMID: 37745948 PMCID: PMC10513211 DOI: 10.1097/txd.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Bacterial colonization (BC) of the lower airways is common in lung transplant recipients (LTRs) and increases the risk of chronic lung allograft dysfunction. Diagnosis often requires bronchoscopy. Exhaled breath analysis using electronic nose (eNose) technology may noninvasively detect BC in LTRs. Therefore, we aimed to assess the diagnostic accuracy of an eNose to detect BC in LTRs. Methods We performed a cross-sectional analysis within a prospective, single-center cohort study assessing the diagnostic accuracy of detecting BC using eNose technology in LTRs. In the outpatient clinic, consecutive LTR eNose measurements were collected. We assessed and classified the eNose measurements for the presence of BC. Using supervised machine learning, the diagnostic accuracy of eNose for BC was assessed in a random training and validation set. Model performance was evaluated using receiver operating characteristic analysis. Results In total, 161 LTRs were included with 80 exclusions because of various reasons. Of the remaining 81 patients, 16 (20%) were classified as BC and 65 (80%) as non-BC. eNose-based classification of patients with and without BC provided an area under the curve of 0.82 in the training set and 0.97 in the validation set. Conclusions Exhaled breath analysis using eNose technology has the potential to noninvasively detect BC.
Collapse
Affiliation(s)
- Nynke Wijbenga
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nadine L.A. de Jong
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Educational Program Technical Medicine, Leiden University Medical Center, Delft University of Technology and Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rogier A.S. Hoek
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas J. Mathot
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonard Seghers
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joachim G.J.V. Aerts
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olivier C. Manintveld
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
7
|
de-Miguel-Yanes JM, Lopez-de-Andres A, Jimenez-Garcia R, Zamorano-Leon JJ, Carabantes-Alarcon D, Omaña-Palanco R, Hernández-Barrera V, del-Barrio JL, de-Miguel-Diez J, Cuadrado-Corrales N. Association between Hospital-Acquired Pneumonia and In-Hospital Mortality in Solid Organ Transplant Admissions: An Observational Analysis in Spain, 2004-2021. J Clin Med 2023; 12:5532. [PMID: 37685599 PMCID: PMC10488258 DOI: 10.3390/jcm12175532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
(1) Background: To analyze the association between hospital-acquired pneumonia (HAP) and in-hospital mortality (IHM) during hospital admission for solid organ transplant in Spain during 2004-2021. (2) Methods: We used national hospital discharge data to select all hospital admissions for kidney, liver, heart, and lung transplants. We stratified the data according to HAP status. To examine time trends, we grouped data into three consecutive 6-year periods (2004-2009; 2010-2015; and 2016-2021). We assessed in-hospital mortality (IHM) in logistic regression analyses and obtained odds ratios (ORs) with their 95% confidence intervals (CIs). (3) Results: We identified a total of 71,827 transplants (45,262, kidney; 18,127, liver; 4734, heart; and 4598, lung). Two thirds of the patients were men. Overall, the rate of HAP during admission was 2.6% and decreased from 3.0% during 2004-2009 to 2.4% during 2016-2021. The highest rate of HAP corresponded to lung transplant (9.4%), whereas we found the lowest rate for kidney transplant (1.1%). Rates of HAP for liver and heart transplants were 3.8% and 6.3%, respectively. IHM was significantly lower during 2016-2021 compared to 2004-2009 for all types of transplants (ORs (CIs) = 0.65 (0.53-0.79) for kidney; 0.73 (0.63-0.84) for liver; 0.72 (0.59-0.87) for heart; and 0.39 (0.31-0.47) for lung). HAP was associated with IHM for all types of transplants (ORs (CIs) = 4.47 (2.85-9.08) for kidney; 2.96 (2.34-3.75) for liver; 1.86 (1.34-2.57) for heart; and 2.97 (2.24-3.94) for lung). (4) Conclusions: Rates of HAP during admission for solid organ transplant differ depending on the type of transplant. Although IHM during admission for solid organ transplant has decreased over time in our country, HAP persists and is associated with a higher IHM after accounting for potential confounding variables.
Collapse
Affiliation(s)
- José M. de-Miguel-Yanes
- Internal Medicine Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Ana Lopez-de-Andres
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.J.-G.); (J.J.Z.-L.); (D.C.-A.); (R.O.-P.); (N.C.-C.)
| | - Rodrigo Jimenez-Garcia
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.J.-G.); (J.J.Z.-L.); (D.C.-A.); (R.O.-P.); (N.C.-C.)
| | - José Javier Zamorano-Leon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.J.-G.); (J.J.Z.-L.); (D.C.-A.); (R.O.-P.); (N.C.-C.)
| | - David Carabantes-Alarcon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.J.-G.); (J.J.Z.-L.); (D.C.-A.); (R.O.-P.); (N.C.-C.)
| | - Ricardo Omaña-Palanco
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.J.-G.); (J.J.Z.-L.); (D.C.-A.); (R.O.-P.); (N.C.-C.)
| | - Valentín Hernández-Barrera
- Preventive Medicine and Public Health Teaching and Research Unit, Health Sciences Faculty, Rey Juan Carlos University, 28933 Alcorcón, Spain; (V.H.-B.); (J.L.d.-B.)
| | - Jose Luis del-Barrio
- Preventive Medicine and Public Health Teaching and Research Unit, Health Sciences Faculty, Rey Juan Carlos University, 28933 Alcorcón, Spain; (V.H.-B.); (J.L.d.-B.)
| | - Javier de-Miguel-Diez
- Respiratory Care Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Natividad Cuadrado-Corrales
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.J.-G.); (J.J.Z.-L.); (D.C.-A.); (R.O.-P.); (N.C.-C.)
| |
Collapse
|
8
|
Biomarkers for Chronic Lung Allograft Dysfunction: Ready for Prime Time? Transplantation 2023; 107:341-350. [PMID: 35980878 PMCID: PMC9875844 DOI: 10.1097/tp.0000000000004270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains a major hurdle impairing lung transplant outcome. Parallel to the better clinical identification and characterization of CLAD and CLAD phenotypes, there is an increasing urge to find adequate biomarkers that could assist in the earlier detection and differential diagnosis of CLAD phenotypes, as well as disease prognostication. The current status and state-of-the-art of biomarker research in CLAD will be discussed with a particular focus on radiological biomarkers or biomarkers found in peripheral tissue, bronchoalveolar lavage' and circulating blood' in which significant progress has been made over the last years. Ultimately, although a growing number of biomarkers are currently being embedded in the follow-up of lung transplant patients, it is clear that one size does not fit all. The future of biomarker research probably lies in the rigorous combination of clinical information with findings in tissue, bronchoalveolar lavage' or blood. Only by doing so, the ultimate goal of biomarker research can be achieved, which is the earlier identification of CLAD before its clinical manifestation. This is desperately needed to improve the prognosis of patients with CLAD after lung transplantation.
Collapse
|
9
|
Leong SW, Bos S, Lordan JL, Nair A, Fisher AJ, Meachery G. Lung transplantation for interstitial lung disease: evolution over three decades. BMJ Open Respir Res 2023; 10:10/1/e001387. [PMID: 36854571 PMCID: PMC9980330 DOI: 10.1136/bmjresp-2022-001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) has emerged as the most common indication for lung transplantation globally. However, post-transplant survival varies depending on the underlying disease phenotype and comorbidities. This study aimed to describe the demographics, disease classification, outcomes and factors associated with post-transplant survival in a large single-centre cohort. METHODS Data were retrospectively assessed for 284 recipients who underwent lung transplantation for ILD in our centre between 1987 and 2020. Patient characteristics and outcomes were stratified by three eras: 1987-2000, 2001-2010 and 2011-2020. RESULTS Median patients' age at time of transplantation was significantly higher in the most recent decade (56 (51-61) years, p<0.0001). Recipients aged over 50 years had worse overall survival compared with younger patients (adjusted HR, aHR 2.36, 95% CI 1.55 to 3.72, p=0.0001). Better survival was seen with bilateral versus single lung transplantation in patients younger than 50 years (log-rank p=0.0195). However, this survival benefit was no longer present in patients aged over 50 years. Reduced survival was observed in fibrotic non-specific interstitial pneumonia compared with idiopathic pulmonary fibrosis, which remained the most common indication throughout (aHR 2.61, 95% CI 1.40 to 4.60, p=0.0015). CONCLUSION In patients transplanted for end-stage ILD, older age and fibrotic non-specific interstitial pneumonia were associated with poorer post-transplant survival. The benefit of bilateral over single lung transplantation diminished with increasing age, suggesting that single lung transplantation might still be a feasible option in older candidates.
Collapse
Affiliation(s)
- Swee W Leong
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Department of Pulmonology, Serdang Hospital, Kajang, Malaysia
| | - Saskia Bos
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - James L Lordan
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Arun Nair
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Gerard Meachery
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Chen J, Liang Q, Ding S, Xu Y, Hu Y, Chen J, Huang M. Ceftazidime/Avibactam for the Treatment of Carbapenem-Resistant Pseudomonas aeruginosa Infection in Lung Transplant Recipients. Infect Drug Resist 2023; 16:2237-2246. [PMID: 37090036 PMCID: PMC10115196 DOI: 10.2147/idr.s407515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Background Experience of ceftazidime-avibactam (CAZ/AVI) for carbapenem-resistant Pseudomonas aeruginosa (CRPA) infection in recipients after lung transplantation (LT) is relatively limited. Methods A retrospective observational study was conducted on lung transplant recipients receiving CAZ/AVI therapy for CRPA infection. The primary outcomes were the 14-day and 30-day mortality. The secondary outcomes were clinical cure and microbiological cure. Results Among 183 LT recipients, a total of 15 recipients with CRPA infection who received CAZ/AVI therapy were enrolled in this study. The mean age of recipients was 54 years and 73.3% of recipients were male. The median time from infection onset to initiation of CAZ/AVI treatment was 4 days (IQR, 3-7) and the mean duration of CAZ/AVI therapy was 10 days. CAZ/AVI was mainly administered as monotherapy in LT recipients (80%). Among these eligible recipients, 14-day and 30-day mortality were 6.7% and 13.3%, respectively. The clinical cure and microbiological cure rates of CAZ/AVI therapy were 53.3% and 60%, respectively. Three recipients (20%) experienced recurrent infection. In addition, the mean lengths of ICU stay and hospital stay were 24 days and 35 days, respectively, among LT recipients. Conclusion CAZ/AVI may be an alternative and promising regimen for CRPA eradiation in lung transplant recipients.
Collapse
Affiliation(s)
- Juan Chen
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiqiang Liang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuo Ding
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongshan Xu
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanting Hu
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, People’s Republic of China
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Jingyu Chen, Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, People’s Republic of China, Email
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Man Huang, Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China, Tel/Fax +86 571 89713427, Email
| |
Collapse
|
11
|
Sandot A, Grall N, Rodier T, Bunel V, Godet C, Weisenburger G, Tran-Dinh A, Montravers P, Mordant P, Castier Y, Eloy P, Armand-Lefevre L, Mal H, Messika J. Risk of Bronchial Complications After Lung Transplantation With Respiratory Corynebacteria. Results From a Monocenter Retrospective Cohort Study. Transpl Int 2023; 36:10942. [PMID: 36936442 PMCID: PMC10014466 DOI: 10.3389/ti.2023.10942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
Corynebacterium spp. are associated with respiratory infections in immunocompromised hosts. A link with bronchial complications after lung transplantation (LTx) has been suggested. We aimed to assess the link between respiratory sampling of Corynebacterium spp. and significant bronchial complication (SBC) after LTx. We performed a single center retrospective study. Inclusion of LTx recipients with at least one respiratory Corynebacterium spp. sample (July 2014 to December 2018). Subjects were matched to unexposed LTx recipients. Primary outcome was SBC occurrence after Corynebacterium spp. isolation. Secondary outcomes were Corynebacterium spp. persistent sampling, chronic lung allograft dysfunction (CLAD) onset and all-cause mortality. Fifty-nine patients with Corynebacterium spp. sampling with 59 without isolation were included. Corynebacterium spp. identification was not associated with SBC occurrence (32.4% vs. 21.6%, p = 0.342). Previous SBC was associated with further isolation of Corynebacterium spp. (OR 3.94, 95% CI [1.72-9.05]). Previous SBC and corticosteroids pulses in the last 3 months were the only factors associated with increased risk of Corynebacterium spp. isolation in multivariate analysis. Corynebacterium spp. sampling was significantly associated with CLAD onset (27.1% vs. 6.9%, p = 0.021). Corynebacterium spp. isolation was not associated with SBC but with higher risk of CLAD. Whether CLAD evolution is affected by Corynebacterium spp. eradication remains to be investigated.
Collapse
Affiliation(s)
- Adèle Sandot
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
| | - Nathalie Grall
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
| | - Thomas Rodier
- INSERM, CIC-EC 1425, Hôpital Bichat, Paris, France
- AP-HP, Hôpital Bichat, DEBRC, Paris, France
| | - Vincent Bunel
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Cendrine Godet
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Gaëlle Weisenburger
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Alexy Tran-Dinh
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Département d’Anesthésie et Réanimation, Paris, France
| | - Philippe Montravers
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Département d’Anesthésie et Réanimation, Paris, France
| | - Pierre Mordant
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Chirurgie Vasculaire, Thoracique et Transplantation, Paris, France
| | - Yves Castier
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Chirurgie Vasculaire, Thoracique et Transplantation, Paris, France
| | - Philippine Eloy
- INSERM, CIC-EC 1425, Hôpital Bichat, Paris, France
- AP-HP, Hôpital Bichat, DEBRC, Paris, France
| | - Laurence Armand-Lefevre
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
| | - Hervé Mal
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
| | - Jonathan Messika
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- Paris Transplant Group, Paris, France
- *Correspondence: Jonathan Messika,
| |
Collapse
|
12
|
Beeckmans H, Van Roy E, Kaes J, Sacreas A, Geudens V, Vermaut A, Willems L, Jin X, Bos S, Vanstapel A, Van Slambrouck J, Orlitova M, Vanaudenaerde B, Ceulemans LJ, Van Raemdonck D, Neyrinck AP, Godinas L, Dupont LJ, Verleden GM, Vos R. Aspergillus-Specific IgG Antibodies are Associated With Fungal-Related Complications and Chronic Lung Allograft Dysfunction After Lung Transplantation. Transpl Int 2023; 36:10768. [PMID: 36873745 PMCID: PMC9977785 DOI: 10.3389/ti.2023.10768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
Fungal exposure and sensitization negatively affect outcomes in various respiratory diseases, however, the effect of fungal sensitization in lung transplant (LTx) recipients is still unknown. We performed a retrospective cohort study of prospectively collected data on circulating fungal specific IgG/IgE antibodies, and their correlation with fungal isolation, chronic lung allograft dysfunction (CLAD) and overall survival after LTx. 311 patients transplanted between 2014 and 2019 were included. Patients with elevated Aspergillus fumigatus or Aspergillus flavus IgG (10%) had more mold and Aspergillus species isolation (p = 0.0068 and p = 0.0047). Aspergillus fumigatus IgG was specifically associated with Aspergillus fumigatus isolation in the previous or consecutive year (AUC 0.60, p = 0.004 and AUC 0.63, p = 0.022, respectively). Elevated Aspergillus fumigatus or Aspergillus flavus IgG was associated with CLAD (p = 0.0355), but not with death. Aspergillus fumigatus, Aspergillus flavus or Aspergillus niger IgE was elevated in 19.3% of patients, but not associated with fungal isolation, CLAD or death. Mold isolation and Aspergillus species isolation from respiratory cultures were associated with CLAD occurrence (p = 0.0011 and p = 0.0005, respectively), and Aspergillus species isolation was also associated with impaired survival (p = 0.0424). Fungus-specific IgG could be useful in long-term follow-up post-LTx, as a non-invasive marker for fungal exposure, and thus a diagnostic tool for identifying patients at risk for fungal-related complications and CLAD.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Elfri Van Roy
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Janne Kaes
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Vincent Geudens
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Astrid Vermaut
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lynn Willems
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Xin Jin
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arno Vanstapel
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Michaela Orlitova
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Laurent Godinas
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Secondary Prophylaxis With Inhaled Colistin to Prevent Recurrence of Pseudomonas aeruginosa and Extended-spectrum β-lactamase-producing Enterobacterales Pneumonia in ICU After Lung Transplantation: A Before-and-after Retrospective Cohort Analysis. Transplantation 2022; 106:2232-2240. [PMID: 35675449 DOI: 10.1097/tp.0000000000004187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early pneumonia is an independent risk factor for 1-y mortality after lung transplantation (LTx). Pseudomonas aeruginosa is the most common isolate in early pneumonia and is also associated with an increased risk of chronic lung allograft dysfunction. The aim of our study was to evaluate the efficacy of secondary prophylaxis with inhaled colistin (IC) in preventing the recurrence of P aeruginosa or extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE) pneumonia in the postoperative period in the intensive care unit after LTx. METHODS We conducted a before-and-after retrospective cohort study by including all patients who underwent LTx between January 2015 and December 2020 in our center. Secondary prophylaxis with IC was instituted in January 2018 (observation period from January 2015 to December 2017, intervention period from January 2018 to December 2020). RESULTS A total of 271 lung transplants were included (125 in the observation period and 146 in the intervention period). The patients were predominately male (64.2%) with a median age of 57 y and received double LTx (67.9%) for chronic obstructive pulmonary disease/emphysema (36.2%) or interstitial lung disease (48.3%). The proportion of patients who experienced at least 1 recurrence of P aeruginosa or ESBL-PE pneumonia was significantly lower in the intervention period than in the observation period (0.7% versus 7.2%, P = 0.007). CONCLUSIONS Our study suggests a potential benefit of secondary prophylaxis with IC to prevent the recurrence of P aeruginosa or ESBL-PE pneumonia in the intensive care unit after LTx.
Collapse
|
14
|
Antibiotic Therapy for Difficult-to-Treat Infections in Lung Transplant Recipients: A Practical Approach. Antibiotics (Basel) 2022; 11:antibiotics11050612. [PMID: 35625256 PMCID: PMC9137688 DOI: 10.3390/antibiotics11050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Lung transplant recipients are at higher risk to develop infectious diseases due to multi-drug resistant pathogens, which often chronically colonize the respiratory tract before transplantation. The emergence of these difficult-to-treat infections is a therapeutic challenge, and it may represent a contraindication to lung transplantation. New antibiotic options are currently available, but data on their efficacy and safety in the transplant population are limited, and clinical evidence for choosing the most appropriate antibiotic therapy is often lacking. In this review, we provide a summary of the best evidence available in terms of choice of antibiotic and duration of therapy for MDR/XDR P. aeruginosa, Burkholderia cepacia complex, Mycobacterium abscessus complex and Nocardia spp. infections in lung transplant candidates and recipients.
Collapse
|
15
|
Mora Cuesta VM, Vargas NB, Fernández DI, Mena ST, Cifrián Martínez JM. Exacerbation of chronic renal failure because of inhaled tobramycin in a lung transplant patient. Respir Med Case Rep 2022; 36:101584. [PMID: 35127435 PMCID: PMC8803646 DOI: 10.1016/j.rmcr.2022.101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 10/31/2022] Open
Abstract
61-year-old man, with a history of years of unknown etiology bronchiectasis, with chronic bronchial infection by Burkholderia multivorans, who received treatment with a double lung transplant on 08/20/2020. Persistent positive cultures of Burkholderia multivorans after transplant in respiratory samples was observed, and treatment with inhaled tobramycin 300 mg/12 hours was started. One month after treatment, a significant worsening of renal function was observed, which was already altered, and toxic levels of tobramycin were measured in blood samples 12 hours after the last inhaled administration. After stopping treatment, kidney function returned to its baseline values.
Collapse
|
16
|
Kulkarni HS, Lease ED. Can we decloak how infections drive complications after lung transplantation? J Heart Lung Transplant 2021; 40:960-962. [PMID: 34176725 PMCID: PMC8405575 DOI: 10.1016/j.healun.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Hrishikesh S Kulkarni
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Erika D Lease
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Hirama T, Tomiyama F, Notsuda H, Watanabe T, Watanabe Y, Oishi H, Okada Y. Outcome and prognostic factors after lung transplantation for bronchiectasis other than cystic fibrosis. BMC Pulm Med 2021; 21:261. [PMID: 34384425 PMCID: PMC8361737 DOI: 10.1186/s12890-021-01634-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While lung transplant (LTX) can be an effective therapy to provide the survival benefit in selected populations, post-transplant outcome in LTX recipients with bronchiectasis other than cystic fibrosis (CF) has been less studied. Pseudomonas aeruginosa, often associated with exacerbations in bronchiectasis, is the most common micro-organism isolated from LTX recipients. We aimed to see the outcomes of patients with bronchiectasis other than CF after LTX and seek the risk factors associated with pre- and post-transplant Pseudomonas status. METHODS Patients who underwent LTX at Tohoku University Hospital between January 2000 and December 2020 were consecutively included into the retrospective cohort study. Pre- and post-transplant prevalence of Pseudomonas colonization between bronchiectasis and other diseases was reviewed. Post-transplant outcomes (mortality and the development of chronic lung allograft dysfunction (CLAD)) were assessed using a Cox proportional hazards and time-to-event outcomes were estimated using the Kaplan-Meier method. RESULTS LTX recipients with bronchiectasis experienced a high rate of pre- and post-transplant Pseudomonas colonization compared to other diseases with statistical significance (p < 0.001 and p < 0.001, respectively). Nevertheless, long-term survival in bronchiectasis was as great as non-bronchiectasis (Log-rank p = 0.522), and the bronchiectasis was not a trigger for death (HR 1.62, 95% CI 0.63-4.19). On the other hand, the chance of CLAD onset in bronchiectasis was comparable to non-bronchiectasis (Log-rank p = 0.221), and bronchiectasis was not a predictor of the development of CLAD (HR 1.88, 95% CI 0.65-5.40). CONCLUSIONS Despite high prevalence of pre- and post-transplant Pseudomonas colonization, the outcome in LTX recipients with bronchiectasis other than CF was comparable to those without bronchiectasis.
Collapse
Affiliation(s)
- Takashi Hirama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan. .,Division of Organ Transplantation, Tohoku University Hospital, 1-1 Seiryo-machi, Sendai, Miyagi, Japan.
| | - Fumiko Tomiyama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan
| | - Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan
| | - Yui Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, Miyagi, Japan.,Division of Organ Transplantation, Tohoku University Hospital, 1-1 Seiryo-machi, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Messika J, Bunel V, Weisenburger G, Godet C, Mal H. Pseudomonas aeruginosa eradication after lung transplantation: is it the tip of the iceberg? Eur Respir J 2021; 58:58/1/2004380. [PMID: 34326172 DOI: 10.1183/13993003.04380-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Messika
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France .,Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France.,Paris Transplant Group, Paris, France
| | - Vincent Bunel
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France.,Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Gaelle Weisenburger
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France.,Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Cendrine Godet
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France.,Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Hervé Mal
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France.,Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| |
Collapse
|
19
|
Vos R, Van Herck A. Pseudomonas aeruginosa and chronic lung allograft dysfunction: does evading an iceberg prevent the ship from sinking? Eur Respir J 2021; 58:13993003.00041-2021. [PMID: 34326173 DOI: 10.1183/13993003.00041-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium .,Dept CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Anke Van Herck
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Divithotawela C, Pham A, Bell PT, Ledger EL, Tan M, Yerkovich S, Grant M, Hopkins PM, Wells TJ, Chambers DC. Inferior outcomes in lung transplant recipients with serum Pseudomonas aeruginosa specific cloaking antibodies. J Heart Lung Transplant 2021; 40:951-959. [PMID: 34226118 DOI: 10.1016/j.healun.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chronic Lung Allograft Dysfunction (CLAD) limits long-term survival following lung transplantation. Colonization of the allograft by Pseudomonas aeruginosa is associated with an increased risk of CLAD and inferior overall survival. Recent experimental data suggests that 'cloaking' antibodies targeting the O-antigen of the P. aeruginosa lipopolysaccharide cell wall (cAbs) attenuate complement-mediated bacteriolysis in suppurative lung disease. METHODS In this retrospective cohort analysis of 123 lung transplant recipients, we evaluated the prevalence, risk factors and clinical impact of serum cAbs following transplantation. RESULTS cAbs were detected in the sera of 40.7% of lung transplant recipients. Cystic fibrosis and younger age were associated with increased risk of serum cAbs (CF diagnosis, OR 6.62, 95% CI 2.83-15.46, p < .001; age at transplant, OR 0.69, 95% CI 0.59-0.81, p < .001). Serum cAbs and CMV mismatch were both independently associated with increased risk of CLAD (cAb, HR 4.34, 95% CI 1.91-9.83, p < .001; CMV mismatch (D+/R-), HR 5.40, 95% CI 2.36-12.32, p < .001) and all-cause mortality (cAb, HR 2.75, 95% CI 1.27-5.95, p = .010, CMV mismatch, HR 3.53, 95% CI 1.62-7.70, p = .002) in multivariable regression analyses. CONCLUSIONS Taken together, these findings suggest a potential role for 'cloaking' antibodies targeting P. aeruginosa LPS O-antigen in the immunopathogenesis of CLAD.
Collapse
Affiliation(s)
| | - Amy Pham
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Peter T Bell
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Emma L Ledger
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | | | - Michelle Grant
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | - Peter M Hopkins
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Timothy J Wells
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Daniel C Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
21
|
Mitchell AB, Glanville AR. The Impact of Resistant Bacterial Pathogens including Pseudomonas aeruginosa and Burkholderia on Lung Transplant Outcomes. Semin Respir Crit Care Med 2021; 42:436-448. [PMID: 34030205 DOI: 10.1055/s-0041-1728797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Pseudomonas and Burkholderia are gram-negative organisms that achieve colonization within the lungs of patients with cystic fibrosis, and are associated with accelerated pulmonary function decline. Multidrug resistance is a hallmark of these organisms, which makes eradication efforts difficult. Furthermore, the literature has outlined increased morbidity and mortality for lung transplant (LTx) recipients infected with these bacterial genera. Indeed, many treatment centers have considered Burkholderia cepacia infection an absolute contraindication to LTx. Ongoing research has delineated different species within the B. cepacia complex (BCC), with significantly varied morbidity and survival profiles. This review considers the current evidence for LTx outcomes between the different subspecies encompassed within these genera as well as prophylactic and management options. The availability of meta-genomic tools will make differentiation between species within these groups easier in the future, and will allow more evidence-based decisions to be made regarding suitability of candidates colonized with these resistant bacteria for LTx. This review suggests that based on the current evidence, not all species of BCC should be considered contraindications to LTx, going forward.
Collapse
Affiliation(s)
- Alicia B Mitchell
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Allan R Glanville
- Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
23
|
Brugiere O, Verleden SE. Putting the spotlight on macrophage-derived cathepsin in the pathophysiology of obliterative bronchiolitis. Eur Respir J 2021; 57:57/5/2004607. [PMID: 33985982 DOI: 10.1183/13993003.04607-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Olivier Brugiere
- Lung Transplant Dept, Foch Hospital, Suresnes, France .,Inserm UMR S 1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | | |
Collapse
|
24
|
Ramos KJ, Pilewski JM, Taylor-Cousar JL. Challenges in the use of highly effective modulator treatment for cystic fibrosis. J Cyst Fibros 2021; 20:381-387. [PMID: 33531206 DOI: 10.1016/j.jcf.2021.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
The last decade has seen development of oral, small molecule therapies that address the basic cystic fibrosis transmembrane conductance regulator (CFTR) protein defect. Highly effective modulator treatment (HEMT) that is efficacious for a large majority of people living with cystic fibrosis (CF) promises to change the landscape of this chronic life-limiting disease. Some people living with CF have a CFTR genotype that renders them eligible for HEMT, but also have comorbidities that excluded them from the original Phase III clinical trials that led to US Food and Drug Administration approval. The purpose of this review is to address the use of HEMT in challenging situations, including initiation for those with advanced CF lung disease, and use after solid organ transplant, during pregnancy, and for individuals with CFTR-related disorders without a definitive diagnosis of CF.
Collapse
Affiliation(s)
- Kathleen J Ramos
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Taylor-Cousar
- Divisions of Pulmonary, Critical Care and Sleep Medicine and Pediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
25
|
Glanville AR. Pseudomonas and risk factor mitigation for chronic lung allograft dysfunction. Eur Respir J 2020; 56:56/4/2001968. [DOI: 10.1183/13993003.01968-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/22/2020] [Indexed: 11/05/2022]
|